JPH0240541A - Surface checking apparatus - Google Patents
Surface checking apparatusInfo
- Publication number
- JPH0240541A JPH0240541A JP19235188A JP19235188A JPH0240541A JP H0240541 A JPH0240541 A JP H0240541A JP 19235188 A JP19235188 A JP 19235188A JP 19235188 A JP19235188 A JP 19235188A JP H0240541 A JPH0240541 A JP H0240541A
- Authority
- JP
- Japan
- Prior art keywords
- defect
- detected
- inspected
- optical system
- reflected light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000007547 defect Effects 0.000 claims abstract description 103
- 230000003287 optical effect Effects 0.000 claims abstract description 40
- 238000007689 inspection Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 description 10
- 238000001514 detection method Methods 0.000 description 9
- 238000000576 coating method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- 230000002950 deficient Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 201000009310 astigmatism Diseases 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、ガラス、ウェハー等の平面基板表面の欠陥検
査、光ディスク等のグループピットの入った原盤スタン
パ等の欠陥検査等に用いられ、基板上に収束させた光を
走査してその反射光量の増減を検出することにより表面
微小欠陥を検査する表面検査装置に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is used for defect inspection on the surface of flat substrates such as glass and wafers, and for defect inspection of master stampers with group pits such as optical disks. The present invention relates to a surface inspection device that inspects minute defects on a surface by scanning converged light and detecting an increase or decrease in the amount of reflected light.
従来の技術
従来、平らな基板表面上の微小欠陥を検査する装置又は
方法としては、例えば特開昭61−133843号公報
等に示されるように光を走査させてその散乱光を検出す
る方法や、特開昭62−35249号公報、特開昭57
−94636号公報等に示されるようにレーザビームを
スパイラル状に照射しその反射光量の増減により欠陥を
検出する方法などがある。BACKGROUND ART Conventionally, as an apparatus or method for inspecting minute defects on a flat substrate surface, there is a method of scanning light and detecting the scattered light, as shown in Japanese Patent Laid-Open No. 61-133843, for example. , JP-A-62-35249, JP-A-57
There is a method of irradiating a laser beam in a spiral manner and detecting a defect based on an increase or decrease in the amount of reflected light, as shown in Japanese Patent No. 94636.
発明が解決しようとする問題点
しかし、これらの表面検査方式によると、欠陥の位置及
び大きさは検出できるが、欠陥の高さ(深さ)、凹凸の
種類は判定できない。Problems to be Solved by the Invention However, according to these surface inspection methods, although the position and size of a defect can be detected, the height (depth) of the defect and the type of unevenness cannot be determined.
この点、特開昭62−188948号公報に示されるよ
うにレーザ光を垂直に入射させ、基板からの反射光と散
乱光とを比較することにより欠陥の種類を判別する方式
や、特開昭58−177373号公報に示されるように
レーザビームをスパイラル状に走査させ基板からの散乱
光を楕円形に集光する光学系を経て検出する方式によれ
ば、凹凸の種類は判定し得るが、欠陥の高さまでは検出
できないものである。In this regard, as shown in Japanese Patent Application Laid-Open No. 62-188948, there is a method in which a laser beam is incident perpendicularly and the type of defect is determined by comparing the reflected light and scattered light from the substrate. According to the method disclosed in Japanese Patent No. 58-177373, in which a laser beam is scanned in a spiral manner and the scattered light from the substrate is detected through an optical system that focuses the light into an elliptical shape, the type of unevenness can be determined. The height of the defect cannot be detected.
ここに、半導体におけるウェハーでのレジスト塗布工程
、光ディスク等におけるレジスト塗布工程及び記録剤の
塗布工程においては、たとえ微小な欠陥(例えば、5μ
m以下)であっても、欠陥の高さが一定以上の場合には
塗布剤がこの欠陥によって不均一となり(塗布時に欠陥
存在位置より外周で塗布剤が拡がらない領域ができるこ
とによる)、致命的な欠陥となる。よって、欠陥検査に
おいてその高さを検出することは非常に重要である。Here, in the resist coating process for semiconductor wafers, the resist coating process for optical disks, etc., and the recording agent coating process, even minute defects (for example, 5μ
m or less), if the height of the defect is above a certain level, the coating agent will become uneven due to the defect (this is due to the formation of an area where the coating agent does not spread on the outer periphery from the defect location during coating), which can be fatal. It becomes a defect. Therefore, it is very important to detect the height in defect inspection.
しかるに、従来例によれば、何れの方式であっても、上
述したように欠陥の高さまでは検出できないため、欠陥
が見つけられればそれが微小な欠陥であってもその基板
を不良品として処分するか、或いは人間が顕微鏡により
欠陥の高さを測定して許容し得る欠陥か否かを判断しな
ければならない。However, according to conventional methods, no matter which method is used, it is not possible to detect the height of the defect as described above, so if a defect is found, even if it is a minute defect, the board is disposed of as a defective product. Alternatively, a person must measure the height of the defect using a microscope to determine whether the defect is acceptable.
前者によれば歩留まりの低いものとなり、後者によれば
多大な労力と時間とを要することになる。The former method results in a low yield, while the latter method requires a great deal of effort and time.
問題点を解決するための手段
収束した光を照射する光学系と、この光学系による光の
走査を受ける被検査面を持つ被検査体とを設け、前記被
検査面からの反射光の分布を検出し前記光学系と前記被
検査体との距離を一定に保つ手段を設け、前記被検査面
からの反射光を検出し所定の基準値と比較し欠陥の有無
を検出して欠陥信号を発生する検査手段と、検出された
欠陥の位置及び大きさを検出する手段とを設け、かつ、
検出された欠陥を再走査させる手段と、検出された欠陥
を再走査する直前に前記光学系を位置固定させる手段と
、検出された欠陥を再走査した時の前記被検査面からの
反射光の分布の変動の最大値を検出する手段と、検出さ
れた変動の最大値に基づき当該欠陥の高さを算出する手
段とを設ける。Means for Solving the Problem An optical system for irradiating converged light and an object to be inspected having a surface to be inspected that is scanned by the light by this optical system are provided, and the distribution of reflected light from the surface to be inspected is determined. means for detecting and maintaining a constant distance between the optical system and the object to be inspected, detecting reflected light from the surface to be inspected and comparing it with a predetermined reference value to detect the presence or absence of a defect and generate a defect signal. and means for detecting the position and size of the detected defect, and
means for rescanning the detected defect; means for fixing the position of the optical system immediately before rescanning the detected defect; and means for controlling the reflected light from the surface to be inspected when rescanning the detected defect. Means for detecting the maximum value of the variation in the distribution and means for calculating the height of the defect based on the detected maximum value of the variation are provided.
作用
まず、収束光を照射する光学系と被検前゛体の被検査面
との距離を合焦状態なる一定状態に保った状態で、被検
査面を光走査し、この被検査面からの反射光を検出しそ
の検出光量と所定の基準値と比較することにより、所定
の大きさ以上の欠陥の有無が検出される。欠陥の存在が
検出されたら、さらにその位置も検出される。これによ
り、欠陥の位置及び大きさが判る。さらに、このような
欠陥が検出された時には、例えば光学系を再走査手段に
よって同一の走査位置に位置させておくことにより当該
欠陥について再走査を行うが、再走査する直前に被検査
体に対し合焦状態の光学系を位置固定してフォーカスロ
ックしてから、当該欠陥を再走査する。この再走査時に
被検査面からの反射光の分布の変動の最大値を検出する
と、フォーカスロック状態にあるため、被検査体の厚み
方向の距離、ここでは欠陥の高さが大きい程、フォーカ
スずれが大きいことに相当し、欠陥部分でその高さに応
じた最大値を示す。よって、検出されたこの変動の最大
値に基づき演算することにより当該欠陥の高さは算出さ
れ、欠陥の高さも検出される。Operation First, while keeping the distance between the optical system that irradiates convergent light and the surface to be inspected of the object to be inspected in a constant state of focus, the surface to be inspected is scanned with light, and the light from the surface to be inspected is By detecting the reflected light and comparing the amount of detected light with a predetermined reference value, the presence or absence of a defect larger than a predetermined size is detected. Once the presence of a defect is detected, its location is also detected. This allows the location and size of the defect to be determined. Furthermore, when such a defect is detected, the defect is rescanned by, for example, positioning the optical system at the same scanning position using a rescanning means. After fixing the focused optical system in position and locking the focus, the defect is rescanned. When the maximum value of the variation in the distribution of reflected light from the surface to be inspected is detected during this rescanning, the focus is locked, so the distance in the thickness direction of the object to be inspected (in this case, the height of the defect) is larger, the more the focus is shifted. This corresponds to a large value, and shows the maximum value at the defective part depending on its height. Therefore, the height of the defect is calculated by calculating based on the maximum value of this detected variation, and the height of the defect is also detected.
実施例 本発明の一実施例を図面に基づいて説明する。Example An embodiment of the present invention will be described based on the drawings.
まず、従来から知られている表面欠陥検査装置における
光学系となる光ピツクアップ1部分の構成、動作を第2
図及び第3図により説明する。この光ピツクアップ1は
レーザ光源(図示せず)から射出されたレーザ光をコリ
メータレンズ2により平行光束に変換した後、ビームス
プリッタ3を透過させ、さらに、1/4波長板4を通し
対物レンズ5により被検査体6の被検査面6a上に収束
光として集光走査される。この被検査面6aで反射され
た光は再び対物レンズ5を通った後、1/4波長板4を
も再び通ることにより入射光に対し90°の位相遅れを
持つ光となり、ビームスプリッタ3に再入射する。この
ビームスプリッタ3は入射光に対して90°位相遅れを
持つ光は反射させるものであり、その反射光の光路上に
は横倍率と縦倍率との異なるシリンドリカルレンズ7が
設けられ、さらに、4つの受光領域(第3図参照)に区
分された4分割フォトダイオード8が設けられている。First, the configuration and operation of the first part of the optical pickup, which is the optical system in a conventionally known surface defect inspection device, will be explained in the second section.
This will be explained with reference to the drawings and FIG. This optical pickup 1 converts a laser beam emitted from a laser light source (not shown) into a parallel beam using a collimator lens 2, transmits it through a beam splitter 3, and then passes it through a quarter-wave plate 4 through an objective lens 5. As a result, the convergent light is condensed and scanned onto the surface 6a to be inspected of the object 6 to be inspected. The light reflected by the surface to be inspected 6a passes through the objective lens 5 again, and then passes through the 1/4 wavelength plate 4 again, becoming light with a phase delay of 90° relative to the incident light, and is sent to the beam splitter 3. Re-enter. This beam splitter 3 reflects light having a 90° phase delay with respect to the incident light, and a cylindrical lens 7 with different horizontal and vertical magnifications is provided on the optical path of the reflected light. A four-part photodiode 8 divided into two light receiving areas (see FIG. 3) is provided.
このような光ピツクアップ1は対物レンズ5の焦点位置
を常に被検査面6aに位置させるようなフォーカスサー
ボ機能及び被検査面6aに生じた欠陥に応じて欠陥信号
を発生させる欠陥信号発生機能(検査手段)を有してい
る。即ち、フォーカスサーボにあっては、対物レンズ5
の焦点位置が被検査面6a上に合致しなくなった際には
4分割フォトダイオード8上に生ずる投影光スポットの
形状が変化し、この4分割フォトダイオード8の4つの
受光領域から発生する検出信号の各々のレベルが変化す
ることを利用し、第3図に示すように、4分割フォトダ
イオード8の対角領域同士の検出信号を演算器9,10
により加算し、さらに演算器11によりこれらの加算結
果の差をとると、フォーカス誤差信号が出力されるので
(所謂、非点収差法)、これをフォーカス制御回路12
(第1図参照)を介して対物レンズ5に対するアクチュ
エータ13にフィードバックさせ、フォーカス誤差信号
がOとなるようにサーボ制御することにより合焦状態に
維持される。このようなフォーカス制御回路12が被検
査面6aからの反射光の分布を検出し光ピツクアップ1
の対物レンズ5と被検査体6との距離を一定に保つ手段
を構成することになる。Such an optical pickup 1 has a focus servo function to always position the focal position of the objective lens 5 on the surface to be inspected 6a, and a defect signal generation function (inspection) to generate a defect signal in accordance with a defect occurring on the surface to be inspected 6a. means). That is, in the focus servo, the objective lens 5
When the focal point position no longer matches the surface to be inspected 6a, the shape of the projection light spot generated on the four-division photodiode 8 changes, and the detection signal generated from the four light-receiving areas of the four-division photodiode 8 changes. As shown in FIG.
When the calculation unit 11 calculates the difference between these addition results, a focus error signal is output (so-called astigmatism method), and this is sent to the focus control circuit 12.
(See FIG. 1) to maintain the in-focus state by feeding back to the actuator 13 for the objective lens 5 and performing servo control so that the focus error signal becomes O. Such a focus control circuit 12 detects the distribution of reflected light from the surface to be inspected 6a and adjusts the light pickup 1.
This constitutes a means for keeping the distance between the objective lens 5 and the object to be inspected 6 constant.
また、前記演算器9,10による信号は演算器14によ
り加算されて欠陥検出に供される。即ち、この演算器1
4からの信号を第1図に示すように基準電圧発生器15
からの基準電圧と比較器16により比較することにより
欠陥の有無が検出される。このようにして、被検査面6
aからの反射光を検出し所定の基準値と比較し欠陥の有
無を検出して欠陥信号を発生する検査手段が構成されて
いる。即ち、被検査体6の被検査面6a上の無欠陥領域
に対物レンズ5の焦点が合致され、その領域にレーザス
ポットが生ずる場合には殆ど正反射され演算器14で加
算された光信号のレベルは基準電圧よりも大きいため、
比較器16の出力はLレベルに保持される。しかし、対
物レンズ5の焦点位置が欠陥領域に達すると、欠陥領域
ではレーザビームが散乱されるため正反射されるビーム
成分が減少し、演算器14で加算された光信号のレベル
は低下し、基準電圧よりも小さくなる。よって、比較器
16の出力はHレベルに変化し、欠陥信号となる。つま
り、光ディスクにおけるピットの有無検出と同様である
。Further, the signals from the arithmetic units 9 and 10 are added by the arithmetic unit 14 and used for defect detection. That is, this computing unit 1
4 to a reference voltage generator 15 as shown in FIG.
The presence or absence of a defect is detected by comparing it with a reference voltage from the comparator 16. In this way, the surface to be inspected 6
An inspection means is configured to detect the reflected light from a, compare it with a predetermined reference value, detect the presence or absence of a defect, and generate a defect signal. That is, when the objective lens 5 is focused on a defect-free area on the inspection surface 6a of the inspection object 6 and a laser spot is generated in that area, most of the optical signal is specularly reflected and added by the calculator 14. Since the level is greater than the reference voltage,
The output of comparator 16 is held at L level. However, when the focal position of the objective lens 5 reaches the defect area, the laser beam is scattered in the defect area, so the beam component that is specularly reflected decreases, and the level of the optical signal added by the calculator 14 decreases. It becomes smaller than the reference voltage. Therefore, the output of the comparator 16 changes to H level and becomes a defect signal. In other words, this is similar to detecting the presence or absence of pits on an optical disc.
しかして、本実施例では、検出された欠陥の高さをも検
出するために、欠陥を検出する機能の他に、検出した欠
陥上を再走査する直前でフォーカスロックしアクチュエ
ータ16に流す電流を一定に保つ機能と、このようなフ
ォーカスロック状態で欠陥上を光ピツクアップ1が再走
査した時の差信号、即ち演算器11からのフォーカス誤
差信号の変動の最大値を検出する機能と、検出された最
大値より欠陥の高さを算出する機能を合せ持つものであ
る。In this embodiment, in order to also detect the height of the detected defect, in addition to the function of detecting the defect, the focus is locked just before re-scanning the detected defect and the current is applied to the actuator 16. A function to keep the focus constant, a function to detect the difference signal when the optical pickup 1 rescans over the defect in such a focus locked state, that is, the maximum value of the fluctuation of the focus error signal from the arithmetic unit 11, It also has the function of calculating the height of a defect from the maximum value.
ここに、対物レンズNA=0.45、入射スポット径=
2μm、入射ビーム波長=830nmなる設計の光ピツ
クアップ1を用いた場合、演算器11から得られる差信
号のピーク値と欠陥の高さとの関係は第4図に示すよう
になったものであり、検出される欠陥の大きさはスポッ
ト径以上、即ち2μm以上である。もつとも、さらに微
小欠陥の高さを検査するためには、対物レンズNAを大
きくするか、又は波長を短くすればよい。Here, objective lens NA=0.45, incident spot diameter=
When using the optical pickup 1 designed to have a diameter of 2 μm and an incident beam wavelength of 830 nm, the relationship between the peak value of the difference signal obtained from the arithmetic unit 11 and the height of the defect is as shown in FIG. The size of the detected defect is larger than the spot diameter, that is, larger than 2 μm. However, in order to further inspect the height of micro defects, it is sufficient to increase the objective lens NA or shorten the wavelength.
このような機能を含む本実施例の表面欠陥検査装置の構
成を第1図に示す。まず、検査すべき平坦な被検査面6
aを備えたガラス原盤、半導体ウェハ等の被検査体1は
ターンテーブル2o上に載置支持されている。このター
ンテーブル20はターンテーブルモータ21により回転
駆動されるものである。このターンテーブルモータ21
の軸上にはエンコーダ22が設けられ、このエンコーダ
22からの回転位置信号に基づいてターンテーブルモー
タ21の回転速度の制御(例えば、PLL制御)を行い
、回転ジッタ等の現象を防止するターンテーブルコント
ローラ23が設けられている。The configuration of the surface defect inspection apparatus of this embodiment including such functions is shown in FIG. First, the flat surface to be inspected 6
An object 1 to be inspected, such as a glass master disk or a semiconductor wafer, is mounted and supported on a turntable 2o. This turntable 20 is rotationally driven by a turntable motor 21. This turntable motor 21
An encoder 22 is provided on the axis of the turntable, and the rotational speed of the turntable motor 21 is controlled (for example, PLL control) based on the rotational position signal from the encoder 22 to prevent phenomena such as rotational jitter. A controller 23 is provided.
また、このようなターンテーブル20上の被検査体6に
対向させて前述した光ピツクアップ1が設けられている
。この光ピツクアップ1は被検査体6の半径方向に沿っ
て一定速度で直線送りする横送りモータ24及び位置検
出器25を含む送り装置26に機械的に連結されている
。この送り装置26の横送りモータ24は位置検出器2
5からの位置検出信号等に基づき横送りモータコントロ
ーラ27により制御される。このようにして被検査体6
はターンテーブル20とともに回転され、光ピツクアッ
プ1はターンテーブル20の半径方向に一定速度で横送
りされることにより、被検査体6の被検査面6aは光ピ
ツクアップ1からのレーザビームによりスパイラル状に
走査されることになる。このようなスパイラル走査によ
り被検査体6の全面の走査が可能である。Further, the above-mentioned optical pickup 1 is provided opposite the object to be inspected 6 on the turntable 20. The optical pickup 1 is mechanically connected to a feed device 26 that includes a transverse feed motor 24 and a position detector 25 for linearly feeding the object 6 to be inspected in a radial direction at a constant speed. The lateral feed motor 24 of this feed device 26 is connected to the position detector 2
It is controlled by a lateral feed motor controller 27 based on the position detection signal etc. from 5. In this way, the object to be inspected 6
is rotated together with the turntable 20, and the optical pickup 1 is transversely fed in the radial direction of the turntable 20 at a constant speed, so that the surface 6a to be inspected of the object 6 to be inspected is spirally shaped by the laser beam from the optical pickup 1. It will be scanned. The entire surface of the object to be inspected 6 can be scanned by such spiral scanning.
これらのコントローラ23.27はパーソナルコンピュ
ータ28により制御される。These controllers 23, 27 are controlled by a personal computer 28.
また、前記比較器16から得られる欠陥信号は欠陥処理
回路17により大きさと位置の算出(半径と角度位置)
が行われれ、結果がパソコン28に送られる。つまり、
この欠陥処理回路17が検出された欠陥の位置及び大き
さを検出する手段となる。Further, the defect signal obtained from the comparator 16 is used to calculate the size and position (radius and angular position) by the defect processing circuit 17.
is performed, and the results are sent to the personal computer 28. In other words,
This defect processing circuit 17 serves as means for detecting the position and size of the detected defect.
一方、前記比較器16からの欠陥信号は前記横送りモー
タコントローラ27にも送出されており、欠陥検出と同
時に横送りモータ24による光ピツクアップ1の横送り
を停止制御するように構成されている。このように欠陥
検出と同時に光ピツクアップlの横送り(半径方向の送
り)を停止させるこの横送りモータコントローラ27が
、欠陥再走査手段となる。また、通常状態では光ピツク
アップ1の検出に基づく演算器11の差信号によりフォ
ーカスサーボを行っているが、欠陥が検出されると、横
送りが停止されている光ピツクアップlが再び同じ欠陥
上を通過することになるが、欠陥上を通過する直前でフ
ォーカスサーボ制御を停止させ、対物レンズ5の位置を
固定させるためのフォーカスロック回路29が設けられ
ている。より具体的には、比較器16からの欠陥信号を
遅延回路30を通して遅延させてからこのフォーカスロ
ック回路29に入力させている。即ち、欠陥信号をター
ンテーブル20の1回転に要する時間よりもわずかに短
い時間だけ遅らせて入力させると、フォーカス制御回路
12への差信号(フォーカス誤差信号)の入力をカット
するフォーカスロック回路29により、光ピツクアップ
1が再び欠陥上を通過する直前のタイミングで対物レン
ズ5を固定させることができる。On the other hand, the defect signal from the comparator 16 is also sent to the lateral feed motor controller 27, and is configured to stop the lateral movement of the optical pickup 1 by the lateral feed motor 24 at the same time as the defect is detected. The lateral feed motor controller 27, which stops the lateral feeding (radial direction feeding) of the optical pickup 1 at the same time as defect detection, serves as defect rescanning means. In addition, under normal conditions, focus servo is performed using a difference signal from the arithmetic unit 11 based on the detection of the optical pickup 1, but when a defect is detected, the optical pickup 1, whose traverse feed has been stopped, moves over the same defect again. However, a focus lock circuit 29 is provided to stop the focus servo control and fix the position of the objective lens 5 just before passing over the defect. More specifically, the defect signal from the comparator 16 is delayed through a delay circuit 30 and then input to the focus lock circuit 29. That is, when the defect signal is input with a delay of a time slightly shorter than the time required for one rotation of the turntable 20, the focus lock circuit 29 cuts off the input of the difference signal (focus error signal) to the focus control circuit 12. , the objective lens 5 can be fixed at a timing immediately before the optical pickup 1 passes over the defect again.
一方、遅延回路30による遅延後の欠陥信号はピークホ
ールド回路31にも入力され、検出された欠陥を再走査
した時の被検査面6aからの反射光の分布の変動の最大
値を演算器11から出力される差信号に基づき検出する
動作を開始させる。On the other hand, the defect signal delayed by the delay circuit 30 is also input to the peak hold circuit 31, and a computing unit 11 calculates the maximum value of the variation in the distribution of reflected light from the surface to be inspected 6a when the detected defect is rescanned. The detection operation is started based on the difference signal output from the.
具体的には、遅延された欠陥信号によりピークホールド
回路31をリセットさせピーク値を保持させる。この際
、演算器11からの信号を例えば波長にして約1〜10
00μmを通過させるバンドパスフィルタ32を通して
ピークホールド回路31に入力させることにより、差信
号の微小な変動と面振れによる差信号のオフセットとを
除去するようにしている。ピークホールド回路31によ
り保持されたピーク値はマルチメータ33により測定さ
れ、その値がパソコン28に送出される。Specifically, the peak hold circuit 31 is reset by the delayed defect signal to hold the peak value. At this time, the signal from the arithmetic unit 11 has a wavelength of about 1 to 10, for example.
By inputting the signal to the peak hold circuit 31 through a bandpass filter 32 that passes 00 μm, minute fluctuations in the difference signal and offsets of the difference signal due to surface runout are removed. The peak value held by the peak hold circuit 31 is measured by a multimeter 33, and the value is sent to the personal computer 28.
このようにフォーカスロック状態での差信号のピーク値
が検出されれば、第4図に示したように、そのピーク値
に基づきパソコン28で演算することにより、欠陥の高
さを求めることができる。If the peak value of the difference signal in the focus lock state is detected in this way, the height of the defect can be determined by calculating on the personal computer 28 based on the peak value, as shown in FIG. .
このピークホールド回路31により差信号の変動のピー
ク値が検出された後は、フォーカスロックを解除し、再
びフォーカス制御回路12によるフォーカスサーボ制御
に戻し、かつ、光ピツクアップ1の横送りによるスパイ
ラル状の走査を再開し、欠陥検出を続行する。このよう
な動作の繰返しにより被検査体6の被検査面6aを全面
的に測定することにより、被検査面6a上に存在する欠
陥の大きさ、位置(半径、角度)とともにその高さも判
る。After the peak value of the fluctuation of the difference signal is detected by the peak hold circuit 31, the focus lock is released, the focus control circuit 12 returns to the focus servo control, and the spiral-shaped optical pickup 1 is moved horizontally. Restart scanning and continue defect detection. By repeating such operations and measuring the entire surface 6a of the object 6 to be inspected, the size and position (radius, angle) and height of the defect existing on the surface 6a to be inspected can be determined.
なお、前記光ピツクアップ1に基づく演算器14からの
和信号をA、この和信号を一方の入力とする比較器16
からの欠陥信号をB、演算器11からの差信号をC1こ
の差信号Cのバンドパスフィルタ32通過後の信号をD
、ピークホールド回路31からの出力をEとした時、遅
延回路30による遅延動作を伴うこれらの信号のタイミ
ングチャートは第5図に示すようになる。Note that the sum signal from the arithmetic unit 14 based on the optical pickup 1 is A, and the comparator 16 receives this sum signal as one input.
B is the defect signal from C1, C1 is the difference signal from the arithmetic unit 11, and D is the signal after the difference signal C has passed through the bandpass filter 32.
, when the output from the peak hold circuit 31 is E, a timing chart of these signals accompanied by a delay operation by the delay circuit 30 is shown in FIG.
発明の効果
本発明は、上述したように欠陥信号を発生する検査手段
、検出された欠陥の位置及び大きさを検出する手段とと
もに、検出欠陥を再走査させる手段と、検出欠陥を再走
査する直前に光学系を位置固定させる手段と、検出され
た欠陥を再走査した時の被検査体の被検査面からの反射
光の分布の変動の最大値を検出する手段と、検出された
変動の最大値に基づき当該欠陥の高さを算出する手段と
を設けたので、欠陥の位置、大きさのみならず、その欠
陥の高さをも測定検出することができ、許容し得る欠陥
か否かの認定等に供することができる。Effects of the Invention As described above, the present invention provides an inspection means for generating a defect signal, a means for detecting the position and size of the detected defect, a means for rescanning the detected defect, and a means for rescanning the detected defect immediately before rescanning the detected defect. means for fixing the position of the optical system, means for detecting the maximum value of variation in the distribution of reflected light from the surface to be inspected of the object to be inspected when rescanning the detected defect; Since we have provided a means to calculate the height of the defect based on the value, it is possible to measure and detect not only the position and size of the defect, but also the height of the defect, and it is possible to determine whether the defect is acceptable or not. It can be submitted for certification, etc.
は欠陥の高さ一差信号のピーク値の関係を示す特性図、
第5図はタイミングチャートである。is a characteristic diagram showing the relationship between the peak value of the signal and the height difference of the defect,
FIG. 5 is a timing chart.
■・・・光学系、6・・・被検査体、6a・・・被検査
面、12・・・距離一定保持手段、16・・・検査手段
、17・・・位置及び大きさ検出手段、27・・・再走
査手段、28・・・算出手段、29・・・位置固定手段
、31・・・最大値検出手段
出 願 人 株式会社 リ コ −■... Optical system, 6... Object to be inspected, 6a... Surface to be inspected, 12... Distance constant holding means, 16... Inspection means, 17... Position and size detection means, 27...Rescanning means, 28...Calculating means, 29...Position fixing means, 31...Maximum value detection means Applicant Rico Co., Ltd. -
Claims (1)
走査を受ける被検査面を持つ被検査体と、前記被検査面
からの反射光の分布を検出し前記光学系と前記被検査体
との距離を一定に保つ手段と、前記被検査面からの反射
光を検出し所定の基準値と比較し欠陥の有無を検出して
欠陥信号を発生する検査手段と、検出された欠陥の位置
及び大きさを検出する手段と、検出された欠陥を再走査
させる手段と、検出された欠陥を再走査する直前に前記
光学系を位置固定させる手段と、検出された欠陥を再走
査した時の前記被検査面からの反射光の分布の変動の最
大値を検出する手段と、検出された変動の最大値に基づ
き当該欠陥の高さを算出する手段とからなることを特徴
とする表面検査装置。An optical system that irradiates converged light, an object to be inspected that has a surface to be inspected that is scanned by the light by this optical system, and an object that detects the distribution of reflected light from the surface to be inspected. means for maintaining a constant distance from the surface to be inspected; inspection means for detecting the reflected light from the surface to be inspected and comparing it with a predetermined reference value to detect the presence or absence of a defect and generating a defect signal; and the position of the detected defect. and a means for detecting the size of the detected defect, a means for rescanning the detected defect, a means for fixing the position of the optical system immediately before rescanning the detected defect, and a means for rescanning the detected defect. A surface inspection device comprising means for detecting the maximum value of variation in the distribution of reflected light from the surface to be inspected, and means for calculating the height of the defect based on the detected maximum value of variation. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19235188A JPH0240541A (en) | 1988-08-01 | 1988-08-01 | Surface checking apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19235188A JPH0240541A (en) | 1988-08-01 | 1988-08-01 | Surface checking apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0240541A true JPH0240541A (en) | 1990-02-09 |
Family
ID=16289832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19235188A Pending JPH0240541A (en) | 1988-08-01 | 1988-08-01 | Surface checking apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0240541A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0687902A1 (en) * | 1994-06-15 | 1995-12-20 | Kodak-Pathe | Method and device for counting and characterising defects on a photographic support |
JP2005292136A (en) * | 2004-03-30 | 2005-10-20 | General Electric Co <Ge> | System for inspecting multiplex resolution and its operation method |
JP2008516233A (en) * | 2004-10-04 | 2008-05-15 | ケーエルエー−テンカー テクノロジィース コーポレイション | Enhanced surface inspection system |
JP2008309532A (en) * | 2007-06-13 | 2008-12-25 | Lasertec Corp | Three-dimensional measuring apparatus and inspection apparatus |
US7925179B2 (en) | 2007-08-31 | 2011-04-12 | Brother Kogyo Kabushiki Kaisha | Image forming apparatus with dust-proof wall |
US8285171B2 (en) | 2007-06-20 | 2012-10-09 | Konica Minolta Business Technologies, Inc. | Image forming apparatus having a dust proofing member for an exposure device |
-
1988
- 1988-08-01 JP JP19235188A patent/JPH0240541A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0687902A1 (en) * | 1994-06-15 | 1995-12-20 | Kodak-Pathe | Method and device for counting and characterising defects on a photographic support |
FR2721418A1 (en) * | 1994-06-15 | 1995-12-22 | Kodak Pathe | Photographic support detect counting and characterising appts |
US5641971A (en) * | 1994-06-15 | 1997-06-24 | Eastman Kodak Company | Method and device for counting and characterizing defects on a photographic support |
JP2005292136A (en) * | 2004-03-30 | 2005-10-20 | General Electric Co <Ge> | System for inspecting multiplex resolution and its operation method |
JP2008516233A (en) * | 2004-10-04 | 2008-05-15 | ケーエルエー−テンカー テクノロジィース コーポレイション | Enhanced surface inspection system |
JP2008309532A (en) * | 2007-06-13 | 2008-12-25 | Lasertec Corp | Three-dimensional measuring apparatus and inspection apparatus |
US8285171B2 (en) | 2007-06-20 | 2012-10-09 | Konica Minolta Business Technologies, Inc. | Image forming apparatus having a dust proofing member for an exposure device |
US7925179B2 (en) | 2007-08-31 | 2011-04-12 | Brother Kogyo Kabushiki Kaisha | Image forming apparatus with dust-proof wall |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5159412A (en) | Optical measurement device with enhanced sensitivity | |
US5875029A (en) | Apparatus and method for surface inspection by specular interferometric and diffuse light detection | |
JP3801635B2 (en) | Product surface inspection system and method | |
US7973922B2 (en) | Optical inspection method and optical inspection apparatus | |
US7864310B2 (en) | Surface inspection method and surface inspection apparatus | |
JPH0575262B2 (en) | ||
US11852592B2 (en) | Time domain multiplexed defect scanner | |
TW201428280A (en) | Inspection beam shaping for improved detection sensitivity | |
JP2003287504A (en) | Method and device for surface inspection | |
US20220187204A1 (en) | Slope, p-component and s-component measurement | |
US20220269071A1 (en) | Scanning micro profiler | |
US20220187057A1 (en) | Surface contour measurement | |
WO1997034124A1 (en) | Optical surface detection for magnetic disks | |
JP2000275182A (en) | Apparatus and method for inspecting disk-shaped recording medium | |
TW201937162A (en) | Inspection device and inspection method for same | |
US9921169B2 (en) | Method of detecting defect location using multi-surface specular reflection | |
JP4466544B2 (en) | Optical information medium inspection method and optical information medium inspection apparatus | |
JPH0240541A (en) | Surface checking apparatus | |
US12130243B2 (en) | Angle independent optical surface inspector | |
JP3720343B2 (en) | Optical disc inspection device | |
JP2003132591A (en) | Optical-disc inspecting device | |
US10648928B1 (en) | Scattered radiation optical scanner | |
JPS61228332A (en) | Apparatus for optical inspection of flaw | |
JPH0610656B2 (en) | Surface defect detector | |
KR102199976B1 (en) | Method and apparatus for wafer inspection |