JPS63297513A - Operating method for blast furnace - Google Patents

Operating method for blast furnace

Info

Publication number
JPS63297513A
JPS63297513A JP13611687A JP13611687A JPS63297513A JP S63297513 A JPS63297513 A JP S63297513A JP 13611687 A JP13611687 A JP 13611687A JP 13611687 A JP13611687 A JP 13611687A JP S63297513 A JPS63297513 A JP S63297513A
Authority
JP
Japan
Prior art keywords
furnace
coke
particle size
tuyere
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13611687A
Other languages
Japanese (ja)
Inventor
Yoshizumi Kawaguchi
川口 善澄
Koichi Kurita
栗田 興一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP13611687A priority Critical patent/JPS63297513A/en
Publication of JPS63297513A publication Critical patent/JPS63297513A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/007Conditions of the cokes or characterised by the cokes used

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE:To prevent aggravation of furnace condition caused by crushed fine grains of coke by finding reduction ratio of grain size of the coke in the furnace from the grain size of the coke sampled in the furnace before the tuyere and that at the time of charging from the furnace top in the blast furnace operation and adjusting the lower limit of the grain size of the coke to be charged. CONSTITUTION:In the case where the lump coke charged from the furnace top during the blast furnace operation is crushed into fine grains by physical and chemical consumption in the furnace, ventilation of gas in the furnace is obstructed and the furnace condition is aggravated. For preventing this, a lance 1 for sampling is inserted in the furnace from the tuyere 4 and the red heat coke 7 at the front of the tuyere is sampled from the sampling hole 2 in the lance. The grain size of this coke sample 7 is measured and the consuming ratio in the furnace is found from the lump coke size at the time of charging from the furnace top. From this value, a lower limit value is decided so as not to aggravate the furnace condition by fine grains of the coke at the tuyere part, and by charging the lump coke having the size more than the above limit value in the blast furnace from the furnace top, the aggravation of the ventilativity caused by making the grains of the coke fine in the blast furnace is prevented and the furnace condition in the blast furnace is stabilized.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は高炉炉下部におけるコークスの細粒化を防止
することによって、操業の安定化をはかる高炉操業方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to a blast furnace operating method for stabilizing the operation by preventing coke from becoming fine in the lower part of the blast furnace.

技術的背景 一般に、高炉炉頂に装入されたコークスは炉内を降下す
る過程で予熱帯を経てほぼ900℃以上の温度域に達す
ると、下部より上昇してくるガス中CO2あるいは+−
+20によって反応を受け、コークス表面のカーボンが
反応消失して粒子径が減少していく一方、粒子内部では
気孔が拡大して気孔壁が薄くなって強度が低下する。こ
のことは、外力に対して、あるいはコークス粒子どうし
の摩耗に対する抵抗力が弱くなったことを示し、反応量
による強度低下の程度、さらには外力の程度に応じてコ
ークスは崩壊し、発生した粉コークスは装入物の空隙を
埋め通気性を阻害するばかりでなく、炉下部に降下して
高温帯に蓄積したような場合にはスラグあるいは銑鉄の
通液性をも阻害することになり、高炉炉況を変動させる
要因となる。
Technical Background Generally, when coke charged at the top of a blast furnace passes through a preheating zone and reaches a temperature range of approximately 900°C or higher as it descends inside the furnace, CO2 in the gas rising from the bottom or +-
+20 causes the coke to undergo a reaction, and the carbon on the coke surface reacts and disappears, reducing the particle size, while inside the particles, the pores expand, the pore walls become thinner, and the strength decreases. This indicates that the resistance to external force or the wear of coke particles has become weaker, and the coke collapses depending on the degree of strength reduction due to the reaction amount and the degree of external force, and the generated powder Coke not only fills the voids in the charge and obstructs air permeability, but if it descends to the bottom of the furnace and accumulates in the high-temperature zone, it also obstructs the permeability of slag or pig iron. It becomes a factor that changes the furnace condition.

一方、羽口先に降下したコークスは送風中の酸素との反
応により粒径を低下させるとともに、送風により水平方
向に加速され、コークス充填層の壁に衝突する過程で酸
素との反応で生成したCO2あるいは送風中の)120
により急激なガス化を受けながらコークス壁面に沿って
上昇し、再び羽口先へ降下するという旋回運動をしてい
る。このような急激な旋回運動においてはコークスの崩
壊が進みやすく、発生した粉コークスはコークス充填層
の空隙を低下させる結果、中心部へのガス流れを著しく
阻害することがら炉況不調に至らしめる原因となり好ま
しくない。
On the other hand, the coke that has descended to the tip of the tuyere reduces its particle size due to the reaction with the oxygen being blown, and is also accelerated in the horizontal direction by the blown air, and CO2 generated by the reaction with oxygen during the process of colliding with the wall of the coke packed bed. or while blowing air) 120
The coke undergoes a swirling motion, rising along the coke wall while undergoing rapid gasification, and then descending again to the tip of the tuyere. In such rapid swirling motion, the coke tends to collapse, and the generated coke powder reduces the voids in the coke packed bed, significantly inhibiting the gas flow to the center, which can lead to furnace malfunctions. This is undesirable.

周知の通り、高炉におけるコークスの役割としては、■
通気剤としての役割、■還元剤としての役割、■熱源と
しての役割に大別され、■は重油等の液体燃料の吹込み
、■は液体燃料の吹込みおよび高温送風により代替可能
であるが、現在の技術では■は高炉用コークスに頼らな
ければならない。また、高炉は下部より反応ガスを供給
し、上部より鉱石等原料を装入し、還元、溶解等の一連
の反応を行なわしめる向流反応塔であるため、ガスを安
定に通すための最小限の通気性の確保が要求される。
As is well known, the role of coke in blast furnaces is: ■
It can be broadly classified into the role of an aeration agent, the role of a reducing agent, and the role of a heat source. With current technology, ■ must rely on blast furnace coke. In addition, blast furnaces are countercurrent reaction towers in which reactive gas is supplied from the bottom, raw materials such as ore are charged from the top, and a series of reactions such as reduction and dissolution are carried out. It is required to ensure ventilation.

したがって、高炉操業においてはコークス強度の低下と
これに伴うコークス粒径の細粒化を防止し、粉コークス
の発生をいかに低減させるかが重要な課題となる。
Therefore, in blast furnace operation, an important issue is how to prevent a decrease in coke strength and the accompanying reduction in coke particle size, and how to reduce the generation of coke breeze.

このようなコークスの熱間性状低下に伴うコークス細粒
化を防止するため、従来、羽口からの送風湿分を増加(
加湿)することによって炉下部の粉コークスを水素還元
により消費させ、コークス粒径の低下を防止する方法が
ある。しかし、この方法は水分添加による熱不足補償の
ため、送rg1温度の上昇やコークス比増加等のアクシ
ョンを併用せざるを得ず、燃比増大を招きコスト的に不
利である。このため、加湿によるコークス粉化防止方法
はほとんど採用されていない。
In order to prevent the coke from becoming finer due to the deterioration of the hot properties of the coke, conventional methods have been used to increase the humidity of the air blown from the tuyere (
There is a method of consuming the coke breeze in the lower part of the furnace through hydrogen reduction by humidifying the furnace to prevent the coke particle size from decreasing. However, in order to compensate for the lack of heat due to water addition, this method has to take actions such as increasing the feed rg1 temperature and increasing the coke ratio, which increases the fuel ratio and is disadvantageous in terms of cost. For this reason, methods of preventing coke pulverization through humidification are rarely adopted.

この発明は従来の上記実状にかんがみてなされたもので
あり、熱補償等のアクションを必要とせず、コスト的に
有利な方法によって塊コークスの炉下部における細粒化
を防止し得る方法を提案せんとするものである。
This invention was made in view of the above-mentioned conventional situation, and it is an object of the present invention to propose a method that can prevent lump coke from becoming fine in the lower part of the furnace by a cost-effective method that does not require actions such as heat compensation. That is.

発明の構成 この発明は高炉に装入されたコークスの炉下部における
粒径の変化に基づいて、炉頂より装入するコークスの下
限粒径をアップすることにより炉内細粒化を防止する方
法であり、その要旨は、炉頂より装入したコークスを羽
口前で採取し、採取した赤熱コークスの粒径より該コー
クス粒径の減少量を求め、その減少量に応じて炉頂より
装入するコークスの下限粒径上昇幅を決定し、下限粒径
の大きいコークスを単味または鉱石と混合して炉内に装
入することを特徴とする高炉操業法にある。
Structure of the Invention This invention is a method for preventing grain refinement in a blast furnace by increasing the minimum grain size of coke charged from the top of the furnace based on the change in grain size in the lower part of the furnace. The gist of this is that the coke charged from the top of the furnace is sampled in front of the tuyere, the amount of reduction in coke particle size is determined from the particle size of the collected red-hot coke, and the amount of coke charged from the top of the furnace is determined according to the amount of decrease. The blast furnace operating method is characterized by determining a lower limit increase in the particle size of the coke to be introduced, and charging coke with a large lower limit particle size alone or mixed with ore into the furnace.

すなわち、この発明は炉頂より装入した塊コークスを羽
口前で採取し、その採取したコークスの粒径を測定する
。その方法としては、例えば休風中にサンプリング用ラ
ンスを羽口から炉内へ挿入し、サンプリングした試料の
粒度を炉外で篩等で測定する方法を用いることができる
。第5図には操業中にサンプリングする方法の一例を示
す。すなわち、先端部に試料採取口(2)を有するサン
プリング用ランス(1)を挿入用台車(3)に取付け、
送風支管(5)との間をシール装置(6)にてシールし
た状態で挿入用台車(3)を前進させてランス(1)を
羽口(4)より炉内に挿入し、ランス先端部の試料採取
口(2)を上向きにして試料(7)を採取すると、挿入
用台車(3)を後退させて炉外へ取出す。
That is, in this invention, lump coke charged from the top of the furnace is sampled in front of the tuyere, and the particle size of the sampled coke is measured. As a method, for example, a method can be used in which a sampling lance is inserted into the furnace through the tuyere during a wind break, and the particle size of the sampled sample is measured using a sieve or the like outside the furnace. FIG. 5 shows an example of a method for sampling during operation. That is, a sampling lance (1) having a sample collection port (2) at the tip is attached to an insertion cart (3),
With the space between the blower branch pipe (5) sealed with the sealing device (6), the insertion cart (3) is advanced, the lance (1) is inserted into the furnace through the tuyere (4), and the lance tip is sealed. When the sample (7) is collected with the sample collection port (2) facing upward, the insertion cart (3) is moved backward and taken out of the furnace.

このような方法で試料を採取し、炉下部羽口レベルにお
けるコークス粒径を測定すると、この測定値と炉頂装入
時(炉前篩時)の塊コークスの粒径との差、すなわちコ
ークス粒径の減少量を求める。この粒径減少量よりコー
クスの熱間性状(C3R)を判定し、この判定結果より
炉頂装入用塊コークスの下限粒径上昇幅、すなわち炉前
篩目のサイズを決定し、下限粒径の大きい塊コークスを
炉頂より装入する。装入の仕方としては、篩目以上の塊
コークスは通常通り単味で装入し、篩目未満のコークス
は鉱石と混合して装入する。
When a sample is taken in this way and the coke particle size at the lower tuyere level is measured, the difference between this measured value and the particle size of the lump coke at the time of charging at the top of the furnace (when sieving at the front of the furnace), that is, the coke particle size Find the amount of decrease in particle size. The hot property (C3R) of the coke is determined from this grain size reduction amount, and from this determination result, the lower limit particle size increase width of the lump coke for charging at the top of the furnace, that is, the size of the furnace sieve mesh is determined, and the lower limit particle size is determined. Large lump coke is charged from the top of the furnace. As for the charging method, lump coke of sieve size or higher is charged alone as usual, and coke of below sieve size is mixed with ore and charged.

すなわち、との発明は炉内コークスの熱間性状の低下に
より羽口レベルでの調和平均コークス粒径が減少した場
合、その減少分を装入コークス粒径の上昇によって補償
するのである。
That is, in the invention of , when the harmonic average coke particle size at the tuyere level decreases due to a decrease in the hot properties of the coke in the furnace, the decrease is compensated for by increasing the charged coke particle size.

この方法によれば、下限粒径がアップすることにより炉
頂より装入するコークス粒径が上昇することになる。ま
た、篩目サイズをアップした篩の篩下塊コークスを鉱石
と混合して装入した場合は、鉱石中コークス量が増加す
ることによりカーボンソリューションロス反応が優先的
に進行する結果、単味装入の塊コークスのカーボンソリ
ューションロス反応による粒度低下が減少し、炉前篩に
よる塊コークスの下限粒度アップと相俟って熱間性状低
下による炉下部のコークス粒度低下を抑制できるのであ
る。
According to this method, by increasing the minimum particle size, the particle size of coke charged from the top of the furnace increases. In addition, when the lump coke under the sieve of a sieve with increased sieve mesh size is mixed with ore and charged, the amount of coke in the ore increases and the carbon solution loss reaction progresses preferentially, resulting in a monofilament. This reduces the drop in particle size of the lump coke caused by the carbon solution loss reaction, and together with increasing the minimum particle size of the lump coke by the front sieve, it is possible to suppress the drop in coke particle size in the lower part of the furnace due to deterioration in hot properties.

具  体  例 第1図は羽口レベルでの調和平均コークス粒径とコーク
スの熱間性状を例示したもので、熱間性状が54%から
48%に低下した場合、羽口レベルでの調和平均コーク
ス粒径は約2mm低下した。
Figure 1 shows an example of the harmonic average coke particle diameter at the tuyere level and the hot properties of coke.If the hot properties decrease from 54% to 48%, The coke particle size decreased by about 2 mm.

第2図は炉前篩目と篩後の調和平均コークス粒径を示し
たものである。現状は篩目20mmの篩が採用され、篩
後調和平均コークス粒径は45mmである。
Figure 2 shows the harmonic average coke particle size between the screen size before the furnace and after the screen. Currently, a sieve with a sieve mesh of 20 mm is used, and the harmonic average coke particle size after the sieve is 45 mm.

しかるに、この跪コークスの場合、第1図に示すごとく
炉下部では熱間性状が54%から48%に低下するにと
もない、粒径は約2mm低下するので、その低下分を装
入コークス粒径で補償するには第3図に示すごとく装入
コークス粒径を約4mm大きくする必要があることが判
明した。すなわち、炉前篩に換算すると篩目を現状の2
0mmから25mmに上昇する必要があることがわかっ
た。
However, in the case of this kneeling coke, as the hot properties decrease from 54% to 48% in the lower part of the furnace as shown in Figure 1, the particle size decreases by about 2 mm, so this decrease is taken into account by the particle size of the charged coke. It was found that in order to compensate for this, it was necessary to increase the charged coke particle size by about 4 mm as shown in FIG. In other words, when converted to a furnace sieve, the current sieve size is 2.
It was found that it was necessary to increase from 0 mm to 25 mm.

そこで、この炉前篩目を25mmに上昇して装入コーク
スの下限粒径を大きくし、篩上塊コークスを単味で高炉
に装入し、篩下塊コークスを鉱石と混合して高炉に装入
した。その結果、第4図にコークスの熱間性状と炉前篩
目変化に対応する炉況推移を示すように、炉内における
コークスの熱間性状の低下を炉前篩目アップにより十分
に抑制でき、炉況を安定維持することができた。
Therefore, the lower limit particle size of the charged coke was increased by increasing the screen size at the front of the furnace to 25 mm, and the lump coke above the sieve was charged alone into the blast furnace, and the lump coke under the sieve was mixed with ore and sent to the blast furnace. I loaded it. As a result, as shown in Figure 4, which shows the changes in the furnace conditions corresponding to the hot properties of coke and changes in the sieve size at the front of the furnace, the deterioration of the hot properties of coke in the furnace can be sufficiently suppressed by increasing the sieve size at the front of the furnace. We were able to maintain stable furnace conditions.

以上のように、炉頂装入コークスの下限粒径アップは、
コークスの熱間性状が低下した場合の高炉炉下部におけ
るコークスの細粒化の防止に有効であることが明らかと
なり、炉況の安定維持に効果大であることを確認できた
As mentioned above, increasing the minimum particle size of coke charged at the top of the furnace is
It was found that this method is effective in preventing the coke from becoming fine in the lower part of the blast furnace when the hot properties of the coke deteriorate, and it was confirmed that it is highly effective in maintaining stable furnace conditions.

発明の詳細 な説明したごとく、この発明によれば、炉内コークス粒
度の減少量を測定し、それに応じて塊コークスの下限粒
径を大きくすることによって、炉内でのコークス細粒化
にともなう粉コークスの発生を低減できるので、安定し
た高炉操業を実施できる。また、この発明は熱補償等の
アクションを必要としないため、コスト的にも有利であ
る。
As described in detail, according to the present invention, by measuring the amount of decrease in coke particle size in the furnace and increasing the lower limit particle size of lump coke accordingly, Since the generation of coke powder can be reduced, stable blast furnace operation can be carried out. Furthermore, since the present invention does not require actions such as heat compensation, it is also advantageous in terms of cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例における羽口レベルでの調和
平均コークス粒径と熱間性状の関係を示す図である。 第2図は同上実施例における炉前篩と篩後調和平均コー
クス粒径の関係を示す図である。 第3図は高炉装入コークスの粒径と羽口レベルでの断面
平均コークス粒径の関係を示す図である。 第4図は同上実施例における熱間性状と炉前篩目変化に
対応する炉況推移を示す図である。 第5図は操業中における試料のサンプリング方法の一例
を示す図で、同図(a)はサンプリング用ランスを炉内
に挿入した状態を示す図、同図(b)は同上ランスの先
端部を拡大して示す図、同図(C)は同上ランスのは試
料採取状態を示すランス先端部の拡大図である。 1・・・サンプリング用ランス 2・・・試料採取口3
・・・挿入用台車      4・・・羽目特許出願人
  住友金属工業株式会社 第1図 第2図 調和平均コークス粒径(IEI) 第3図 羽目レベル断面平均コークス粒径(IS)M4図 経過日数(日)
FIG. 1 is a diagram showing the relationship between the harmonic average coke particle size and hot properties at the tuyere level in an example of the present invention. FIG. 2 is a diagram showing the relationship between the harmonic average coke particle size between the furnace sieve and the after-sieve in the same example. FIG. 3 is a diagram showing the relationship between the particle size of coke charged in a blast furnace and the cross-sectional average coke particle size at the tuyere level. FIG. 4 is a diagram showing changes in furnace conditions corresponding to hot properties and changes in sieve size at the front of the furnace in the same example. Figure 5 is a diagram showing an example of a sample sampling method during operation. Figure 5 (a) shows the state in which the sampling lance is inserted into the furnace, and Figure 5 (b) shows the tip of the same lance. Figure (C) is an enlarged view of the tip of the lance showing the sample collection state. 1... Sampling lance 2... Sample collection port 3
... Insertion trolley 4 ... Panel patent applicant Sumitomo Metal Industries, Ltd. Figure 1 Figure 2 Harmonic average coke particle diameter (IEI) Figure 3 Panel level cross-sectional average coke particle diameter (IS) M4 Figure Number of days elapsed (Day)

Claims (1)

【特許請求の範囲】[Claims] 高炉操業において、炉頂より装入したコークスを羽口前
で採取し、採取した赤熱コークスの粒径より該コークス
粒径減少量を求め、その減少量に応じて炉頂より装入す
るコークスの下限粒径上昇幅を決定し、粒径の大きいコ
ークスを単味または鉱石と混合して炉内に装入すること
を特徴とする高炉操業方法。
In blast furnace operation, the coke charged from the top of the furnace is sampled in front of the tuyere, the amount of reduction in coke particle size is determined from the particle size of the sampled red-hot coke, and the amount of coke charged from the top of the furnace is determined according to the amount of reduction. A method of operating a blast furnace characterized by determining a lower limit increase in particle size and charging coke with a large particle size alone or mixed with ore into the furnace.
JP13611687A 1987-05-29 1987-05-29 Operating method for blast furnace Pending JPS63297513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13611687A JPS63297513A (en) 1987-05-29 1987-05-29 Operating method for blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13611687A JPS63297513A (en) 1987-05-29 1987-05-29 Operating method for blast furnace

Publications (1)

Publication Number Publication Date
JPS63297513A true JPS63297513A (en) 1988-12-05

Family

ID=15167674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13611687A Pending JPS63297513A (en) 1987-05-29 1987-05-29 Operating method for blast furnace

Country Status (1)

Country Link
JP (1) JPS63297513A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033721A1 (en) * 2019-08-22 2021-02-25 Jfeスチール株式会社 Blast furnace irregularity assessment device, blast furnace irregularity assessment method, blast furnace operation method, and molten pig iron production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033721A1 (en) * 2019-08-22 2021-02-25 Jfeスチール株式会社 Blast furnace irregularity assessment device, blast furnace irregularity assessment method, blast furnace operation method, and molten pig iron production method

Similar Documents

Publication Publication Date Title
CA1149175A (en) Recovery of steel from high phosphorous iron ores
EP2210959B1 (en) Process for producing molten iron
SK15682002A3 (en) Method and device for producing pig iron or liquid steel pre-products from charge materials containing iron ore
JPS63297513A (en) Operating method for blast furnace
CN108504803A (en) A kind of technique improving Coal Injection Amount into BF
US2846302A (en) Smelting finely divided iron ore processes
CN107354259A (en) A kind of coal-based direct reduction shaft furnace and the method smelted using the shaft furnace
SE545600C2 (en) Hydrogen gas recycling in a direct reduction process
JP4085493B2 (en) Manufacturing method of high quality sintered ore
JP3735016B2 (en) Molten iron manufacturing method and molten iron manufacturing apparatus
JP3014549B2 (en) Blast furnace operation method
JPH06220513A (en) Circulation layer type preliminary reducing furnace for powdery iron ore
JP3014556B2 (en) Blast furnace operation method
CN113930561B (en) Method for smelting manganese-rich slag by using silicon carbide waste slag and manganese-rich slag
JP2002105517A (en) Method for operating blast furnace
EP4317464A1 (en) Raw material particles for production of agglomerate, method for producing raw material particles for production of agglomerate, agglomerate, method for producing agglomerate, and method for producing reduced iron
JP3336131B2 (en) Method for recovering zinc from zinc-containing dust
JP3068967B2 (en) Blast furnace operation method
KR100276346B1 (en) A method for reducing the fine iron ore utilizing the device of fluidized bed type
JP7167652B2 (en) Blast furnace operation method
JP3485787B2 (en) How to charge raw materials for blast furnace
JP3590543B2 (en) How to inject iron-containing powder into the blast furnace
CN117106999A (en) Regulating method for stable smelting of blast furnace
JPH11315308A (en) Operation of blast furnace
US6767383B1 (en) Method for producing pig iron