JPS63297458A - Silicone polymer based vibration damping material - Google Patents

Silicone polymer based vibration damping material

Info

Publication number
JPS63297458A
JPS63297458A JP13128587A JP13128587A JPS63297458A JP S63297458 A JPS63297458 A JP S63297458A JP 13128587 A JP13128587 A JP 13128587A JP 13128587 A JP13128587 A JP 13128587A JP S63297458 A JPS63297458 A JP S63297458A
Authority
JP
Japan
Prior art keywords
vibration damping
parts
weight
damping material
silicone polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13128587A
Other languages
Japanese (ja)
Inventor
Yoshiaki Sugata
菅田 義敬
Hiromi Fukuwaki
福脇 博海
Akira Kuwabara
桑原 彰
Akira Iijima
彰 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP13128587A priority Critical patent/JPS63297458A/en
Publication of JPS63297458A publication Critical patent/JPS63297458A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/3605Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by their material

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE:To obtain the titled vibration damping material, having excellent vibration damping performance within a wide temperature region and durability at high temperatures and suitable for automobiles, railway vehicles, etc., by using a silicone polymer as a matrix polymer and blending a specific amount of a filler, etc. CONSTITUTION:A silicone polymer based composition obtained by blending 100pts.wt. silicone polymer with (A) 25-500pts.wt, preferably 40-400pts.wt. filler (e.g. natural mica, synthetic mica or graphite) and preferably further (B) 0.1-10pts.wt., preferably 0.2-5pts.wt. coupling agent (e.g. gamma- chloropropyltrimethoxysilane). The above-mentioned vibration damping material has extremely improved vibration damping performance at ordinary temperature-100 deg.C and can be used in parts for use at high temperatures, such as parts heated to about 250 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は自動車、鉄道車両、産業機械および輸送機器等
の分野において振動して騒音を発生する構造部材に適用
し得て、塗装乾燥後、加熱加圧等によって直接接着する
ことができ、常温〜100℃の温度範囲で優れた制振性
能を発揮し、特に最高250℃になる構造部材にも通用
可能なシリコーン樹脂系制振材に関する。
Detailed Description of the Invention [Industrial Application Fields] The present invention can be applied to structural members that vibrate and generate noise in the fields of automobiles, railway vehicles, industrial machinery, transportation equipment, etc. The present invention relates to a silicone resin vibration damping material that can be directly bonded by heating and pressing, exhibits excellent vibration damping performance in a temperature range of room temperature to 100°C, and is particularly usable for structural members at temperatures up to 250°C.

[従来の技術] 従来、常温付近で使用されるアスファルト系制振材が良
く知られており、常温付近または80℃までの中高温領
域に適用し得るという塩化ビニル樹脂系制振材が例えば
特開昭53−135122号公報、特開昭58−398
28号公報、特開昭61−192751号公報にそれぞ
れ開示されている。
[Prior Art] Conventionally, asphalt-based damping materials that are used at around room temperature are well known, and vinyl chloride resin-based damping materials, which can be applied at around room temperature or in medium-high temperature ranges up to 80°C, are particularly well known. Publication No. 53-135122, Japanese Patent Publication No. 58-398
These are disclosed in Japanese Patent Application Laid-open No. 28 and Japanese Patent Application Laid-open No. 61-192751, respectively.

また、比較的高温領域において適する制振材として、熱
硬化性樹脂、ゴム状物質、熱可塑性樹脂およびリン片状
無機質充填材を混合してなる耐熱性制振材組成物が特公
昭54−8497号公報に開示されている。
In addition, as a damping material suitable for relatively high temperature regions, a heat-resistant damping material composition comprising a mixture of a thermosetting resin, a rubber-like substance, a thermoplastic resin, and a scale-like inorganic filler has been published in Japanese Patent Publication No. 54-8497. It is disclosed in the publication No.

[発明が解決しようとする問題点] 前述した制振材のうち、アスファルト系制振材について
は40℃以上の中高温領域における割振性能の低下が著
しく、また150℃以上になると軟化状態あるいは溶融
状態になるために列置最高250℃にもなるような構造
部材には適用できない。
[Problems to be Solved by the Invention] Among the above-mentioned vibration damping materials, asphalt-based damping materials have a significant decrease in their allocation performance in the medium to high temperature range of 40°C or higher, and when the temperature reaches 150°C or higher, they soften or melt. It cannot be applied to structural members that are exposed to temperatures of up to 250° C.

また、前記特開昭53−135122号公報、特開昭5
8−39828号公報、特開昭61−192751号公
報に記載されている制振材は大略常温〜80℃付近の中
高温領域において制振性能は有するものの120℃以上
になると徐々に劣化ないしは分解するため、最高250
℃にもなるような構造部材には通用できない。
In addition, the above-mentioned Japanese Patent Application Laid-Open No. 53-135122, Japanese Patent Application Laid-open No. 5
The damping materials described in JP-A No. 8-39828 and JP-A No. 61-192751 have damping performance in the medium to high temperature range of approximately room temperature to around 80°C, but gradually deteriorate or decompose at temperatures above 120°C. up to 250
It cannot be used for structural members that are exposed to temperatures as high as ℃.

また、前記特公昭54−8497号公報に開示されてい
る耐熱性制振材も常温〜100℃付近の中高温領域にお
いて制振性能は有するものの15Q ’C以上になると
徐々に劣化ないしは分解するため、最高250℃にもな
るような構造部材には適用できない。
Furthermore, although the heat-resistant damping material disclosed in the above-mentioned Japanese Patent Publication No. 54-8497 has damping performance in the medium to high temperature range from room temperature to around 100°C, it gradually deteriorates or decomposes when the temperature exceeds 15Q'C. , cannot be applied to structural members that are exposed to temperatures of up to 250°C.

このように従来の制振材で常温〜100℃の温度領域に
おいて制振性能を有するものは種々あるが、最高250
℃にもなるような構造部材に適用できるものはなかった
In this way, there are various conventional damping materials that have damping performance in the temperature range from room temperature to 100°C, but the maximum damping performance is 250°C.
There was no one that could be applied to structural members that can reach temperatures as high as ℃.

一方、エンジニアリングプラスチック、例えばポリフェ
ニレンサルファイド、ポリエーテルエーテルケトン等の
ように250℃付近の高温で使用可能な樹脂をマトリッ
クスにした制振材も考えられるが、これらはいずれも逆
に常温〜100℃の温度領域においてほとんど制振性能
を有さない。
On the other hand, vibration damping materials whose matrix is made of engineering plastics such as polyphenylene sulfide, polyether ether ketone, etc., which can be used at high temperatures around 250°C, can also be considered; It has almost no vibration damping performance in the temperature range.

このように本発明は常温〜100°Cの温度領域におい
て優れた制振性能を有し、且つ最高250℃にもなるよ
うな構造部材にも適用できるという従来の制振材では両
立が困難な問題を解決することを目的とするものである
As described above, the present invention has excellent vibration damping performance in the temperature range from room temperature to 100°C, and can also be applied to structural members that can be heated up to 250°C, which is difficult to achieve with conventional vibration damping materials. The purpose is to solve a problem.

[問題点を解決するための手段] 本発明者らは前述の問題点につき鋭意検討の結果、マト
リックス樹脂としてシリコーンレジンを使用した場合に
は特異的に常温〜100℃付近での制振性能、最高25
0℃における耐熱性能を兼ね備えていることを見いだし
本発明に到達した。
[Means for Solving the Problems] As a result of intensive studies on the above-mentioned problems, the present inventors have found that when silicone resin is used as the matrix resin, vibration damping performance specifically at room temperature to around 100°C, maximum 25
The present invention was achieved by discovering that it has heat resistance performance at 0°C.

すなわち本発明は、シリコーンレジン100重量部に対
して充填材を25〜500重量部含有してなることを特
徴とするシリコーン樹脂系制振材である。
That is, the present invention is a silicone resin vibration damping material characterized by containing 25 to 500 parts by weight of filler per 100 parts by weight of silicone resin.

本発明においては、シリコーンレジンに対する充填材の
量は、シリコーンレジン100重量部に対して充填材を
25〜500重量部、より好ましくは40〜400重量
部の範囲とするものであるが、これより少ないと制振性
能が低下したり、制振性能を保持する温度領域が狭くな
り、また、これより多くしても割振性能がそれほど向上
しないだけでなく、混合や成形の作業性を損ない、さら
には空隙率が高くなるので機械的強度が低下し、実用上
問題となる場合があるため好ましくない。
In the present invention, the amount of filler to silicone resin is in the range of 25 to 500 parts by weight, more preferably 40 to 400 parts by weight, based on 100 parts by weight of silicone resin. If the amount is too low, the damping performance will deteriorate and the temperature range in which damping performance is maintained will be narrowed, and if it is more than this, not only will the vibration allocation performance not improve much, but it will also impair the workability of mixing and molding. is not preferable because the porosity becomes high and the mechanical strength decreases, which may cause practical problems.

本発明においては、マトリックス樹脂としてシリコーン
レジンを用いるものである。
In the present invention, silicone resin is used as the matrix resin.

一般にシリコーンとしてはオイル、レジン、ゴム等の各
種のものがあるが、本発明においては、シリコーンレジ
ンを用いるものである。シリコーンゴムも耐熱性には優
れた材料であるが、本発明の目的とするような制振材と
して用いるにはその割振性能が低く、好ましくない。
In general, there are various types of silicone such as oil, resin, and rubber, but in the present invention, silicone resin is used. Silicone rubber is also a material with excellent heat resistance, but its vibration distribution performance is low and it is not preferred for use as a vibration damping material as the object of the present invention.

シリコーンレジンの種類としては、特に限定されること
なく各種のものを用いることができ、シリコーンレジン
(固形分)を有機溶剤で溶解したワニスとして市販され
ているものが好適に使用できるものである。シリコーン
レジンを使用した材料にいわゆるシリコーンゲルと称さ
れる材料があるが、このものは機械的強度が極端に低く
、本発明の目的とするような制振材としては用いること
はできない。
The type of silicone resin is not particularly limited, and various types can be used, and those commercially available as varnish prepared by dissolving silicone resin (solid content) in an organic solvent can be suitably used. There is a material called silicone gel that uses silicone resin, but this material has extremely low mechanical strength and cannot be used as a vibration damping material as the object of the present invention.

本発明においては、カップリング剤を添加することがよ
り好ましく、このカップリング剤の添加により高温下で
の使用による制振性能の時系列低下を可及的に防ぐこと
ができるものである。このカップリング剤の添加量はシ
リコーンレジン100重量部に対して0.1〜10重量
部、より好ましくは0.2〜5重量部である。
In the present invention, it is more preferable to add a coupling agent, and by adding this coupling agent, it is possible to prevent as much as possible the deterioration of vibration damping performance over time due to use at high temperatures. The amount of the coupling agent added is 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight, per 100 parts by weight of the silicone resin.

カップリング剤の量がこれより少ないと高温曝露下での
割振性能の低下抑制に十分寄与せず、また、これより多
く添加してもその添加量に見合う効果はなく、膏らには
、比較的高価なこれらカップリング剤の多量使用はコス
トアンプとなり好ましくない。
If the amount of the coupling agent is less than this, it will not sufficiently contribute to suppressing the deterioration of the allocation performance under high temperature exposure, and even if it is added in a larger amount, there will be no effect commensurate with the amount added. It is not preferable to use a large amount of these expensive coupling agents because it increases the cost.

カップリング剤は有機材料と無機材料とを化学的に結び
つける、あるいは化学反応を伴って親和性を改善し、複
合材料の機能を向上させる添加剤であり、各種のものを
使用することができるが、特にシランカップリング剤、
チタネート系カップリング剤が好ましい。シランカップ
リング剤は複合材料の機械的強度、接着性の向上、電気
特性の安定化等の目的のためよく使用されるものであり
、チタネート系カップリング剤は無機充填材の分散性向
上と高充填比、無機充填材配合物の粘度低下、加工性の
向上、衝撃強度の改善等の目的で良く使用されるもので
あるが、本発明者らは、これらカップリング剤が高温(
〜250℃)に長時間加熱された場合の割振性能の低下
を抑制し、高い制振性能を維持保有させる作用を有する
ことを初めて見いだしたものである。
Coupling agents are additives that chemically bond organic materials and inorganic materials together, or that improve affinity through chemical reactions and improve the functionality of composite materials, and various types can be used. , especially silane coupling agents,
Titanate coupling agents are preferred. Silane coupling agents are often used to improve the mechanical strength, adhesion, and stabilize electrical properties of composite materials, while titanate coupling agents are used to improve the dispersibility of inorganic fillers and increase the These coupling agents are often used for purposes such as lowering the filling ratio, lowering the viscosity of inorganic filler formulations, improving processability, and improving impact strength.
This is the first discovery that it has the effect of suppressing the deterioration of vibration allocation performance when heated for a long period of time at a temperature of ~250°C and maintaining high vibration damping performance.

本発明において用いる充填剤としては各種のものを用い
ることができ、例えば、天然マイカ、合成マイカ、グラ
ファイト、ガラスフレーク、フェライト、クレー、タル
ク、ひる石、モンモリロナイト、ステンレスフレーク、
アルミニウムフレーク、ニッケルフレーク等のフレーク
状充填材、ガラス繊維、カーボン繊維、アラミド繊維、
アスベスト等の繊維状充填材、ガラスピーズ、炭酸カル
シウム、シリカ、珪砂、キルン灰、セメント、ドロマイ
ト、微小中空体くガラスバルーン、シラスバルーン等)
 、!粉、鉛粉、銅粉、アルミニウム粉等の粒子状充填
材であり、これらのうちから1種または2種以上のもの
が使用される。このうち、特にフレーク状充填剤は割振
性能を高くすることができる優れた充填剤である。
Various fillers can be used in the present invention, such as natural mica, synthetic mica, graphite, glass flakes, ferrite, clay, talc, vermiculite, montmorillonite, stainless steel flakes,
Flaky fillers such as aluminum flakes and nickel flakes, glass fibers, carbon fibers, aramid fibers,
Fibrous fillers such as asbestos, glass peas, calcium carbonate, silica, silica sand, kiln ash, cement, dolomite, micro hollow glass balloons, shirasu balloons, etc.)
,! It is a particulate filler such as powder, lead powder, copper powder, aluminum powder, etc., and one or more of these are used. Among these, flake fillers are particularly excellent fillers that can improve the allocation performance.

カップリング剤としてはシランカップリング剤、チタネ
ート系カップリング剤、アルミニウム系カップリング剤
等を用い得、より具体的には、シランカップリング剤と
しては、T−クロロプロピルトリメトキシシラン、ビニ
ルトリエトキシシラン、ビニルトリメトキシシラン、β
−(3,4−エポキシシクロヘキシル)エチルトリメト
キシシラン、T−グリシドキシプロビルトリメトキシシ
ラン、γ−メルカプトプロピルトリメトキシシラン、T
−アミノプロピルトリエトキシシラン、メルカプトエチ
ルトリエトキシシラン、ビニルトリアセトキシシラン、
γ−メタクリルオキシプロピルトリ (2−メトキシエ
トキシ)シラン、N−β−(アミノエチル)−γ−アミ
ノプロピルトリメトキシシラン等がある。
As a coupling agent, a silane coupling agent, a titanate coupling agent, an aluminum coupling agent, etc. can be used. More specifically, as a silane coupling agent, T-chloropropyltrimethoxysilane, vinyltriethoxysilane, etc. can be used. Silane, vinyltrimethoxysilane, β
-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, T-glycidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, T
-aminopropyltriethoxysilane, mercaptoethyltriethoxysilane, vinyltriacetoxysilane,
Examples include γ-methacryloxypropyltri(2-methoxyethoxy)silane, N-β-(aminoethyl)-γ-aminopropyltrimethoxysilane, and the like.

チタネート系カップリング剤としては、イソプロピルト
リイソステアロイルチタネート、テトラ−n−ブチルチ
タネート、テトラオクチレングリコールチタネート、ト
リス(ジオクチルパイロホスフェート)エチレンチタネ
ート、イソプロピルトリドデシルベンゼンスルホニルチ
タネート、イソプロとルトリス(ジオクチルパイロホス
フェート)チタネート、テトライソプロピルビス(ジオ
クチルホスファイト)チタネート、テトラオクチルビス
(ジトリデシルホスファイト)チタネート、テトラ (
2,2−ジアリルオキシメチル−1−ブチル)ビス(ジ
ー トリデシル)ホスファイトチタネート、ビス(ジオ
クチルパイロホスフェート)オキシアセテートチタネー
ト、ビス(ジオクチルパイロホスフェート)エチレンチ
タネート、イソプロピルトリ (N−アミノエチルアミ
ノエチル)チタネート、イソプロピルトリ (ジオクチ
ルホスフェート)チタネート等がある。また、アルミニ
ウム系カップリング剤としては、アセトアルコキシアル
ミニウムジイソプロピレート等がある。
Titanate coupling agents include isopropyl triisostearoyl titanate, tetra-n-butyl titanate, tetraoctylene glycol titanate, tris (dioctyl pyrophosphate) ethylene titanate, isopropyl tridodecyl benzenesulfonyl titanate, isopro and lutris (dioctyl pyrophosphate) ) titanate, tetraisopropyl bis(dioctyl phosphite) titanate, tetraoctyl bis(ditridecyl phosphite) titanate, tetra (
2,2-diallyloxymethyl-1-butyl)bis(di-tridecyl)phosphite titanate, bis(dioctylpyrophosphate)oxyacetate titanate, bis(dioctylpyrophosphate)ethylene titanate, isopropyl tri(N-aminoethylaminoethyl) Titanate, isopropyl tri(dioctyl phosphate) titanate, etc. Furthermore, examples of aluminum-based coupling agents include acetalkoxyaluminum diisopropylate.

本発明の制振材の製造は、シリコーンレジン(好適には
有機溶剤で溶解したワニスを用いる)と充填材、場合に
よってはシリコーン硬化触媒、カンプリング剤を良く混
合し塗布等の手段で基板に塗工し乾燥させ、基板から剥
離し、場合によっては複数枚重ねて加熱プレスを行い成
形体とする。あるいは適用する材料に直接塗布加工し加
熱、接着してもよい。この時の乾燥、加熱温度、時間等
の条件は要求制振性能、機械的強度等により適宜撰択さ
れる。
The vibration damping material of the present invention is manufactured by thoroughly mixing a silicone resin (preferably using a varnish dissolved in an organic solvent), a filler, and in some cases a silicone curing catalyst and a camping agent, and applying the mixture to a substrate by coating or other means. It is coated, dried, peeled off from the substrate, and in some cases multiple sheets are stacked and hot pressed to form a molded body. Alternatively, it may be applied directly to the material to be applied, heated, and bonded. Conditions such as drying, heating temperature, time, etc. at this time are appropriately selected depending on required vibration damping performance, mechanical strength, etc.

以下、実施例により本発明をより詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 シリコーン樹脂として東芝シリコーン@製TSR102
を100重量部(固形分基準であり、残部はキシレンで
82重量部)に対し、充填材としてフレーク状のスジラ
イトマイカ200S (■クラレ製平均粒子径80μ)
を102重量部加え万能混合機で混練した後、ドクター
ブレードコーターにてシート状に塗工し、約80℃で3
時間乾燥し、溶剤を揮発させて厚み約500μのシリコ
ーンマイカプレプレグシートを得た。このプレプレグシ
ートを4枚重ね合わせてプレス成形し、制振材の供試体
とした。プレス成形条件は、プレス温度180℃、金型
および試料予熱時間5分、プレス時間35分、プレス圧
力100kir/cnl、冷却時間および圧力は5分x
 100 kg/−である。
Example 1 TSR102 manufactured by Toshiba Silicone@ as silicone resin
to 100 parts by weight (based on solid content, the remainder being 82 parts by weight of xylene), flake Sujirite Mica 200S (Kuraray, average particle size 80μ) was added as a filler.
After adding 102 parts by weight of
It was dried for a period of time to evaporate the solvent to obtain a silicone mica prepreg sheet with a thickness of about 500 μm. Four of these prepreg sheets were stacked and press-molded to form a damping material specimen. Press molding conditions are: press temperature 180°C, mold and sample preheating time 5 minutes, press time 35 minutes, press pressure 100 kir/cnl, cooling time and pressure 5 minutes x
100 kg/-.

この制振材について25℃、50℃、100℃それぞれ
における制振性能を評価した。評価は非共振強制伸長型
動的粘弾性測定装置により周波数11011zでの力学
的損失係数(tanδ)を測定することにより行った。
The damping performance of this damping material at 25°C, 50°C, and 100°C was evaluated. The evaluation was performed by measuring the mechanical loss coefficient (tan δ) at a frequency of 11011z using a non-resonant forced elongation type dynamic viscoelasticity measuring device.

この結果を第2表に示した。The results are shown in Table 2.

実施例2〜9 第1表の配合組成とするほかは実施例1と同様にして供
試体を作成し、力学的損失係数を測定した。その結果を
第2表に示した。
Examples 2 to 9 Specimens were prepared in the same manner as in Example 1, except that the compositions shown in Table 1 were used, and the mechanical loss coefficients were measured. The results are shown in Table 2.

(以下余白) 第1表 注、シリコーン樹脂A 東芝シリコーン側製TSRI 
02個形分5%、残部キシレン)〃    B トーレ
シリコーン■製5H4280(〃墾%、   〃   
 )触媒は実W2〜7では東芝シリコーン■1lCR1
4(アミン系)〃  〃 8.9では日オ洛萌−答製ナ
イパーBG安饋化ベンゾイル)フレークAは■クラレ製
スゾライトマイカ32511K  (平均粒子重加μ)
〃B                 20O3(〃
   (資)μ)カップリング剤A 日本ユニカーm<
^−186(β−(3,4エポキシシクロヘキシル)エ
チルトリメトキシシラン) カップリング剤B 味の素−1lKR−23BS  (
ビス(ジオクチルパイロホスフェート)オキシアセテー
トチタネート) 第2表 (以下傘−白−)。
(Margins below) Table 1 Note: Silicone resin A TSRI manufactured by Toshiba Silicone
02 pieces 5%, balance xylene) B 5H4280 manufactured by Toray Silicone ■ (%)
) The catalyst is Toshiba silicone ■1lCR1 for actual W2~7
4 (amine type) 〃 〃 In 8.9, Nipper BG made by Nichio Rakumoe-sei (stampened benzoyl) Flake A is ■ Suzolite Mica 32511K made by Kuraray (average particle weight μ)
〃B 20O3(〃
(Capital) μ) Coupling agent A Nippon Unicar m<
^-186 (β-(3,4 epoxycyclohexyl) ethyltrimethoxysilane) Coupling agent B Ajinomoto-1lKR-23BS (
Bis(dioctylpyrophosphate)oxyacetate titanate) Table 2 (hereinafter referred to as Umbrella-White-).

1 、( 1,1 1・ 1 1−」 比較例1.2 マトリックス樹脂として塩化ビニル樹脂(日本ゼオン■
製ゼオン121)を用い、この100重量部に対し安定
剤としてDLF (堺化学工業■製、二塩基性フタル酸
鉛 )を5重量部、安定剤兼滑剤としてステアリン酸C
d、ステアリン酸Baをそれぞれ1重量部とし、充填剤
として実施例1と同じスジライトマイカ102重量部を
加えてリボンブレンダーで混合した後、カレンダーロー
ルにて170〜180℃で10分間混練してシート状に
成形し制振材の供試体としたく比較例1)。また、マト
リックス樹脂としてエポキシ樹脂(エピコート828:
油化シェルエポキシ■製)を用い、この100重量部に
対し、ゴム状物質として熱可塑性ポリウレタン−エラス
トマー(パンデックスT −5000P :大日本イン
キ化学工業@il)を100重量部およびエポキシ樹脂
の硬化剤、触媒として酸無水物(IN−22007日立
化成工業f1ml)と第三級y ミy (S−CURE
661:化薬ヌーリー側製)をそれぞれ80重量部およ
び10重量部添加した有機質バインダーに充填材として
実施例1と同じスゾライト、イカ102重量部を添加し
60〜70℃で20分混練した後カレンダーロールにて
厚み約1.5 mmのシート状に成形しさらに温度14
0〜160°Cで30分間加熱硬化して制振材の供試体
とした(比較例2)。これら供試体を250℃、10時
間加熱したところ比較例1のものは原形をとどめておら
ず、比較例2のものは変色が若干みられ、重量減少が大
で、分解が顕著であった。
1, (1,1 1・1 1-" Comparative Example 1.2 Polyvinyl chloride resin (Nippon Zeon ■
Using Zeon 121) manufactured by Zeon Co., Ltd., 5 parts by weight of DLF (dibasic lead phthalate manufactured by Sakai Chemical Industry Co., Ltd.) as a stabilizer and C stearic acid as a stabilizer and lubricant per 100 parts by weight.
d. Ba stearate was 1 part by weight each, 102 parts by weight of Sugilite mica, the same as in Example 1, was added as a filler and mixed with a ribbon blender, and then kneaded with a calendar roll at 170 to 180 ° C. for 10 minutes. Comparative Example 1), which is molded into a sheet and used as a specimen for vibration damping material. In addition, epoxy resin (Epicoat 828:
Using 100 parts by weight of Yuka Shell Epoxy (manufactured by Yuka Shell Epoxy ■), 100 parts by weight of thermoplastic polyurethane elastomer (Pandex T-5000P: Dainippon Ink & Chemicals @il) as a rubbery substance and curing of the epoxy resin. Acid anhydride (IN-22007 Hitachi Chemical fl 1 ml) and tertiary acid anhydride (S-CURE
661: manufactured by Kayaku Nury Co., Ltd.) were added to an organic binder with 80 parts by weight and 10 parts by weight, respectively, and 102 parts by weight of Suzolite and Squid, the same as in Example 1, were added as fillers, kneaded at 60 to 70°C for 20 minutes, and then calendered. Formed into a sheet with a thickness of approximately 1.5 mm using a roll, and then heated to a temperature of 14
It was heated and cured at 0 to 160°C for 30 minutes to prepare a vibration damping material specimen (Comparative Example 2). When these specimens were heated at 250° C. for 10 hours, those of Comparative Example 1 did not retain their original shape, and those of Comparative Example 2 showed slight discoloration, large weight loss, and significant decomposition.

比較例3.4 マトリックス樹脂としてポリフェニレンサルファイド(
ライドンP−4:フィリップス石油■製)を用い、この
100重量部に対し充填材として実施例1、と同じスジ
ライトマイカ102重量部を加えて製造したベレットを
射出成形機にて厚み約1.5n+mの短冊状に成形し制
振材の供試体とした。シリンダ一温度は310℃、金型
温度は140℃であった(比較例3)。マトリックス樹
脂としてシリコーンゴム(SH850LTV: )−レ
シリコーン■製)を用いた。5H850LTVはA液と
B液を1:lの重量比で混合し、この100重量部に対
し充填材として実施例1と同じスゾライトマイ力50重
量部を加えて、ミキシングロール機にて室温で20分間
混練した後厚み約1.5mmのシート状に成形しさらに
約100℃で30分間加熱硬化して制振材の供試体とし
た(比較例4)。この供試体を250℃、10時間加熱
したが比較例3.4とも外見の変化、重量減少も特にな
かった。
Comparative Example 3.4 Polyphenylene sulfide (
Rydon P-4 (manufactured by Phillips Petroleum ■) was used, and 102 parts by weight of Sugilite mica, the same as in Example 1, was added as a filler to 100 parts by weight. A pellet was manufactured using an injection molding machine to a thickness of about 1. It was formed into a rectangular shape of 5n+m and used as a specimen of a vibration damping material. The cylinder temperature was 310°C and the mold temperature was 140°C (Comparative Example 3). Silicone rubber (SH850LTV: )-manufactured by Resilicone ■ was used as the matrix resin. 5H850LTV was prepared by mixing liquids A and B at a weight ratio of 1:l, adding 50 parts by weight of Suzolyte Myroku, the same as in Example 1, as a filler to 100 parts by weight, and mixing with a mixing roll machine at room temperature for 20 minutes. After kneading, the mixture was formed into a sheet with a thickness of about 1.5 mm, and then heated and cured at about 100° C. for 30 minutes to obtain a vibration damping material specimen (Comparative Example 4). This specimen was heated at 250° C. for 10 hours, but there was no change in appearance or weight loss in Comparative Examples 3 and 4.

しかし、このものの加熱前における常温付近の割振性能
を前述した装置での力学的損失係数(tanδ)として
測定したところ次に示すとおり十分なものではなかった
However, when the allocation performance of this product at around room temperature before heating was measured as a mechanical loss coefficient (tan δ) using the above-mentioned device, it was found to be insufficient as shown below.

tanδ 比較例3  比較例4 25℃   0.020   0.18   ’50℃
   0.020   0.15100℃   0.0
34   0.13実施例10 実施例1および2の供試体を250℃、10時間加熱し
たが外見の変化、重量減少とも特になかった。また、2
00℃、2時間加熱後の供試体の割振性能を測定したと
ころ次に示すとおり実施例1のものは加熱前に比較して
若干制振性能の低下がみられたが十分な制振性能を維持
していた。一方実施例2のものはほとんど制振性能の低
下はみられなかった。
tan δ Comparative example 3 Comparative example 4 25℃ 0.020 0.18 '50℃
0.020 0.15100℃ 0.0
34 0.13 Example 10 The specimens of Examples 1 and 2 were heated at 250° C. for 10 hours, but there was no change in appearance or weight loss. Also, 2
When the vibration allocation performance of the specimen was measured after heating at 00°C for 2 hours, as shown below, the vibration damping performance of Example 1 was slightly lower than that before heating, but the vibration damping performance was sufficient. was maintained. On the other hand, in Example 2, almost no deterioration in damping performance was observed.

tanδ 実施例1  実施例2 25℃   0.28    0.5150℃   0
.61    0.72100 ’CO,580,58 ℃発明の効果〕 本発明の制振材は常温〜100℃における割振性能に極
めて優れ、しかも高温での耐久性に優れ、特に250℃
程度となるような高温での使用部位にも使用できるため
、自動車、鉄道車両、産業機械等の各分野に広く使用で
きるものである。
tanδ Example 1 Example 2 25℃ 0.28 0.5150℃ 0
.. 61 0.72100 'CO, 580, 58 ℃ Effects of the invention] The vibration damping material of the present invention has extremely excellent vibration distribution performance at room temperature to 100 ℃, and has excellent durability at high temperatures, especially at 250 ℃
Since it can be used in parts that are used at extremely high temperatures, it can be widely used in various fields such as automobiles, railway vehicles, and industrial machinery.

Claims (2)

【特許請求の範囲】[Claims] (1)シリコーンレジン100重量部に対して充填材を
25〜500重量部含有してなることを特徴とするシリ
コーン樹脂系制振材。
(1) A silicone resin vibration damping material containing 25 to 500 parts by weight of a filler per 100 parts by weight of a silicone resin.
(2)シリコーンレジン100重量部に対してカップリ
ング剤を0.1〜10重量部含有してなることを特徴と
する特許請求の範囲第1項記載のシリコーン樹脂系制振
材。
(2) The silicone resin vibration damping material according to claim 1, which contains 0.1 to 10 parts by weight of a coupling agent per 100 parts by weight of silicone resin.
JP13128587A 1987-05-29 1987-05-29 Silicone polymer based vibration damping material Pending JPS63297458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13128587A JPS63297458A (en) 1987-05-29 1987-05-29 Silicone polymer based vibration damping material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13128587A JPS63297458A (en) 1987-05-29 1987-05-29 Silicone polymer based vibration damping material

Publications (1)

Publication Number Publication Date
JPS63297458A true JPS63297458A (en) 1988-12-05

Family

ID=15054377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13128587A Pending JPS63297458A (en) 1987-05-29 1987-05-29 Silicone polymer based vibration damping material

Country Status (1)

Country Link
JP (1) JPS63297458A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0640659A3 (en) * 1993-08-31 1996-07-17 Bayer Ag One-component polysiloxane compositions.
CN103351492A (en) * 2013-07-29 2013-10-16 青岛爱尔家佳新材料有限公司 Damping rubber plate and preparation method thereof
CN105860539A (en) * 2016-05-05 2016-08-17 成都君禾天成科技有限公司 Method for preparing novel building material with sound-insulation effect
CN109266005A (en) * 2018-08-31 2019-01-25 歌尔股份有限公司 A kind of preparation method and sounding device of vibrating diaphragm

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0640659A3 (en) * 1993-08-31 1996-07-17 Bayer Ag One-component polysiloxane compositions.
CN103351492A (en) * 2013-07-29 2013-10-16 青岛爱尔家佳新材料有限公司 Damping rubber plate and preparation method thereof
CN105860539A (en) * 2016-05-05 2016-08-17 成都君禾天成科技有限公司 Method for preparing novel building material with sound-insulation effect
CN109266005A (en) * 2018-08-31 2019-01-25 歌尔股份有限公司 A kind of preparation method and sounding device of vibrating diaphragm

Similar Documents

Publication Publication Date Title
CN108473308B (en) Hexagonal boron nitride powder, method for producing same, resin composition, and resin sheet
US8114314B2 (en) Electroconductive curable resins
CN110099865B (en) Hexagonal boron nitride powder, method for producing same, resin composition, and resin sheet
KR101539709B1 (en) Poly(phenylene sulfide)/poly(ethylene terephthalate) Blend Resin Composition Having High Strength and Method for Preparing the Same
KR920010613B1 (en) Reinforced molding resin composition
US6838509B2 (en) Phenolic resin composite material
US10870757B2 (en) Insulation, insulation precursors, and rocket motors, and related methods
Wu et al. The surface modification of diatomite, thermal, and mechanical properties of poly (vinyl chloride)/diatomite composites
JPS61136551A (en) Curable organopolysiloxane composition
JPS61236855A (en) Polyether imide resin composition
JPS63297458A (en) Silicone polymer based vibration damping material
Xue et al. In situ exfoliation and surface functionalization of graphene oxide for epoxy composites with improved thermal and mechanical properties
JPS63315231A (en) Silicone resin vibration damper
KR101838848B1 (en) Epoxy Resin Compositions for Bulk Mold Compound Dispersed Carbon Nano Tube
JPH0512396B2 (en)
JPS62104837A (en) Thermosetting resin composition
JP2001214060A (en) Polyarylene sulfide resin composition
JP2001254011A (en) Vibration-damping resin composition and resin molded article for structure using the same
JPS6123648A (en) Heat-resistant damping material
JPH03167248A (en) Phenol resin molding material
WO2020138723A1 (en) Method for manufacturing polymer nanoclay composite having excellent heat resistance and flame retardancy
JP4873117B2 (en) Polyarylene sulfide composition and case comprising the same
JPH08143781A (en) Thermosetting resin composition
KR100543976B1 (en) A polybutylene terephthalate resin having good tensile strength and heat resistance and its preparing method
JP2005194491A (en) Resin composition and resin film using thereof