JPS63297268A - Heat-resistant, low-heat expansion zirconyl phosphate-zircon composite sintered product and production thereof - Google Patents

Heat-resistant, low-heat expansion zirconyl phosphate-zircon composite sintered product and production thereof

Info

Publication number
JPS63297268A
JPS63297268A JP62129873A JP12987387A JPS63297268A JP S63297268 A JPS63297268 A JP S63297268A JP 62129873 A JP62129873 A JP 62129873A JP 12987387 A JP12987387 A JP 12987387A JP S63297268 A JPS63297268 A JP S63297268A
Authority
JP
Japan
Prior art keywords
zircon
weight
zirconyl phosphate
composite sintered
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62129873A
Other languages
Japanese (ja)
Other versions
JPH064510B2 (en
Inventor
Keiichiro Watanabe
渡辺 敬一郎
Haruaki Oohashi
玄章 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP62129873A priority Critical patent/JPH064510B2/en
Priority to US07/094,743 priority patent/US4883781A/en
Priority to DE8787308063T priority patent/DE3778102D1/en
Priority to EP87308063A priority patent/EP0260893B1/en
Publication of JPS63297268A publication Critical patent/JPS63297268A/en
Publication of JPH064510B2 publication Critical patent/JPH064510B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title composite sintered product which contains prescribed amounts of ZrO2, P2O5, and SiO2 respectively, specifies the total amount of resting MgO and Al2O3 below a certain level, and contains zirconyl phosphate as the main crystal phase, and zircon as the second crystal phase, thus showing excellent thermal shock resistance and heat resistance. CONSTITUTION:The present invention provides a low thermal expansion zirconyl phosphate-zircon composite sintered product with is composed of 58.2-65.3wt.% of ZrO2; 17.4-37.1wt.% of P2O5; 1.6-19.0wt.% of SiO2; and less than 2wt.%, based on the rest amount, of MgO and Al2O3 and has following properties: containing zirconyl phosphate as the main crystal phase and zircon as the second crystal phase, having less than 30X10<-7>/ deg.C heat expansion coefficient from room temperature to 1,400 deg.C and melting over 1,600 deg.C. The composite sintered product according to the present invention has a promising potential to be used widely as a low thermal expansion material with high thermal shock resistance, such as a rotary regeneration type ceramic heat exchanger or transfer type heat exchanger, when it is, for example, extruded in a honeycomb structure.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は低膨張セラミックスおよびその製造方法に関す
るもので、更にくわしくは、耐熱衝撃性、耐熱性に優れ
たリン酸ジルコニル・ジルコン系低膨張セラミックスお
よびその製造方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to low expansion ceramics and a method for producing the same, and more particularly, to low expansion ceramics based on zirconyl phosphate and zircon that have excellent thermal shock resistance and heat resistance. and its manufacturing method.

(従来の技術) 近年工業技術の進歩に伴い、耐熱性、耐熱衝撃性に優れ
た材料の要求が増加している。セラミックスの耐熱衝撃
性は、材料の熱膨張率、熱伝導率、強度、弾性率、ポア
ソン比等の特性に影響されると共に、製品の大きさや形
状、さらに加熱、冷却状態即ち熱移動速度にも影響され
る。
(Prior Art) With the progress of industrial technology in recent years, there has been an increasing demand for materials with excellent heat resistance and thermal shock resistance. The thermal shock resistance of ceramics is influenced by the material's properties such as coefficient of thermal expansion, thermal conductivity, strength, modulus of elasticity, and Poisson's ratio, as well as the size and shape of the product, as well as heating and cooling conditions, that is, heat transfer rate. affected.

耐熱衝撃性に影響するこれらの諸因子のうち特に熱膨脹
係数の寄与率が大であり、とりわけ、熱移動速度が大で
あるときには熱膨脹係数のみに大きく左右されることが
知られており、耐熱衝撃性に優れた低膨張材料の開発が
強く望まれている。
Among these factors that affect thermal shock resistance, the contribution rate of the coefficient of thermal expansion is particularly large.In particular, it is known that when the heat transfer rate is high, it is greatly influenced only by the coefficient of thermal expansion. There is a strong desire to develop low-expansion materials with excellent properties.

(発明が解決しようとする問題点) 従来、40℃から800℃の間の熱膨脹係数が、5〜2
0X10−’ (1だC)程度の比較的低膨張なセラミ
ック材料としてコージェライト(MAS) 、リチウム
・アルミニウム・シリケー) (LAS)等があるが、
その融点は前者が1450℃1後者が1423℃と低く
例えば自動車用触媒浄化装置の触媒担体に用いるセラミ
ックハニカムの場合、触媒の浄化効率を高めるために触
媒コンバーターの装着位置を従来のアンダーベッドから
エンジン近傍に変更するか、または燃費向上、出力向上
を目的としてターボチャージャーを装着する等の設計変
更により、排気ガス温度が従来より上昇し、それに伴な
い触媒床温度も100〜200℃上昇するため、融点が
高いコージェライト質ハニカム担体でも溶融による目詰
りが起る可能性があることがわかり、コージェライトと
同等以上の耐熱衝撃性をもち耐熱性が優れた低膨張材料
の開発が強く望まれていた。
(Problem to be solved by the invention) Conventionally, the coefficient of thermal expansion between 40°C and 800°C is 5 to 2.
There are cordierite (MAS) and lithium aluminum silicate (LAS) as ceramic materials with relatively low expansion of about 0x10-' (1°C).
The melting point of the former is 1450°C and the latter is 1423°C. For example, in the case of ceramic honeycomb used as a catalyst carrier in an automobile catalyst purification system, the mounting position of the catalytic converter is changed from the conventional underbed to the engine engine in order to improve the catalyst purification efficiency. Due to design changes such as changing the location nearby or installing a turbocharger to improve fuel efficiency and output, the exhaust gas temperature will rise compared to before, and the catalyst bed temperature will also rise by 100 to 200 degrees Celsius. It has been found that even cordierite honeycomb carriers with a high melting point can cause clogging due to melting, and there is a strong desire to develop a low-expansion material with excellent heat resistance and thermal shock resistance equal to or higher than that of cordierite. Ta.

また比較的低熱膨張で、耐熱性の高いセラミックスとし
ては、ムライト (3A1□03・2SiO□、熱膨脹
係数: 53 x 10− ’/ ”c、融点: 17
50℃)、ジルコン(ZrO2・SiO2、熱膨脹係数
:42X10−7/℃1融点;1720″C)Lかなく
、共に熱膨脹係数が高く、耐熱衝撃性が低い欠点を有し
ている。
In addition, as a ceramic with relatively low thermal expansion and high heat resistance, mullite (3A1□03・2SiO□, coefficient of thermal expansion: 53 x 10-'/''c, melting point: 17
50°C) and zircon (ZrO2.SiO2, thermal expansion coefficient: 42X10-7/°C1 melting point; 1720''C)L, both of which have the drawbacks of high thermal expansion coefficients and low thermal shock resistance.

さらに、リン酸ジルコニルを主成分とする低膨張セラミ
ックスの公知例としては、特公昭61−12867号公
報に示される5iOz/NbzOs: 1〜8モル比混
合物を2〜10モル%とAlz03を1〜6モル%含む
高強度燐酸ジルコニル焼結体や、特開昭60=2185
3号公報に示されるリン酸マグネシウムを焼結助剤とし
て0.5〜6重量%含有するリン酸ジルコニウム低膨張
磁器、特開昭61−219753号公報に示される焼結
促進剤としてのZnO+ MgO、Bi、O,。
Furthermore, as a known example of a low expansion ceramic mainly composed of zirconyl phosphate, there is a mixture of 5iOz/NbzOs: 1 to 8 molar ratio of 2 to 10 mol% and Alz03 of 1 to 10 mol%, as shown in Japanese Patent Publication No. 12867/1986. High-strength zirconyl phosphate sintered body containing 6 mol% and JP-A-60=2185
Zirconium phosphate low expansion porcelain containing 0.5 to 6% by weight of magnesium phosphate as a sintering aid shown in Publication No. 3, ZnO+MgO as a sintering accelerator shown in JP-A-61-219753 , Bi, O,.

MnO2l CozO= l’ Nto 1 T10t
、 + Ce0t + NbzOsまたはTazOsの
組と、粒成長抑制剤としてのSingまたは珪酸塩との
組との、各組から1種以上合計2種以上の0.3〜10
重量%、各組0.1重量%以上を添加する低熱膨張性リ
ン酸ジルコニルセラミックスの製造法さらには名古屋工
業大学窯業技術研究施設年報9 p、 23〜30 (
1982) ニ示される、MgO。
MnO2l CozO= l' Nto 1 T10t
, + Ce0t + a set of NbzOs or TazOs and a set of Sing or silicate as a grain growth inhibitor, one or more from each set and a total of two or more of 0.3 to 10
Production method of low thermal expansion zirconyl phosphate ceramics with addition of 0.1% by weight or more by weight, and Nagoya Institute of Technology Ceramic Technology Research Institute Annual Report 9 p. 23-30 (
(1982) MgO.

MnO,、Fe2O,、ZnO等の添加剤を2重量%含
有するリン酸ジルコニウムセラミックス、があるが、い
ずれもジルコンを主たる第二相として含有せず、その焼
結機構が低融点の液相を生成することにょる液相焼結の
ため耐熱性に難があり、上述した要望を満たすことがで
きなかった。
There are zirconium phosphate ceramics containing 2% by weight of additives such as MnO, Fe2O, and ZnO, but none of them contain zircon as the main second phase, and their sintering mechanism creates a low-melting liquid phase. Due to the liquid phase sintering involved in the formation, heat resistance was poor, and the above requirements could not be met.

本発明の目的は上述した不具合を解消して、高い耐熱性
と低い熱膨脹係数を有するリン酸ジルコニル・ジルコン
複合焼結体およびその製造方法を提供しようとするもの
である。
An object of the present invention is to eliminate the above-mentioned problems and provide a zirconyl phosphate/zircon composite sintered body having high heat resistance and a low coefficient of thermal expansion, and a method for manufacturing the same.

(問題点を解決するための手段) 本発明の耐熱低膨脹リン酸ジルコニル・ジルコン複合焼
結体は、化学組成がZrO□s8.2〜65.3重量%
、p、os17.4〜37.1重量%、Si8□1.6
〜19.0重量%、残部MgO及びAh(hからなり、
MgOとAt20゜の合量が2.5%以下であり主たる
結晶相としてリン酸ジルコニル、第二結晶相としてジル
コンを含み、室温から1400″Cまでの熱膨脹係数が
30X10−’/℃以下、融点が1600℃以上である
ことを特徴とするものである。      ゛ また、本発明のリン酸ジルコニル・ジルコン複合焼結体
の製造方法は、リン酸ジルコニル((ZrO)zhOt
)にジルコン(ZrSi04)を5〜50重量%添加し
たバッチ混合物100部にコージェライト(2MgO・
2AI!03  ・5SiOt)を0.1〜5部添加混
合して焼結することにより、主たる結晶相がリン酸ジル
コニル、第二結晶相としてジルコンを含み、室温から1
400℃までの熱膨脹係数が30X10−?/℃以下、
融点が1600℃以上のリン酸ジルコニル・ジルコン複
合焼結体を得ることを特徴とするものである。
(Means for Solving the Problems) The heat-resistant, low-expansion zirconyl phosphate/zircon composite sintered body of the present invention has a chemical composition of 8.2 to 65.3% by weight of ZrO□s.
, p, os17.4-37.1% by weight, Si8□1.6
~19.0% by weight, the balance consisting of MgO and Ah (h,
The total amount of MgO and At20° is 2.5% or less, contains zirconyl phosphate as the main crystal phase and zircon as the second crystal phase, has a thermal expansion coefficient of 30X10-'/°C or less from room temperature to 1400"C, and has a melting point is characterized by a temperature of 1600° C. or higher. Further, the method for producing the zirconyl phosphate/zircon composite sintered body of the present invention is characterized in that zirconyl phosphate ((ZrO)zhOt
) to 100 parts of a batch mixture with 5 to 50% by weight of zircon (ZrSi04) added to cordierite (2MgO.
2AI! By adding and mixing 0.1 to 5 parts of 03 ・5SiOt) and sintering, the main crystal phase is zirconyl phosphate and the second crystal phase contains zircon.
The coefficient of thermal expansion up to 400℃ is 30X10-? /℃ or less,
The present invention is characterized in that a zirconyl phosphate/zircon composite sintered body having a melting point of 1600° C. or higher is obtained.

(作 用) 上述した構成において、耐熱性が高(比較的低膨張であ
るジルコン(ZrSiOn)を低膨張セラミックスであ
るリン酸ジルコニル((ZrO)zP20t)に共存さ
せ複合体としたもので、40〜1400℃までの熱膨脹
係数が30X10−’/”C以下で、融点が1600℃
以上であり耐熱性と耐熱衝撃性に優れたセラミックスを
得ることができる。
(Function) In the above structure, zircon (ZrSiOn), which has high heat resistance (relatively low expansion), coexists with zirconyl phosphate ((ZrO)zP20t), which is a low expansion ceramic, to form a composite. Thermal expansion coefficient up to 1400℃ is 30X10-'/”C or less, melting point is 1600℃
As described above, ceramics having excellent heat resistance and thermal shock resistance can be obtained.

リン酸ジルコニルに共存させるジルコンは、リン酸ジル
コニルの難焼結性を補って、焼結を促進する。またリン
酸ジルコニルはアルカリ・アルカリ土類金属酸化物と低
融点の液相を生じ易いため、これら不純物が共存すると
異常粒成長を起して低強度の焼結体となったり、高温で
の軟化変形を起すことがあるが、ジルコンを共存させる
ことによりこのような異常粒成長や高温での軟化変形を
抑制できる。ジルコンを共存させた焼結体に於いて、M
gO、Al2O,および5i(hをさらに添加すること
により、耐熱性を低下させることなく、開気孔率を低減
させ強度を向上させることができる。
Zircon coexisting with zirconyl phosphate compensates for the difficulty of sintering of zirconyl phosphate and promotes sintering. In addition, zirconyl phosphate tends to form a low melting point liquid phase with alkali/alkaline earth metal oxides, so if these impurities coexist, abnormal grain growth may occur resulting in a sintered body with low strength or softening at high temperatures. Although deformation may occur, such abnormal grain growth and softening deformation at high temperatures can be suppressed by coexisting zircon. In the sintered body containing zircon, M
By further adding gO, Al2O, and 5i(h), the open porosity can be reduced and the strength can be improved without reducing heat resistance.

本発明の製造法において、リン酸ジルコニルにジルコン
を5〜50重量%添加すると限定する理由は、ジルコン
が5重量%未満であると所定の強度を得ることができな
いとともに、50重量%を超えると熱膨脹係数が大にな
るためで、5〜35重量%の範囲がより好ましい。Mg
O、AhOsおよびSiO□をコージェライト化合物に
て添加する理由は、コージェライト相は、融点が比較的
高く安定であるため、これら化合物を単独で添加した場
合に起る焼結体中の異常粒成長を抑制することができる
ためである。
In the manufacturing method of the present invention, the reason why zircon is added to zirconyl phosphate in an amount of 5 to 50% by weight is that if the amount of zircon is less than 5% by weight, the specified strength cannot be obtained, and if it exceeds 50% by weight, the specified strength cannot be obtained. This is because the coefficient of thermal expansion becomes large, so a range of 5 to 35% by weight is more preferable. Mg
The reason why O, AhOs, and SiO□ are added as a cordierite compound is that the cordierite phase has a relatively high melting point and is stable. This is because growth can be suppressed.

本発明の耐熱低膨脹セラミックスに含まれるMgOを除
くアルカリ・アルカリ土類金属酸化物の合量は、0.5
重量%以下であることが耐熱性を改善できるため好まし
い。そのため、用いる原料としては、焼結体中のアルカ
リ・アルカリ土類金属酸化物量を限定するためにアルカ
リ・アルカリ土類金属酸化物の含量がそれぞれ0.5重
量%以下である、リン酸ジルコニル原料、ジルコン原料
及びMgOを除くアルカリ・アルカリ土類金属酸化物の
含量が1重量%以下であるコージェライト原料が好まし
い。
The total amount of alkali/alkaline earth metal oxides excluding MgO contained in the heat-resistant, low-expansion ceramic of the present invention is 0.5
It is preferable that the amount is at most % by weight because heat resistance can be improved. Therefore, in order to limit the amount of alkali and alkaline earth metal oxides in the sintered body, the raw material to be used is a zirconyl phosphate raw material in which the content of alkali and alkaline earth metal oxides is 0.5% by weight or less, respectively. , a zircon raw material and a cordierite raw material in which the content of alkali/alkaline earth metal oxides excluding MgO is 1% by weight or less are preferred.

リン酸ジルコニル原料のZr0z/PJsモル比は1.
80〜2.00であることが好ましい。このようなモル
比に限定したリン酸ジルコニル原料を用いることにより
、焼結体中のm−Zr0.の析出を抑制することができ
、焼結体の熱膨脹係数を小さくでき、さらに析出したm
−Zr0zの相変態による異常膨張収縮を抑制できる。
The Zr0z/PJs molar ratio of the zirconyl phosphate raw material is 1.
It is preferable that it is 80-2.00. By using a zirconyl phosphate raw material limited to such a molar ratio, m-Zr0. The precipitation of m can be suppressed, the coefficient of thermal expansion of the sintered body can be reduced, and
- Abnormal expansion and contraction due to phase transformation of Zr0z can be suppressed.

析出したm−Zr0.の異常膨張収縮は、約1000℃
の温度で可逆的に起るため、熱サイクル下での使用時に
焼結体に損傷を与え、低強度化、マイクロクラックの生
長による寸法変化を起し実用上非常に有害である。
The precipitated m-Zr0. The abnormal expansion and contraction of
Since this phenomenon occurs reversibly at a temperature of 100 mL, it damages the sintered body when used under thermal cycles, lowering its strength and causing dimensional changes due to the growth of microcracks, which is extremely harmful in practice.

(実施例) 以下本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

第1表に記載する調合割合に従って予め粒度調整された
、リン酸ジルコニル、ジルコン、マグネシア、ムライト
、リン酸アルミニウム、アルミナ、スピネル、カオリン
、コージェライトを混合した。
Zirconyl phosphate, zircon, magnesia, mullite, aluminum phosphate, alumina, spinel, kaolin, and cordierite, whose particle sizes had been adjusted in advance according to the proportions listed in Table 1, were mixed.

リン酸ジルコニルの粒度調整には、直径約5mmのZr
(h焼結体玉石を充填した振動ミル、ポットミルまたは
アトライターを使用した。ZrO□焼結体玉石はMgO
で安定化されたものとY2O,で安定化されたものを使
用した。使用した玉石の化学組成を第2表に示す。また
用いた原料の化学分析値を第3表に示す。
To adjust the particle size of zirconyl phosphate, Zr with a diameter of approximately 5 mm is used.
(A vibrating mill, pot mill, or attritor filled with sintered cobblestones was used. ZrO □ Sintered cobblestones were MgO
We used one stabilized with and one stabilized with Y2O. The chemical composition of the boulders used is shown in Table 2. Table 3 also shows the chemical analysis values of the raw materials used.

第1表に示す調合物の混合物100重量部に10%PV
A水溶液を5重量部添加して充分に混合し、25X80
X6mmの金型にて100kg/cm”の圧力でプレス
成形後、2 ton/cm”の圧力にてラバープレスを
行ない乾燥させた。この成形体を乾燥後、大気中電気炉
にて第1表に示す条件にて焼成した。昇温速度は5℃/
h〜1 、700℃/hであった。焼成後、この焼結体
をJIS R1601(1981)に示される3×4×
40mmの抗折試験片に加工し、40〜1400℃まで
の熱膨脹係数、4点曲強度、自重軟化量、開気孔率、融
点を測定した。熱膨脹係数の測定には、高純度アルミナ
焼結体を用いた押棒示差式熱膨張計を使用した。測定温
度範囲は40〜1400℃である。4点曲強度はJIS
 R1602に示される方法に従って測定した。自重軟
化量は、第7図に示される30mmの巾の支えの間に、
前記3 X 4 X40mmの抗折試験片を置き大気中
にて1300℃×5hの熱処理を行ないその時の自重変
形量ΔXを測定することにより次式にて求めた。
10% PV in 100 parts by weight of the mixture of formulations shown in Table 1.
Add 5 parts by weight of aqueous solution A, mix thoroughly, and prepare a 25×80
After press molding in a x6 mm mold at a pressure of 100 kg/cm'', rubber pressing was performed at a pressure of 2 ton/cm'' and dried. After drying this molded body, it was fired in an electric furnace in the atmosphere under the conditions shown in Table 1. The temperature increase rate is 5℃/
h~1, 700°C/h. After firing, the sintered body was sized 3×4× as shown in JIS R1601 (1981).
It was processed into a 40 mm bending test piece, and its thermal expansion coefficient from 40 to 1400°C, 4-point bending strength, softening amount under its own weight, open porosity, and melting point were measured. A push-rod differential thermal dilatometer using a high-purity alumina sintered body was used to measure the coefficient of thermal expansion. The measurement temperature range is 40 to 1400°C. 4-point bending strength is JIS
It was measured according to the method shown in R1602. The amount of softening due to its own weight is calculated as follows:
The 3 x 4 x 40 mm bending test piece was placed and heat treated at 1300° C. for 5 hours in the atmosphere, and the deformation amount ΔX due to its own weight was measured using the following formula.

自重軟化率= IJ x/ i X 100(%)開気
孔率はアルキメデス法により測定した。融点は、3X4
X5mmの形状に切出した焼結体を1650″Cの電気
炉中にて10分間熱処理し、溶融するかどうかを目視に
て判断した。また焼結体の結晶相量は、ジルコン(Zr
Si04)の(101)面反射ピーク及びリン酸ジルコ
ニル1 (β(ZrO) 2P207)の(002)面
反射ピーク値を用いて定量した。その他の異種結晶相に
ついては、その有無のみをX線回折図形により同定した
Self-weight softening rate = IJ x / i x 100 (%) The open porosity was measured by the Archimedes method. The melting point is 3X4
A sintered body cut into a shape of
It was quantified using the (101) surface reflection peak value of Si04) and the (002) surface reflection peak value of zirconyl phosphate 1 (β(ZrO) 2P207). Regarding other different crystal phases, only their presence or absence was identified by X-ray diffraction patterns.

*  Communication  of  the
  American  Ceramic  5oci
ety  +C−80(1984) −】己2.友− 第1表に示す実施例1〜9、比較例10〜23の結果よ
り、Zr0z 58.2〜65.3重量%、PzOs 
17.4〜37.1重量%、5i021.5〜19.0
重量%、残部MgO及びAIZO3からなりMgOとA
IZO:lの含量が2.5重量%以下の範囲で主たる結
晶相としてリン酸ジルコニル、第二結晶相としてジルコ
ンを含む場合に、本発明の目的である室温から1400
℃までの熱膨脹係数が30xlO−’/”c以下、融点
が1600℃以上の焼結体が得られた。またそのような
焼結体はリン酸ジルコニルにジルコンを5〜50重量%
添加したバッチ混合物100部にコージェライトを0.
1〜5部加えた調合割合の混合物を第1表に示す焼成条
件にて焼結させた時に得られた。第1図にジルコン添加
量と熱膨脹係数の関係を、第2図にジルコン添加量と4
点曲強度の関係を示す。
*Communication of the
American Ceramic 5oci
ety +C-80 (1984) -] Self 2. From the results of Examples 1 to 9 and Comparative Examples 10 to 23 shown in Table 1, Zr0z 58.2 to 65.3% by weight, PzOs
17.4-37.1% by weight, 5i021.5-19.0
% by weight, the balance consists of MgO and AIZO3, MgO and A
When the content of IZO:l is 2.5% by weight or less and contains zirconyl phosphate as the main crystal phase and zircon as the second crystal phase, the temperature range from room temperature to 1400
A sintered body with a thermal expansion coefficient of 30xlO-'/"c or less and a melting point of 1600°C or higher was obtained. Such a sintered body was prepared by adding 5 to 50% by weight of zircon to zirconyl phosphate.
Cordierite was added to 100 parts of the batch mixture.
This was obtained when a mixture of 1 to 5 parts was sintered under the firing conditions shown in Table 1. Figure 1 shows the relationship between the amount of zircon added and the coefficient of thermal expansion, and Figure 2 shows the relationship between the amount of zircon added and the coefficient of thermal expansion.
The relationship between point bending strength is shown.

さらに、焼結体中のMgOを除くアルカリ・アルカリ土
類酸化物の含量が0.5重量%を超えるかまたはl’1
gOとAlt(hの合量が2.5重量%超えると130
0℃での自重軟化率が増大し、耐熱性が低下することが
、リン酸ジルコニル・ジルコン複合焼結体の1300℃
における自重軟化率とMgOを除くアルカリ・アルカリ
土類酸化吻合量との関係を示す第3図、自重軟化率と、
MgOとAl2O3の合量との関係を示す第4図より明
らかである。このような焼結体を得るためには、リン酸
ジルコニル及びジルコン原1に含まれるアルカリ・アル
カリ土類金属酸化物の合量が0.5重量%以下コージェ
ライト原料中のMgOを除くアルカリ・アルカリ土類金
属酸化物の含量が1重量%以下であることが必要である
Furthermore, the content of alkali/alkaline earth oxides other than MgO in the sintered body exceeds 0.5% by weight or l'1
If the total amount of gO and Alt (h exceeds 2.5% by weight, 130
When the zirconyl phosphate/zircon composite sintered body is heated to 1300°C, the softening rate under its own weight at 0°C increases and the heat resistance decreases.
Figure 3 shows the relationship between the self-weight softening rate and the amount of alkali/alkaline earth oxidation anastomosis excluding MgO.
This is clear from FIG. 4, which shows the relationship between the total amount of MgO and Al2O3. In order to obtain such a sintered body, the total amount of alkali/alkaline earth metal oxides contained in zirconyl phosphate and zircon raw material 1 must be 0.5% by weight or less. It is necessary that the content of alkaline earth metal oxides be 1% by weight or less.

また、リン酸ジルコニル原料のZrO□とP2O5のモ
ル比を1.80〜2.00の範囲に制御することも重要
で、この値が2.00を超えると単斜晶のZrO,が析
出し焼結体の熱膨脹係数を増大させたり、単斜晶Zr0
zの正方晶への相変態による急激な収縮や、正方晶から
単斜晶へ相変態するときの急激な膨張のために焼結体に
重大なダメージを与えるため、実用上使用できない。ま
た、この値が1.80より小である場合には(ZrO)
 zhot相の析出が充分でないため、焼結体の熱膨脹
係数が増大し、低膨張材料として使用できない。第5図
にZrO□/hasモル比と熱膨脹係数との関係を示す
It is also important to control the molar ratio of ZrO□ and P2O5 in the zirconyl phosphate raw material within the range of 1.80 to 2.00; if this value exceeds 2.00, monoclinic ZrO will precipitate. Increasing the coefficient of thermal expansion of the sintered body, monoclinic Zr0
It cannot be used practically because it causes serious damage to the sintered body due to rapid contraction due to phase transformation of z to tetragonal and rapid expansion during phase transformation from tetragonal to monoclinic. Also, if this value is smaller than 1.80, (ZrO)
Since the zhot phase is not sufficiently precipitated, the coefficient of thermal expansion of the sintered body increases and it cannot be used as a low expansion material. FIG. 5 shows the relationship between the ZrO□/has molar ratio and the coefficient of thermal expansion.

第6図に実施例3のリン酸ジルコニル・ジルコン複合焼
結体のX線回折図形を示す。結晶相の主成分がリン酸ジ
ルコニル、第二結晶相がジルコンであることが分る。
FIG. 6 shows the X-ray diffraction pattern of the zirconyl phosphate/zircon composite sintered body of Example 3. It can be seen that the main component of the crystal phase is zirconyl phosphate and the second crystal phase is zircon.

第7図は実施例3のリン酸ジルコニル・ジルコン複合焼
結体の熱膨張曲線で室温から1400℃まで、軟化を起
していない様子が分る。
FIG. 7 is a thermal expansion curve of the zirconyl phosphate/zircon composite sintered body of Example 3, and it can be seen that no softening occurs from room temperature to 1400°C.

(発明の効果) 以上詳細に説明したところから明らかなように、本発明
の耐熱低膨脹リン酸ジルコニル・ジルコン複合焼結体お
よびその製造法によれば、Zr8□58.2〜65.3
重量%、has 17.4〜37.1重量%、5i02
1.6〜19.0重量%、残部MgO及びAh03から
なりMgOとAh03の合量が2.5重量%以下の化学
組成で、主たる結晶相としてリン酸ジルコニル、第二結
晶相としてジルコンを含ませることにより、室温から1
400℃までの温度範囲で30X10−7/℃以下の低
膨張性と、1600℃以上の融点を有する耐熱低膨脹セ
ラミックスを得ることができる。
(Effects of the Invention) As is clear from the detailed explanation above, according to the heat-resistant, low-expansion zirconyl phosphate/zircon composite sintered body of the present invention and its manufacturing method, Zr8□58.2 to 65.3
Weight %, has 17.4-37.1 weight %, 5i02
It has a chemical composition of 1.6 to 19.0% by weight, the balance being MgO and Ah03, and the total amount of MgO and Ah03 is 2.5% by weight or less, and contains zirconyl phosphate as the main crystal phase and zircon as the second crystal phase. 1 from room temperature by
It is possible to obtain a heat-resistant, low-expansion ceramic having a low expansion property of 30×10 −7 /°C or less in a temperature range up to 400°C and a melting point of 1600°C or more.

そのためその応用範囲は耐熱衝撃性の要求される低膨張
材料として広く、例えば押出成形等によりハニカム構造
体に成形した場合には回転蓄熱式セラミック熱交換体や
、伝熱式熱交換体、さらに、泥漿鋳込成形法やプレス成
形法、射出成形法等により成形されるセラミックターボ
チャージャーローター用ハウジングまたはエンジンマニ
ホールド内の断熱材等、充分な実用性を備えている。
Therefore, its application range is wide as a low expansion material that requires thermal shock resistance.For example, when formed into a honeycomb structure by extrusion molding etc., it can be used as a rotating regenerator type ceramic heat exchanger, a heat transfer type heat exchanger, etc. It has sufficient practicality in applications such as ceramic turbocharger rotor housings or heat insulating materials in engine manifolds, which are molded by slurry casting, press molding, injection molding, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、はリン酸ジルコニル・ジルコン複合焼結体の熱
膨脹係数のジルコン添加量依存性を示す図、 第2図は、リン酸ジルコニル・ジルコン複合焼結体の4
点曲強度のジルコン添加量依存性を示す図、 第3図は、リン酸ジルコニル・ジルコン複合焼結体の1
300℃における自重軟化率と、MgOを除くアルカリ
・アルカリ土類酸化吻合量との関係を示す図、 第4図は、リン酸ジルコニル・ジルコン複合焼結体の1
300℃における自重軟化率と、コージェライト添加量
との関係を示す図、 第5図は、リン酸ジルコニル・ジルコン複合焼結体の製
造に用いるリン酸ジルコニル原料のZr0z/P2O6
モル比とリン酸ジルコニル・ジルコン複合焼結体の熱膨
脹係数の関係を示す図、 第6図は、実施例3のリン酸ジルコニル・ジルコン複合
焼結体のX線回折図形を示す図、第7図は、実施例3の
リン酸ジルコニル・ジルコン複合焼結体の熱膨張曲線を
示す図、第8図は自重軟化率の測定方法を示す図である
。 第1図 ZFSi044力171(%) 第3図 0.5  0.7    10 MfOn!(フルhす・アルカリ土Me友化ゼ1会量(
史fz)2.0 自 皇 軟 イヒ    t、。 率 第4図
Figure 1 shows the dependence of the coefficient of thermal expansion on the amount of zircon added in the zirconyl phosphate/zircon composite sintered body.
Figure 3 shows the dependence of point bending strength on the amount of zircon added.
Figure 4 shows the relationship between the self-weight softening rate at 300°C and the amount of alkali/alkaline earth oxidation anastomosis excluding MgO.
Figure 5 shows the relationship between the self-weight softening rate at 300°C and the amount of cordierite added.
Figure 6 is a diagram showing the relationship between the molar ratio and the coefficient of thermal expansion of the zirconyl phosphate/zircon composite sintered body. The figure shows the thermal expansion curve of the zirconyl phosphate/zircon composite sintered body of Example 3, and FIG. 8 shows the method for measuring the softening rate under its own weight. Fig. 1 ZFSi044 force 171 (%) Fig. 3 0.5 0.7 10 MfOn! (Full HS/Alkaline Earth Me Friendly Ze 1 Membership (
History fz) 2.0 Emperor Soft Ihi t,. Rate figure 4

Claims (1)

【特許請求の範囲】 1、化学組成がZrO_2 58.2〜65.3重量%
、P_2O_5 17.4〜37.1重量%、SiO_
2 1.6〜19.0重量%、残部MgO及びAl_2
O_3からなりMgOとAl_2O_3の合量が2.5
重量%以下であり、主たる結晶相としてリン酸ジルコニ
ル、第二結晶相としてジルコンを含み、室温から140
0℃までの熱膨張係数が30×10^−^7/℃以下、
融点が1600℃以上であることを特徴とする耐熱低膨
脹リン酸ジルコニル・ジルコン複合焼結体。 2、化学組成がZrO_2 58.2〜64.7重量%
、P_2O_5 22.5〜37.1重量%、SiO_
2 1.6〜14.1重量%、残部MgO及びAl_2
O_3からなりMgOとAl_2O_3の合量が2.5
重量%以下であり、主たる結晶相としてリン酸ジルコニ
ル、第二結晶相としてジルコンを含み、室温から140
0℃までの熱膨張係数が20×10^−^7/℃以下で
ある特許請求の範囲第1項記載の耐熱低膨脹リン酸ジル
コニル・ジルコン複合焼結体。 3、MgOを除くアルカリ・アルカリ土類金属酸化物の
合量が0.5重量%以下である特許請求の範囲第1項記
載の耐熱低膨脹リン酸ジルコニル・ジルコン複合焼結体
。 4、リン酸ジルコニル((ZrO)_2P_2O_7)
にジルコン(ZrSiO_4)を5〜50重量%添加し
たバッチ混合物100部にコージェライト(2MgO・
2Al_2O_3・5SiO_2)を0.1〜5部添加
混合して焼結することにより、主たる結晶相がリン酸ジ
ルコニル、第二結晶相としてジルコンを含み、室温から
1400℃までの熱膨脹係数が30×10^−^7/℃
以下、融点が1600℃以上のリン酸ジルコニル・ジル
コン複合焼結体を得ることを特徴とするリン酸ジルコニ
ル・ジルコン複合焼結体の製造方法。 5、ジルコンの添加量が5〜35重量%であり、室温か
ら1400℃までの熱膨張係数が20×10^−^7/
℃以下である特許請求の範囲第4項記載のリン酸ジルコ
ニル・ジルコン複合焼結体の製造方法。 6、アルカリ・アルカリ土類金属酸化物の含量がそれぞ
れ0.5重量%以下であるリン酸ジルコニルおよびジル
コン原料、MgOを除くアルカリ・アルカリ土類金属酸
化物の含量が1重量%以下であるコージェライト原料を
用いる特許請求の範囲第4項記載のリン酸ジルコニル・
ジルコン複合焼結体の製造方法。 7、リン酸ジルコニル原料のZrO_2/P_2O_5
モル比が1.80〜2.00の値である特許請求の範囲
第4項記載のリン酸ジルコニル・ジルコン複合焼結体の
製造方法。
[Claims] 1. Chemical composition is ZrO_2 58.2-65.3% by weight
, P_2O_5 17.4-37.1% by weight, SiO_
2 1.6-19.0% by weight, balance MgO and Al_2
It consists of O_3 and the total amount of MgO and Al_2O_3 is 2.5
% by weight or less, contains zirconyl phosphate as the main crystal phase and zircon as the second crystal phase, and has a temperature range from room temperature to 140%.
Thermal expansion coefficient up to 0℃ is 30 x 10^-^7/℃ or less,
A heat-resistant, low-expansion zirconyl phosphate/zircon composite sintered body characterized by a melting point of 1600°C or higher. 2. Chemical composition is ZrO_2 58.2-64.7% by weight
, P_2O_5 22.5-37.1% by weight, SiO_
2 1.6-14.1% by weight, balance MgO and Al_2
It consists of O_3 and the total amount of MgO and Al_2O_3 is 2.5
% by weight or less, contains zirconyl phosphate as the main crystal phase and zircon as the second crystal phase, and has a temperature range from room temperature to 140%.
The heat-resistant, low-expansion zirconyl phosphate/zircon composite sintered body according to claim 1, which has a coefficient of thermal expansion up to 0°C of 20×10^-^7/°C or less. 3. The heat-resistant, low-expansion zirconyl phosphate/zircon composite sintered body according to claim 1, wherein the total amount of alkali/alkaline earth metal oxides excluding MgO is 0.5% by weight or less. 4. Zirconyl phosphate ((ZrO)_2P_2O_7)
Cordierite (2MgO.
By adding and mixing 0.1 to 5 parts of 2Al_2O_3.5SiO_2) and sintering, the main crystal phase is zirconyl phosphate, the second crystal phase contains zircon, and the coefficient of thermal expansion from room temperature to 1400°C is 30 × 10. ^−^7/℃
Hereinafter, a method for producing a zirconyl phosphate/zircon composite sintered body, which is characterized by obtaining a zirconyl phosphate/zircon composite sintered body having a melting point of 1600° C. or higher. 5. The amount of zircon added is 5 to 35% by weight, and the coefficient of thermal expansion from room temperature to 1400°C is 20 x 10^-^7/
5. The method for producing a zirconyl phosphate/zircon composite sintered body according to claim 4, wherein the temperature is below .degree. 6. Zirconyl phosphate and zircon raw materials each having an alkali/alkaline earth metal oxide content of 0.5% by weight or less, and cojet having an alkali/alkaline earth metal oxide content of 1% by weight or less excluding MgO. The zirconyl phosphate according to claim 4 using a light raw material.
A method for producing a zircon composite sintered body. 7. ZrO_2/P_2O_5 as raw material for zirconyl phosphate
The method for producing a zirconyl phosphate/zircon composite sintered body according to claim 4, wherein the molar ratio is a value of 1.80 to 2.00.
JP62129873A 1986-09-13 1987-05-28 Heat resistant low expansion zirconyl phosphate / zircon composite sintered body and method for producing the same Expired - Lifetime JPH064510B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62129873A JPH064510B2 (en) 1987-05-28 1987-05-28 Heat resistant low expansion zirconyl phosphate / zircon composite sintered body and method for producing the same
US07/094,743 US4883781A (en) 1986-09-13 1987-09-09 Heat resisting low expansion zirconyl phosphate-zircon composite
DE8787308063T DE3778102D1 (en) 1986-09-13 1987-09-11 HEAT-RESISTANT ZIRCONYL PHOSPHATE-ZIRCONIUM SILICATE COMPOSITE BODY WITH LOW EXPANSION AND METHOD FOR THE PRODUCTION THEREOF.
EP87308063A EP0260893B1 (en) 1986-09-13 1987-09-11 Heat resisting low expansion zirconyl phosphate-zircon composite bodies and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62129873A JPH064510B2 (en) 1987-05-28 1987-05-28 Heat resistant low expansion zirconyl phosphate / zircon composite sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPS63297268A true JPS63297268A (en) 1988-12-05
JPH064510B2 JPH064510B2 (en) 1994-01-19

Family

ID=15020418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62129873A Expired - Lifetime JPH064510B2 (en) 1986-09-13 1987-05-28 Heat resistant low expansion zirconyl phosphate / zircon composite sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JPH064510B2 (en)

Also Published As

Publication number Publication date
JPH064510B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
EP0037868B1 (en) Method of producing low-expansion ceramic materials
EP0210813B1 (en) Aluminum titanate.-mullite base ceramics
US4307198A (en) Low-expansion ceramics and method of producing the same
EP1027304B1 (en) Method for firing ceramic honeycomb bodies
EP0036462B1 (en) A honeycomb structure for use as a catalyst support for automobile exhaust
US4883781A (en) Heat resisting low expansion zirconyl phosphate-zircon composite
CN109851337A (en) A kind of high temperature dichroite-mullite refractory slab and preparation method thereof
JPS6041022B2 (en) Manufacturing method for cordierite ceramics
JPH038757A (en) Aluminum titanate-mullite-based ceramic body
JPS63297268A (en) Heat-resistant, low-heat expansion zirconyl phosphate-zircon composite sintered product and production thereof
JPH01308868A (en) Ceramic of aluminum titanate and production thereof
JPH0524106B2 (en)
JPS63297269A (en) Heat-resistant, low-heat expansion zirconyl phosphate-zircon composite sintered product and production thereof
JPS6374958A (en) Heat-resistant low-expansive zirconyl phosphate-zircon composite sintered body and manufacture
JPH0149664B2 (en)
JP2920237B2 (en) Method for producing honeycomb-shaped catalyst carrier and honeycomb-shaped catalyst carrier obtained by the method
JPH1192215A (en) Cordierite-based ceramic sintered product, composition therefor and production
JPH0149665B2 (en)
JPH0149666B2 (en)
JPH0455360A (en) Magnesia-based superhigh temperature refractory
JPS61261264A (en) Low expansion ceramic
JPH0782016A (en) High-strength and low-thermal expansion ceramic and its production
JPH0397651A (en) Heat resistant phosphate-zircon combined body and production thereof
JPH0217507B2 (en)
JPH03103353A (en) Thermal shock resistant oven material for calcination

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080119

Year of fee payment: 14