JPS63297269A - Heat-resistant, low-heat expansion zirconyl phosphate-zircon composite sintered product and production thereof - Google Patents

Heat-resistant, low-heat expansion zirconyl phosphate-zircon composite sintered product and production thereof

Info

Publication number
JPS63297269A
JPS63297269A JP62129874A JP12987487A JPS63297269A JP S63297269 A JPS63297269 A JP S63297269A JP 62129874 A JP62129874 A JP 62129874A JP 12987487 A JP12987487 A JP 12987487A JP S63297269 A JPS63297269 A JP S63297269A
Authority
JP
Japan
Prior art keywords
zircon
weight
zirconyl phosphate
sintered body
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62129874A
Other languages
Japanese (ja)
Other versions
JPH064511B2 (en
Inventor
Keiichiro Watanabe
渡辺 敬一郎
Haruaki Oohashi
玄章 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP62129874A priority Critical patent/JPH064511B2/en
Priority to US07/094,743 priority patent/US4883781A/en
Priority to EP87308063A priority patent/EP0260893B1/en
Priority to DE8787308063T priority patent/DE3778102D1/en
Publication of JPS63297269A publication Critical patent/JPS63297269A/en
Publication of JPH064511B2 publication Critical patent/JPH064511B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title composite sintered product which is composed of ZrO2, P2O5, SiO2 and Nb2O5 in a certain proportion and contains the main crystal phase of zirconyl phosphate and the second crystal phase of zircon, thus showing excellent thermal shock resistance and heat resistance. CONSTITUTION:The present invention provides a low thermal expansion zirconyl phosphate-zircon composite sintered product which is composed of 58.5-65.3wt.% of ZrO2; 17.6-37.1wt.% of P2O5; 1.5-16.4wt.% of SiO2; and 0.1-4wt.% of Nb2O5, contains zirconyl phosphate as the main crystal phase and zircon as the second crystal phase, and has the following properties: less than 30X10<-7>/ deg.C heat expansion coefficient at from room temperature to 1,400 deg.C and over 1,600 deg.C melting point. The sintered product according to the present invention can be widely used as a low expansion material with thermal shock resistance, or example, a rotary regeneration type ceramic heat exchanger or transfer type heat exchanger, when it is formed in a honeycomb structure, e.g. by extrusion.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は低膨張セラミックスおよびその製造方法に関す
るもので、更にくわしくは、耐熱衝撃性、耐熱性に優れ
たリン酸ジルコニル・ジルコン系低膨張セラミックスお
よびその製造方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to low expansion ceramics and a method for producing the same, and more particularly, to low expansion ceramics based on zirconyl phosphate and zircon that have excellent thermal shock resistance and heat resistance. and its manufacturing method.

(従来の技術) 近年工業技術の進歩に伴い、耐熱性、耐熱衝撃性に優れ
た材料の要求が増加している。セラミックスの耐熱衝撃
性は、材料の熱膨張率、熱伝導率、強度、弾性率、ポア
ソン比等の特性に影響されると共に、製品の大きさや形
状、さらに加熱、冷却状態即ち熱移動速度にも影響され
る。
(Prior Art) With the progress of industrial technology in recent years, there has been an increasing demand for materials with excellent heat resistance and thermal shock resistance. The thermal shock resistance of ceramics is influenced by the material's properties such as coefficient of thermal expansion, thermal conductivity, strength, modulus of elasticity, and Poisson's ratio, as well as the size and shape of the product, as well as heating and cooling conditions, that is, heat transfer rate. affected.

耐熱衝撃性に影響するこれらの諸因子のうち特に熱膨脹
係数の寄与率が大であり、とりわけ、熱移動速度が大で
あるときには熱膨脹係数のみに大きく左右されることが
知られており、耐熱衝撃性に優れた低膨張材料の開発が
強く望まれている。
Among these factors that affect thermal shock resistance, the contribution rate of the coefficient of thermal expansion is particularly large.In particular, it is known that when the heat transfer rate is high, it is greatly influenced only by the coefficient of thermal expansion. There is a strong desire to develop low-expansion materials with excellent properties.

(発明が解決しようとする問題点) 従来、40℃から800℃の間の熱膨脹係数が、5〜2
0X10−’ (1だC)程度の比較的低膨張なセラミ
ック材料としてコージェライト(MAS) 、リチウム
・アルミニウム・シリケート(LAS)等があるが、そ
の融点は前者が1450℃1後者が1423’Cと低く
例えば自動車用触媒浄化装置の触媒担体に用いるセラミ
ックハニカムの場合、触媒の浄化効率を高めるために触
媒コンバーターの装着位置を従来のアンダーベッドから
エンジン近傍に変更するか、または燃費向上、出力向上
を目的としてターボチャージャーを装着する等の設計変
更により、排気ガス温度が従来より上昇し、それに伴な
い触媒床温度も100〜200’C上昇するため、融点
が高いコージェライト質ハニカム担体でも溶融による目
詰りが起る可能性があることがわかり、コージェライト
と同等以上の耐熱衝撃性をもち耐熱性が優れた低膨張材
料の開発が強く望まれていた。
(Problem to be solved by the invention) Conventionally, the coefficient of thermal expansion between 40°C and 800°C is 5 to 2.
Cordierite (MAS) and lithium aluminum silicate (LAS) are ceramic materials with relatively low expansion of about 0x10-' (1°C), but the melting point of the former is 1450°C and the latter is 1423'C. For example, in the case of ceramic honeycombs used as catalyst carriers in automotive catalytic purification systems, it is necessary to change the installation position of the catalytic converter from the conventional underbed to near the engine in order to increase the catalyst purification efficiency, or to improve fuel efficiency and output. Due to design changes such as installing a turbocharger for the purpose of this, the exhaust gas temperature rises compared to before, and the catalyst bed temperature also rises by 100 to 200'C. It was found that clogging could occur, and there was a strong desire to develop a low-expansion material with excellent heat resistance and thermal shock resistance equal to or higher than that of cordierite.

また比較的低熱膨張で、耐熱性の高いセラミックスとし
ては、ムライト(3A1203・2SiO□、熱膨脹係
数: 53X10−7/℃1融点: 1750℃)、ジ
ルコン(ZrO2・SiO□、熱膨脹係数:42xlO
−7/℃、融点:1720℃)Lかなく、共に熱膨脹係
数が高く、耐熱衝撃性が低い欠点を有している。
In addition, ceramics with relatively low thermal expansion and high heat resistance include mullite (3A1203.2SiO□, coefficient of thermal expansion: 53X10-7/℃1 melting point: 1750℃), zircon (ZrO2・SiO□, coefficient of thermal expansion: 42xlO
-7/°C, melting point: 1720°C), both have high coefficients of thermal expansion and low thermal shock resistance.

さらに、リン酸ジルコニルを主成分とする低膨張セラミ
ックスの公知例としては、特公昭61−12867号公
報に示されるSiO□/Nb、O5: 1〜8モル比混
合物を2〜10モル%とAl2O2を1〜6モル%含む
高強度燐酸ジルコニル焼結体や、特開昭60−2185
3号公報に示されるリン酸マグネシウムを焼結助剤とし
て0.5〜6重量%含有するリン酸ジルコニウム低膨張
磁器、特開昭61−219753号公報に示される焼結
促進剤として(7)ZnO+ MgO、BizO:+ 
+MnO□、 CO2O3+ NiO+ Ti0z +
 CeO21Nb2O5またはTa205の組と粒成長
抑制剤としてのSiO□または珪酸塩との組との各組か
ら1種以上合計2種以上の0.3〜10重量%、各組0
.1重量以上を添加する低熱膨張性リン酸ジルコニルセ
ラミックスの製造法さらには名古屋工業大学窯業技術研
究施設年報9 P、 23〜30 (1982)に示さ
れる、MgO,Mn0z+FezO3,ZnO等の添加
剤を2重量%含有するリン酸ジルコニウムセラミックス
があるが、いずれもジルコンを主たる第二相として含有
せず、その焼結機構が低融点の液相を生成することによ
る液相焼結のため耐熱性に難があり、上述した要望を満
たすことができなかった。
Further, as a known example of a low expansion ceramic mainly composed of zirconyl phosphate, there is a mixture of SiO□/Nb, O5: 1 to 8 molar ratio, 2 to 10 mol% and Al2O2 shown in Japanese Patent Publication No. 12867/1986. A high-strength zirconyl phosphate sintered body containing 1 to 6 mol% of
Zirconium phosphate low expansion porcelain containing 0.5 to 6% by weight of magnesium phosphate as a sintering aid shown in Publication No. 3, as a sintering accelerator shown in JP-A-61-219753 (7) ZnO+ MgO, BizO:+
+MnO□, CO2O3+ NiO+ Ti0z +
0.3 to 10% by weight of one or more types from each set of CeO21Nb2O5 or Ta205 and a set of SiO□ or silicate as a grain growth inhibitor, total of two or more, 0.3 to 10% by weight for each set.
.. A method for manufacturing low thermal expansion zirconyl phosphate ceramics in which 1 weight or more of additives such as MgO, MnOz+FezO3, ZnO, etc. are added as shown in Nagoya Institute of Technology Ceramic Technology Research Institute Annual Report 9 P, 23-30 (1982). There are some zirconium phosphate ceramics that contain zirconium phosphate as a main second phase, but none of them contain zircon as a main second phase, and their sintering mechanism is liquid phase sintering that generates a liquid phase with a low melting point, so they have poor heat resistance. Therefore, the above requirements could not be met.

本発明の目的は上述した不具合を解消して、高い耐熱性
と低い熱膨脹係数を有するリン酸ジルコニル・ジルコン
複合焼結体およびその製造方法を提供しようとするもの
である。
An object of the present invention is to eliminate the above-mentioned problems and provide a zirconyl phosphate/zircon composite sintered body having high heat resistance and a low coefficient of thermal expansion, and a method for manufacturing the same.

(問題点を解決するための手段) 本発明の耐熱低膨脹リン酸ジルコニル・ジルコン複合焼
結体は、化学組成がZrO□58.8〜65.3重量%
、P2O517,6〜37.1重量%、SiO□1.5
〜16.4重量%、Nb2O5 0.1〜4重量%で、
主たる結晶相としてリン酸ジルコニル、第二結晶相とし
てジルコンを含み、室温から1400℃までの熱膨脹係
数が30XIO−’/”C以下、融点が1600℃以上
であることを特徴とするものである。
(Means for Solving the Problems) The heat-resistant, low-expansion zirconyl phosphate/zircon composite sintered body of the present invention has a chemical composition of ZrO□58.8 to 65.3% by weight.
, P2O517.6-37.1% by weight, SiO□1.5
~16.4% by weight, Nb2O5 0.1-4% by weight,
It contains zirconyl phosphate as the main crystalline phase and zircon as the second crystalline phase, and is characterized by having a coefficient of thermal expansion of 30XIO-'/''C or less from room temperature to 1400°C, and a melting point of 1600°C or higher.

また、本発明のリン酸ジルコニル・ジルコン複合焼結体
の製造方法は、リン酸ジルコニル((ZrO) zPz
Oy)にジルコン(ZrSiO4)を5〜50重量%添
加したバッチ混合物100部にNbzosを0.1〜4
部添加混合して焼結することにより、主たる結晶相がリ
ン酸ジルコニル、第二結晶相としてジルコンを含み、室
温から1400℃までの熱膨脹係数が30XIO−7/
℃以下、融点が1600℃以上のリン酸ジルコニル・ジ
ルコン複合焼結体を得ることを特徴とするものである。
In addition, the method for producing a zirconyl phosphate/zircon composite sintered body of the present invention includes zirconyl phosphate ((ZrO) zPz
0.1 to 4% of Nbzos was added to 100 parts of a batch mixture in which 5 to 50% by weight of zircon (ZrSiO4) was added to Oy).
By mixing and sintering, the main crystal phase is zirconyl phosphate, the second crystal phase contains zircon, and the coefficient of thermal expansion from room temperature to 1400°C is 30XIO-7/
The present invention is characterized by obtaining a zirconyl phosphate/zircon composite sintered body having a melting point of 1,600°C or lower.

(作 用) 上述した構成において、耐熱性が高く比較的低膨張であ
るジルコン(ZrSi04)を低膨張セラミックスであ
るリン酸ジルコニル((ZrO) 2P 207)に共
存させ複合体としたもので、40〜1400″Cまでの
熱膨脹係数が30X10−’/”C以下で、融点が16
00℃以上であり耐熱性と耐熱衝撃性に優れたセラミッ
クスを得ることができる。
(Function) In the above structure, zircon (ZrSi04), which has high heat resistance and relatively low expansion, coexists with zirconyl phosphate ((ZrO) 2P 207), which is a low expansion ceramic, to form a composite. Thermal expansion coefficient up to ~1400"C is less than 30X10-'/"C, and the melting point is 16
00°C or higher, and ceramics with excellent heat resistance and thermal shock resistance can be obtained.

リン酸ジルコニルに共存させるジルコンは、リン酸ジル
コニルの難焼結性を補って、焼結を促進する。またリン
酸ジルコニルはアルカリ・アルカリ土類金属酸化物と低
融点の液相を生じ易いため、これら不純物が共存すると
異常粒成長を起して低強度の焼結体となったり、高温で
の軟化変形を起すことがあるが、ジルコンを共存させる
ことによりこのような異常粒成長や高温での軟化変形を
抑制できる。ジルコンを共存させた焼結体に於いてNb
2O,をさらに添加することにより、耐熱性を低下させ
ることなく、開気孔率を低減させ強度を向上させること
ができる。
Zircon coexisting with zirconyl phosphate compensates for the difficulty of sintering of zirconyl phosphate and promotes sintering. In addition, zirconyl phosphate tends to form a low melting point liquid phase with alkali/alkaline earth metal oxides, so if these impurities coexist, abnormal grain growth may occur resulting in a sintered body with low strength or softening at high temperatures. Although deformation may occur, such abnormal grain growth and softening deformation at high temperatures can be suppressed by coexisting zircon. Nb in the sintered body coexisting with zircon
By further adding 2O, it is possible to reduce open porosity and improve strength without reducing heat resistance.

本発明の製造法において、リン酸ジルコニルにジルコン
を5〜50重量%添加すると限定する理由は、ジルコン
が5重量%未満であると所定の強度を得ることができな
いとともに、50重量%を超えると熱膨脹係数が大にな
るためで、5〜35重量%の範囲がより好ましい。
In the manufacturing method of the present invention, the reason why zircon is added to zirconyl phosphate in an amount of 5 to 50% by weight is that if the amount of zircon is less than 5% by weight, the specified strength cannot be obtained, and if it exceeds 50% by weight, the specified strength cannot be obtained. This is because the coefficient of thermal expansion becomes large, so a range of 5 to 35% by weight is more preferable.

本発明の耐熱低膨脹セラミックスに含まれるアルカリ・
アルカリ土類金属酸化物の含量は、0.5重量%以下で
あることが耐熱性を改善できるため好ましい。そのため
、爾いる原料としては、焼結体中のアルカリ・アルカリ
土類金属酸化物量を限定するためにアルカリ・アルカリ
土類金属酸化物の含量がそれぞれ0.5重量%以下であ
る、リン酸ジルコニル原料、ジルコン原料およびNb2
O5原料が好ましい。
Alkali contained in the heat-resistant, low-expansion ceramics of the present invention
The content of alkaline earth metal oxide is preferably 0.5% by weight or less because heat resistance can be improved. Therefore, in order to limit the amount of alkali and alkaline earth metal oxides in the sintered body, the raw material used is zirconyl phosphate, which has a content of alkali and alkaline earth metal oxides of 0.5% by weight or less, respectively. Raw materials, zircon raw materials and Nb2
O5 feedstock is preferred.

リン酸ジルコニル原料のZr(h/P2O5モル比は1
.80〜2.00であることが好ましい。このようなモ
ル比に限定したリン酸ジルコニル原料を用いることによ
り、焼結体中のm−Zr0□の析出を抑制することがで
き、焼結体の熱膨脹係数を小さくでき、さらに析出した
m−Zr0□の相変態による異常膨張収縮を抑制できる
。析出したm−Zr0□の異常膨張収縮は、約1000
”Cの温度で可逆的に起るため、熱サイクル下での使用
時に焼結体に損傷を与え、低強度化、マイクロクランク
の生長による寸法変化を起し実用上非常に有害である。
Zr of zirconyl phosphate raw material (h/P2O5 molar ratio is 1
.. It is preferable that it is 80-2.00. By using a zirconyl phosphate raw material limited to such a molar ratio, the precipitation of m-Zr0□ in the sintered body can be suppressed, the coefficient of thermal expansion of the sintered body can be reduced, and the precipitated m- Abnormal expansion and contraction due to phase transformation of Zr0□ can be suppressed. The abnormal expansion and contraction of the precipitated m-Zr0□ is approximately 1000
Since this phenomenon occurs reversibly at a temperature of 1.5°C, it damages the sintered body when used under thermal cycles, lowering its strength and causing dimensional changes due to the growth of microcranks, which is extremely harmful in practice.

(実施例) 以下本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

第1表に記載する調合割合に従って予め粒度調整された
、リン酸ジルコニル、ジルコン、マグネシア、ムライト
、リン酸アルミニウム、アルミナ、スピネル、カオリン
、Nb2O5を混合した。リン酸ジルコニルの粒度調整
には、直径約5mmのZrO□焼結体玉石を充填した振
動ミル、ポットミルまたはアトライターを使用した。Z
rO2焼結体玉石はMgOで安定化されたものとY2O
3で安定化されたものを使用した。使用した玉石の化学
組成を第2表に示す。また用いた原料の化学分析値を第
3表に示す。
Zirconyl phosphate, zircon, magnesia, mullite, aluminum phosphate, alumina, spinel, kaolin, and Nb2O5, whose particle sizes had been adjusted in advance according to the proportions listed in Table 1, were mixed. To adjust the particle size of zirconyl phosphate, a vibrating mill, a pot mill, or an attritor filled with ZrO□ sintered cobblestones having a diameter of about 5 mm was used. Z
The rO2 sintered cobblestones are those stabilized with MgO and those stabilized with Y2O.
3 was used. The chemical composition of the boulders used is shown in Table 2. Table 3 also shows the chemical analysis values of the raw materials used.

第1表に示す調合物の混合物100重量部に10%PV
A水溶液を5重量部添加して充分に混合し、25X80
X6mmの金型にて100kg/cm2の圧力でプレス
成形後、2 ton/cm”の圧力にてラバープレスを
行ない乾燥させた。この成形体を乾燥後、大気中電気炉
にて第1表に示す条件にて焼成した。昇温速度は5℃/
h〜1.700℃/hであった。焼成後、この焼結体を
JIS R1601(1981)に示される3×4×4
0mmの抗折試験片に加工し、40〜1400℃までの
熱膨脹係数、4点曲強度、自重軟化量、開気孔率、融点
を測定した。熱膨脹係数の測定には、高純度アルミナ焼
結体を用いた押棒示差式熱膨張計を使用した。測定温度
範囲は40〜1400℃である。4点曲強度はJIS 
R1602に示される方法に従って測定した。自重軟化
量は、第7図に示される30mmの巾の支えの間に、前
記3 X 4 X40mmの抗折試験片を置き大気中に
て1300’CX 5 hの熱処理を行ないその時の自
重変形量ΔXを測定することにより次式にて求めた。
10% PV in 100 parts by weight of the mixture of formulations shown in Table 1.
Add 5 parts by weight of aqueous solution A, mix thoroughly, and prepare a 25×80
After press molding in a x6 mm mold at a pressure of 100 kg/cm2, a rubber press was performed at a pressure of 2 ton/cm" and dried. After drying this molded product, it was placed in an electric furnace in the atmosphere to form the molds shown in Table 1. Firing was performed under the conditions shown.The temperature increase rate was 5℃/
h~1.700°C/h. After firing, this sintered body is 3x4x4 as shown in JIS R1601 (1981).
It was processed into a 0 mm bending test piece, and its thermal expansion coefficient from 40 to 1400°C, 4-point bending strength, softening amount under its own weight, open porosity, and melting point were measured. A push-rod differential thermal dilatometer using a high-purity alumina sintered body was used to measure the coefficient of thermal expansion. The measurement temperature range is 40 to 1400°C. 4-point bending strength is JIS
It was measured according to the method shown in R1602. The amount of softening due to dead weight is determined by placing the 3 x 4 x 40 mm bending test piece between supports with a width of 30 mm as shown in Figure 7, and heat-treating it in the atmosphere for 1300'C x 5 h. It was determined by measuring ΔX using the following formula.

自重軟化率=Δx/ l X 100(%)開気孔率は
アルキメデス法により測定した。融点は、3X4X5m
mの形状に切出した焼結体を1650℃の電気炉中にて
10分間熱処理し、溶融するかどうかを目視にて判断し
た。また焼結体の結晶相量は、ジルコン(ZrSiOn
)の(101)面反射ピーク及びリン酸ジルコニル“ 
(β(ZrO) gPzOl)の(002)面反射ピー
ク値を用いて定量した。その他の異種結晶相については
、その有無のみをX線回折図形により同定した。
Self-weight softening rate=Δx/l×100(%) The open porosity was measured by the Archimedes method. Melting point is 3X4X5m
The sintered body cut into a shape of m was heat treated in an electric furnace at 1650° C. for 10 minutes, and whether or not it melted was visually judged. In addition, the amount of crystalline phase in the sintered body is zircon (ZrSiOn).
)'s (101) surface reflection peak and zirconyl phosphate"
It was quantified using the (002) surface reflection peak value of (β(ZrO) gPzOl). Regarding other different crystal phases, only their presence or absence was identified by X-ray diffraction patterns.

* Com+aunication of the A
merican Ceramic 5ociety 。
*Com+aunication of the A
merican Ceramic 5ociety.

C−80(1984) 第1表に示す実施例1〜8、比較例10〜23の結果よ
り、ZrO258,8〜65.3重量%、P2O5 1
7.6〜37.1重量%、53021.5〜16.4重
量%、Nb2O5 O,1〜4重景重量゛範囲で主たる
結晶相としてリン酸ジルコニル、第二結晶相としてジル
コンを含む場合 ・に、本発明の目的である室温から1
400℃までの熱膨脹係数が30X10−7/℃以下、
融点が1600℃以上の焼結体が得られた。またそのよ
うな焼結体はリン酸ジルコニルにジルコンを5〜50重
雇%添加したバッチ混合物100部にNb2O5を0.
1〜4部加えた調合割合の混合物を第1表に示す焼成条
件にて焼結させた時に得られた。第1図にジルコン添加
量と熱膨脹係数の関係を、第2図にジルコン添加量と4
点曲強度の関係を示す。
C-80 (1984) From the results of Examples 1 to 8 and Comparative Examples 10 to 23 shown in Table 1, ZrO258.8 to 65.3% by weight, P2O5 1
When containing zirconyl phosphate as the main crystalline phase and zircon as the second crystalline phase in the range of 7.6 to 37.1% by weight, 53021.5 to 16.4% by weight, Nb2O5O, 1 to 4 weight%. 1 from room temperature, which is the purpose of the present invention.
Thermal expansion coefficient up to 400℃ is 30X10-7/℃ or less,
A sintered body with a melting point of 1600° C. or higher was obtained. Further, such a sintered body is prepared by adding 0.0% Nb2O5 to 100 parts of a batch mixture of zirconyl phosphate with 5 to 50% zircon added.
It was obtained when a mixture of 1 to 4 parts was sintered under the firing conditions shown in Table 1. Figure 1 shows the relationship between the amount of zircon added and the coefficient of thermal expansion, and Figure 2 shows the relationship between the amount of zircon added and the coefficient of thermal expansion.
The relationship between point bending strength is shown.

さらに、焼結体中のアルカリ・アルカリ土類酸化物の含
量が0.5%を超えると1300℃での自重軟化率が増
大し、耐熱性が低下することが、リン酸ジルコニル・ジ
ルコン複合焼結体の1300℃における自重軟化率とア
ルカリ・アルカリ土類酸化吻合量との関係を示す第3図
、自重軟化率とNb2O5含量との関係を示す第4図よ
り明らかである。このような焼結体を得るためには、リ
ン酸ジルコニル、ジルコン原料及びNb2O5原料に含
まれるアルカリ・アルカリ土類金属酸化物の合量が0.
5重量%以下であることが必要である。
Furthermore, if the content of alkali/alkaline earth oxides in the sintered body exceeds 0.5%, the self-weight softening rate at 1300°C will increase and the heat resistance will decrease. This is clear from FIG. 3, which shows the relationship between the softening rate under the body weight and the amount of alkali-alkaline earth oxidation anastomosis at 1300° C., and FIG. 4, which shows the relationship between the softening rate under the body weight and the Nb2O5 content. In order to obtain such a sintered body, the total amount of alkali/alkaline earth metal oxides contained in zirconyl phosphate, zircon raw material, and Nb2O5 raw material must be 0.
It is necessary that the content be 5% by weight or less.

また、リン酸ジルコニル原料のZrO,とP2O,のモ
ル比を1.80〜2.00の範囲に制御することも重要
で、この値が2.00を超えると単斜晶のZrO,が析
出し焼結体の熱膨脹係数を増大させたり、単斜晶ZrO
□の正方品への相変態による急激な収縮や、正方晶から
単斜晶へ相変態するときの急激な膨張のために焼結体に
重大なダメージを与えるため、実用上使用できない。ま
た、この値が1.80より小である場合には(ZrO)
 zPtor相の析出が充分でないため、焼結体の熱膨
脹係数が増大し、低膨張材料として使用できない。第5
図にZr0z/ hosモル比と熱膨脹係数との関係を
示す。
It is also important to control the molar ratio of ZrO and PO in the zirconyl phosphate raw material within the range of 1.80 to 2.00; if this value exceeds 2.00, monoclinic ZrO will precipitate. Increasing the coefficient of thermal expansion of the sintered body, monoclinic ZrO
It cannot be used practically because it causes serious damage to the sintered body due to rapid contraction due to the phase transformation into a square product or rapid expansion during phase transformation from a tetragonal crystal to a monoclinic crystal. Also, if this value is smaller than 1.80, (ZrO)
Since the zPtor phase is not sufficiently precipitated, the coefficient of thermal expansion of the sintered body increases and it cannot be used as a low expansion material. Fifth
The figure shows the relationship between Zr0z/hos molar ratio and thermal expansion coefficient.

第6図に実施例3のリン酸ジルコニル・ジルコン複合焼
結体のX線回折図形を示す。結晶相の主成分がリン酸ジ
ルコニル、第二結晶相がジルコンであることが分る。
FIG. 6 shows the X-ray diffraction pattern of the zirconyl phosphate/zircon composite sintered body of Example 3. It can be seen that the main component of the crystal phase is zirconyl phosphate and the second crystal phase is zircon.

第7図は実施例3のリン酸ジルコニル・ジルコン複合焼
結体の熱膨張曲線で室温から1400℃まで、軟化を起
していない様子が分る。
FIG. 7 is a thermal expansion curve of the zirconyl phosphate/zircon composite sintered body of Example 3, and it can be seen that no softening occurs from room temperature to 1400°C.

(発明の効果) 以上詳細に説明したところから明らかなように、本発明
の耐熱低膨脹リン酸ジルコニル・ジルコン複合焼結体お
よびその製造法によれば、ZrO□58.8〜65.3
重量%、P2O5 17.6〜37.1重量%、SiO
□1.5〜16.4重量%、NbJs O,1〜4重量
%の化学組成で、主たる結晶相としてリン酸ジルコニル
、第二結晶相としてジルコンを含ませることにより、室
温から1400″Cまでの温度範囲で30xtO−7/
℃以下の低膨張性と、1600℃以上の融点を有する耐
熱低膨脹セラミックスを得ることができる。
(Effects of the Invention) As is clear from the detailed explanation above, according to the heat-resistant, low-expansion zirconyl phosphate/zircon composite sintered body of the present invention and the manufacturing method thereof, ZrO□58.8 to 65.3
Weight%, P2O5 17.6-37.1% by weight, SiO
□With a chemical composition of 1.5 to 16.4% by weight and 1 to 4% by weight of NbJsO, by including zirconyl phosphate as the main crystal phase and zircon as the second crystal phase, it can be heated from room temperature to 1400''C. 30xtO-7/ in the temperature range of
It is possible to obtain a heat-resistant, low-expansion ceramic having a low expansion property of 1600°C or higher and a melting point of 1600°C or higher.

そのためその応用範囲は耐熱衝撃性の要求される低膨張
材料として広く、例えば押出成形等によりハニカム構造
体に成形した場合には回転蓄熱式セラミック熱交換体や
、伝熱式熱交換体、さらに、泥漿鋳込成形法やプレス成
形法、射出成形法等により成形されるセラミックターボ
チャージャーローター用ハウジングまたはエンジンマニ
ホールド内の断熱材等、充分な実用性を備えている。
Therefore, its application range is wide as a low expansion material that requires thermal shock resistance.For example, when formed into a honeycomb structure by extrusion molding etc., it can be used as a rotating regenerator type ceramic heat exchanger, a heat transfer type heat exchanger, etc. It has sufficient practicality in applications such as ceramic turbocharger rotor housings or heat insulating materials in engine manifolds, which are molded by slurry casting, press molding, injection molding, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、はリン酸ジルコニル・ジルコン複合焼結体の熱
膨脹係数のジルコン添加量依存性を示す図、 第2図は、リン酸ジルコニル・ジルコン複合焼結体の4
点曲強度のジルコン添加量依存性を示す図、 第3図は、リン酸ジルコニル・ジルコン複合焼結体の1
300℃における自重軟化率と、アルカリ・アルカリ土
頚酸化吻合量との関係を示す図、第4図は、リン酸ジル
コニル・ジルコン複合焼結体の1300℃に於ける自重
軟化率とNb、O5添加量との関係を示す図、 第5図は、リン酸ジルコニル・ジルコン複合焼結体の製
造に用いるリン酸ジルコニル原料のZrO,72202
モル比とリン酸ジルコニル・ジルコン複合焼結体の熱膨
脹係数の関係を示す図、 第6図は、実施例3のリン酸ジルコニル・ジルコン複合
焼結体のX線回折図形を示す図、第7図は、実施例3の
リン酸ジルコニル・ジルコン複合焼結体の熱膨張曲線を
示す図、第8図は自重軟化率の測定方法を示す図である
。 特許出願人  日本碍子株式会社 代理人弁理士  杉  村  暁  秀同  弁  理
  士    杉    村   興    作第1図 Zと5:04  シトカO壷 (す 第2図 1l−5i04 h力at(*l’t>第3図
Figure 1 shows the dependence of the coefficient of thermal expansion on the amount of zircon added in the zirconyl phosphate/zircon composite sintered body.
Figure 3 shows the dependence of point bending strength on the amount of zircon added.
Figure 4 shows the relationship between the self-weight softening rate at 300°C and the amount of alkali-alkaline earth oxidation anastomosis. Figure 5 shows the relationship between the amount of addition and the amount of ZrO, 72202, which is the zirconyl phosphate raw material used in the production of the zirconyl phosphate/zircon composite sintered body.
Figure 6 is a diagram showing the relationship between the molar ratio and the coefficient of thermal expansion of the zirconyl phosphate/zircon composite sintered body. The figure shows the thermal expansion curve of the zirconyl phosphate/zircon composite sintered body of Example 3, and FIG. 8 shows the method for measuring the softening rate under its own weight. Patent applicant Nippon Insulator Co., Ltd. Representative Patent Attorney Hideto Sugimura Akira Sugimura Patent Attorney Oki Sugimura Figure 1 Z and 5:04 Sitka O vase >Figure 3

Claims (1)

【特許請求の範囲】 1、化学組成がZrO_2 58.8〜65.3重量%
、P_2O_5 17.6〜37.1重量%、SiO_
2 1.5〜16.4重量%、Nb_2O_5 0.1
〜4重量%で、主たる結晶相としてリン酸ジルコニル、
第二結晶相としてジルコンを含み、室温から1400℃
までの熱膨脹係数が30×10^−^7/℃以下、融点
が1600℃以上であることを特徴とする耐熱低膨脹リ
ン酸ジルコニル・ジルコン複合焼結体。 2、化学組成がZrO_2 58.8〜64.7重量%
、P_2O_5 22.7〜37.1重量%、SiO_
2 1.5〜11.5重量%、Nb_2O_5 0.1
〜4重量%で、主たる結晶相としてリン酸ジルコニル、
第二結晶相としてジルコンを含み、室温から1400℃
までの熱膨脹係数が20×10^−^7/℃以下である
特許請求の範囲第1項記載の耐熱低膨脹リン酸ジルコニ
ル・ジルコン複合焼結体。 3、アルカリ・アルカリ土類金属酸化物の合量が0.5
重量%以下である特許請求の範囲第1項記載の耐熱低膨
脹リン酸ジルコニル・ジルコン複合焼結体。 4、リン酸ジルコニル((ZrO)_2P_2O_7)
にジルコン(ZrSiO_4)を5〜50重量%添加し
たバッチ混合物100部にNb_2O_5を0.1〜4
部添加混合して焼結することにより、主たる結晶相がリ
ン酸ジルコニル、第二結晶相としてジルコンを含み、室
温から1400℃までの熱膨脹係数が30×10^−^
7/℃以下、融点が1600℃以上のリン酸ジルコニル
・ジルコン複合焼結体を得ることを特徴とするリン酸ジ
ルコニル・ジルコン複合焼結体の製造方法。 5、ジルコンの添加量が5〜35重量%であり、室温か
ら1400℃までの熱膨脹係数が20×10^−^7/
℃以下である特許請求の範囲第4項記載のリン酸ジルコ
ニル・ジルコン複合焼結体の製造方法。 6、アルカリ・アルカリ土類金属酸化物の含量がそれぞ
れ0.5重量%以下であるリン酸ジルコニル、ジルコン
原料およびNb_2O_5原料を用いる特許請求の範囲
第4項記載のリン酸ジルコニル・ジルコン複合焼結体の
製造方法。 7、リン酸ジルコニル原料のZrO_2/P_2O_5
モル比が1.80〜2.00の値である特許請求の範囲
第4項記載のリン酸ジルコニル・ジルコン複合焼結体の
製造方法。
[Claims] 1. Chemical composition is ZrO_2 58.8-65.3% by weight
, P_2O_5 17.6-37.1% by weight, SiO_
2 1.5-16.4% by weight, Nb_2O_5 0.1
~4% by weight with zirconyl phosphate as the main crystalline phase,
Contains zircon as the second crystal phase, temperature range from room temperature to 1400℃
A heat-resistant, low-expansion zirconyl phosphate/zircon composite sintered body, characterized in that it has a thermal expansion coefficient of 30×10^-^7/°C or less and a melting point of 1600°C or higher. 2. Chemical composition is ZrO_2 58.8-64.7% by weight
, P_2O_5 22.7-37.1% by weight, SiO_
2 1.5-11.5% by weight, Nb_2O_5 0.1
~4% by weight with zirconyl phosphate as the main crystalline phase,
Contains zircon as the second crystal phase, temperature range from room temperature to 1400℃
The heat-resistant, low-expansion zirconyl phosphate/zircon composite sintered body according to claim 1, which has a thermal expansion coefficient of 20×10^-^7/°C or less. 3. Total amount of alkali/alkaline earth metal oxides is 0.5
The heat-resistant, low-expansion zirconyl-zircon phosphate composite sintered body according to claim 1, wherein the zirconyl phosphate composite sintered body has a content of % by weight or less. 4. Zirconyl phosphate ((ZrO)_2P_2O_7)
0.1-4% of Nb_2O_5 was added to 100 parts of a batch mixture in which 5-50% by weight of zircon (ZrSiO_4) was added.
By mixing and sintering, the main crystal phase is zirconyl phosphate, the second crystal phase contains zircon, and the coefficient of thermal expansion from room temperature to 1400℃ is 30 x 10^-^
A method for producing a zirconyl phosphate/zircon composite sintered body, the method comprising obtaining a zirconyl phosphate/zircon composite sintered body having a melting point of 1,600° C. or lower and a melting point of 1,600° C. or lower. 5. The amount of zircon added is 5 to 35% by weight, and the coefficient of thermal expansion from room temperature to 1400°C is 20 x 10^-^7/
5. The method for producing a zirconyl phosphate/zircon composite sintered body according to claim 4, wherein the temperature is below .degree. 6. Zirconyl phosphate/zircon composite sintering according to claim 4 using zirconyl phosphate, zircon raw material, and Nb_2O_5 raw material each having an alkali/alkaline earth metal oxide content of 0.5% by weight or less How the body is manufactured. 7. ZrO_2/P_2O_5 as raw material for zirconyl phosphate
The method for producing a zirconyl phosphate/zircon composite sintered body according to claim 4, wherein the molar ratio is a value of 1.80 to 2.00.
JP62129874A 1986-09-13 1987-05-28 Heat resistant low expansion zirconyl phosphate / zircon composite sintered body and method for producing the same Expired - Lifetime JPH064511B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62129874A JPH064511B2 (en) 1987-05-28 1987-05-28 Heat resistant low expansion zirconyl phosphate / zircon composite sintered body and method for producing the same
US07/094,743 US4883781A (en) 1986-09-13 1987-09-09 Heat resisting low expansion zirconyl phosphate-zircon composite
EP87308063A EP0260893B1 (en) 1986-09-13 1987-09-11 Heat resisting low expansion zirconyl phosphate-zircon composite bodies and process for producing the same
DE8787308063T DE3778102D1 (en) 1986-09-13 1987-09-11 HEAT-RESISTANT ZIRCONYL PHOSPHATE-ZIRCONIUM SILICATE COMPOSITE BODY WITH LOW EXPANSION AND METHOD FOR THE PRODUCTION THEREOF.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62129874A JPH064511B2 (en) 1987-05-28 1987-05-28 Heat resistant low expansion zirconyl phosphate / zircon composite sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPS63297269A true JPS63297269A (en) 1988-12-05
JPH064511B2 JPH064511B2 (en) 1994-01-19

Family

ID=15020443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62129874A Expired - Lifetime JPH064511B2 (en) 1986-09-13 1987-05-28 Heat resistant low expansion zirconyl phosphate / zircon composite sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JPH064511B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007531685A (en) * 2004-03-31 2007-11-08 コーニング インコーポレイテッド Low thermal expansion article
CN114671679A (en) * 2022-04-11 2022-06-28 武汉科技大学 Zirconium pyrophosphate complex phase ceramic material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007531685A (en) * 2004-03-31 2007-11-08 コーニング インコーポレイテッド Low thermal expansion article
CN114671679A (en) * 2022-04-11 2022-06-28 武汉科技大学 Zirconium pyrophosphate complex phase ceramic material and preparation method thereof
CN114671679B (en) * 2022-04-11 2023-04-18 武汉科技大学 Zirconium pyrophosphate complex phase ceramic material and preparation method thereof

Also Published As

Publication number Publication date
JPH064511B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
US4307198A (en) Low-expansion ceramics and method of producing the same
EP0037868B2 (en) Method of producing low-expansion ceramic materials
EP0210813B1 (en) Aluminum titanate.-mullite base ceramics
EP0036462B1 (en) A honeycomb structure for use as a catalyst support for automobile exhaust
EP0260893B1 (en) Heat resisting low expansion zirconyl phosphate-zircon composite bodies and process for producing the same
JPH0717440B2 (en) Heat-resistant phosphate sintered body and method for producing the same
JPS63297269A (en) Heat-resistant, low-heat expansion zirconyl phosphate-zircon composite sintered product and production thereof
JP2619832B2 (en) Aluminum titanate ceramics and method for producing the same
JP3034808B2 (en) Thermal shock resistant ceramics and manufacturing method thereof
JPS63307147A (en) Sintered zirconyl phosphate and production thereof
JPH0639322B2 (en) Phosphate compound, sintered body and manufacturing method thereof
JPH0520385B2 (en)
JPS63297268A (en) Heat-resistant, low-heat expansion zirconyl phosphate-zircon composite sintered product and production thereof
JPH0149664B2 (en)
JPH0149665B2 (en)
JPH0397651A (en) Heat resistant phosphate-zircon combined body and production thereof
JPH0455360A (en) Magnesia-based superhigh temperature refractory
JPH03103353A (en) Thermal shock resistant oven material for calcination
JPH0238354A (en) Solid solution phase of ryzr4sixp6-xo24 composition, heat-resistant calcined compact consisting of said solid solution phase and production thereof
JPH0217507B2 (en)
JPH03103354A (en) Thermal shock resistant oven material for calcination
JPH01148747A (en) Sintered body of ceramic

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080119

Year of fee payment: 14