JPS6329565B2 - - Google Patents

Info

Publication number
JPS6329565B2
JPS6329565B2 JP56045300A JP4530081A JPS6329565B2 JP S6329565 B2 JPS6329565 B2 JP S6329565B2 JP 56045300 A JP56045300 A JP 56045300A JP 4530081 A JP4530081 A JP 4530081A JP S6329565 B2 JPS6329565 B2 JP S6329565B2
Authority
JP
Japan
Prior art keywords
porous glass
hollow fiber
fiber bundle
separation membrane
membrane device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56045300A
Other languages
Japanese (ja)
Other versions
JPS57159502A (en
Inventor
Tsukasa Tanyama
Toshiro Yamada
Niro Nagatomo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP56045300A priority Critical patent/JPS57159502A/en
Publication of JPS57159502A publication Critical patent/JPS57159502A/en
Publication of JPS6329565B2 publication Critical patent/JPS6329565B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • B01D63/022Encapsulating hollow fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は多孔質ガラス中空繊維を用いて気体ま
たは液体中の特定成分を選択的に透過させ分離操
作を行う分離膜装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a separation membrane device that performs a separation operation by selectively permeating a specific component in a gas or liquid using porous glass hollow fibers.

従来分離膜装置には主として有機高分子材料よ
り成る分離膜が使用されてきたが、耐熱性、耐食
性、耐薬品性などを要求される分野に対して満足
できるものがなかつた。例えば重質油の水蒸気改
質を行い水素と一酸化炭素の混合ガスを得た後、
水素濃縮を行つて得た原料ガスよりエタノール、
エチレングリコールなどを合成するプロセスにお
いては300〜400℃の高温において水素ガスを選択
的に透過するような分離膜モジユールが望まれて
いる。
Conventionally, separation membranes mainly made of organic polymer materials have been used in separation membrane devices, but none have been satisfactory in fields where heat resistance, corrosion resistance, chemical resistance, etc. are required. For example, after steam reforming heavy oil to obtain a mixed gas of hydrogen and carbon monoxide,
Ethanol is produced from the raw material gas obtained by hydrogen concentration.
In the process of synthesizing ethylene glycol and the like, a separation membrane module that selectively permeates hydrogen gas at high temperatures of 300 to 400°C is desired.

このような高温に耐える分離膜材料と無機多孔
材料が注目され、金属またはセラミツクスの微粉
を焼結したものが検討されている。しかしながら
これらの焼結材料は細孔径が1000Å以上で比較的
大きく、また大口径の管体とすることはできても
細管あるいは中空繊維状に成型することができな
い欠点があり、分離膜材料の単位量あたりの表面
積が小さいため装置の単位容積あたりの処理能力
が小さくなり実用化されていない。
Separation membrane materials and inorganic porous materials that can withstand such high temperatures are attracting attention, and materials made by sintering fine powder of metal or ceramics are being considered. However, these sintered materials have relatively large pore diameters of 1000 Å or more, and although they can be made into large-diameter tubes, they cannot be formed into thin tubes or hollow fibers. Since the surface area per unit volume is small, the processing capacity per unit volume of the device is small, and it is not put into practical use.

一方、本発明における多孔質ガラスは850℃ま
での温度に耐えると共に、10―3000オングストロ
ームの細孔径が得られ、しかも外径2ミリメート
ル程度の中空細管から外径20ミクロンの中空繊維
に到るまで自由に成形することができる利点があ
る。このような多孔質ガラスの細管あるいは中空
繊維(以下まとめて多孔質ガラス中空繊維とい
う)を分離膜装置に組み立てるためには、中空繊
維の端部を密封シールする技術が要求されるが、
従来この目的に適するシール材料が得られないた
め多孔質ガラスを用いた耐熱性の分離膜装置は実
用されなかつた。
On the other hand, the porous glass of the present invention can withstand temperatures up to 850°C, has a pore diameter of 10-3000 angstroms, and can range from hollow tubes with an outer diameter of about 2 mm to hollow fibers with an outer diameter of 20 microns. It has the advantage of being freely moldable. In order to assemble such porous glass tubes or hollow fibers (hereinafter collectively referred to as porous glass hollow fibers) into a separation membrane device, a technique is required to hermetically seal the ends of the hollow fibers.
Conventionally, heat-resistant separation membrane devices using porous glass have not been put to practical use because sealing materials suitable for this purpose have not been available.

本発明者らはシール材料に関して積極的な検討
を行い、多孔質ガラスの密封シールに対して熱膨
脹率、接着温度、耐熱性などの点で従来の問題点
を悉く解決するシール材料を開発し、本発明に到
達した。
The present inventors have actively investigated sealing materials and have developed a sealing material that solves all of the conventional problems in terms of thermal expansion coefficient, bonding temperature, heat resistance, etc. for sealing porous glass. We have arrived at the present invention.

すなわち本発明は外径が2mm以下でありかつ平
均細孔径が10〜3000オングストロームである多孔
質ガラス中空繊維より成る中空繊維束を筒状容器
内に収納し、該中空繊維束の少なくとも一端にお
いて該多孔質ガラス繊維が隔壁を貫通して開口す
るともに、該隔壁が該多孔質ガラス中空繊維の内
側に連通する流体室と該多孔質ガラス繊維の外側
に連通する流体室とを仕切るように構成し、かつ
該隔壁を負の熱膨脹率をもつセラミツクス1000℃
以下の軟化点をもつ無機系結合体との混合物で構
成することを特徴とする分離膜装置である。
That is, in the present invention, a hollow fiber bundle made of porous glass hollow fibers having an outer diameter of 2 mm or less and an average pore diameter of 10 to 3000 angstroms is housed in a cylindrical container, and at least one end of the hollow fiber bundle is The porous glass fibers are opened through the partition wall, and the partition wall partitions a fluid chamber communicating with the inside of the porous glass hollow fibers and a fluid chamber communicating with the outside of the porous glass fibers. , and the partition wall is made of ceramics with a negative coefficient of thermal expansion at 1000℃.
This is a separation membrane device characterized by comprising a mixture with an inorganic binder having the following softening point.

本発明における多孔質ガラスの代表例として95
重量パーセント以上のSiO2を含む高硅酸ガラス
があり、細孔容積が30パーセント前後、平均細孔
径が10―3000Åのものである。このような多孔質
ガラスは特定の組成範囲における硼硅酸ガラスの
分相現象を利用して製造するものであり、組成が
SiO222―75重量パーセント、B2O318―67重量パ
ーセント、Na2O2―16重量パーセント、Al2O30
―5重量パーセント、ZrO20―5重量パーセン
ト、TiO20―5重量パーセントの硼硅酸ガラスを
溶融して成形し、500―650℃の温度で熱処理を施
すと相分離が起り酸に可溶性の硼酸ナトリウムに
富む相とほぼ不溶性の二酸化硅素に富む相に分相
する。次いで酸で処理して硼酸ナトリウムに富む
相を溶出させると主として二酸化硅酸より成り、
かつ平均細孔径が10〜3000Åの多孔質ガラスが得
られる。
As a representative example of porous glass in the present invention, 95
There are high silicate glasses that contain more than a weight percent of SiO 2 , with a pore volume of around 30 percent and an average pore diameter of 10-3000 Å. This type of porous glass is manufactured by utilizing the phase separation phenomenon of borosilicate glass in a specific composition range, and the composition varies depending on the composition.
SiO 2 22-75% by weight, B 2 O 3 18-67% by weight, Na 2 O2 - 16% by weight, Al 2 O 3 0
-5% by weight of borosilicate glass, 0-5% by weight of ZrO 2 , 0-5% by weight of TiO 2 is melted and formed, and when heat treated at a temperature of 500-650℃, phase separation occurs and it becomes soluble in acids. The phase separates into a phase rich in sodium borate and a phase rich in nearly insoluble silicon dioxide. It is then treated with acid to elute the sodium borate-rich phase, which consists primarily of silicic acid;
A porous glass having an average pore diameter of 10 to 3000 Å can be obtained.

本発明における多孔質ガラス中空繊維は外径が
2ミリメートル以下の中空繊維であり、外径に対
する内径の比は40―90パーセントに選ばれる。こ
のような多孔質ガラス中空繊維は前記の組成の硼
硅酸ガラスを二重るつぼ内で溶融して直接紡糸す
る方法あるいはあらかじめ用意した管体の端部を
加熱引き出す方法により細管状あるいは中空繊維
状に成形したものを熱処理および酸処理を行つて
製造される。
The porous glass hollow fiber in the present invention is a hollow fiber with an outer diameter of 2 mm or less, and the ratio of the inner diameter to the outer diameter is selected to be 40-90%. Such porous glass hollow fibers can be made into thin tubes or hollow fibers by melting borosilicate glass having the above composition in a double crucible and directly spinning it, or by heating and drawing out the end of a previously prepared tube. It is manufactured by heat-treating and acid-treating the molded product.

本発明における隔壁を構成する材料は負の膨脹
率をもつセラミツクスと1000℃以下の軟化点をも
つ無機結合体とである。負の膨脹率をもつセラミ
ツクスとして例えばLi2O、Al2O3、SiO2のモル比
を1:1:1.5とし1400℃で5時間焼成すること
により得られたセラミツクスをあげることができ
る。この場合セラミツクスの熱膨脹率は300℃―
600℃における平均値が−60×10-71/℃であつ
た。一方1000℃以下の軟化点をもつ無機結合体と
しては公知のパイレツクスガラスあるいはアルミ
ノシリケートガラスの熱膨脹率が(30―60)×
10-71/℃のものがあげられる。例えばSiO257%、
Al2O315%、B2O35%、MgO7%、CaO10%、
BaO6%のアルミノシリケートガラスは52×
10-71/℃の熱膨脹率を示し、またSiO280.8%、
Al2O32.3%、Fe2O30.03%、B2O312.5%、
Na2O4.0%、K2O0.4%のパイレツクスガラスは
32×10-71/℃の熱膨脹率を示した。
The materials constituting the partition walls in the present invention are ceramics with a negative expansion coefficient and an inorganic bond with a softening point of 1000°C or less. An example of a ceramic having a negative expansion coefficient is a ceramic obtained by firing Li 2 O, Al 2 O 3 and SiO 2 in a molar ratio of 1:1:1.5 at 1400° C. for 5 hours. In this case, the coefficient of thermal expansion of ceramics is 300℃.
The average value at 600°C was -60×10 -7 1/°C. On the other hand, as an inorganic bond with a softening point of 1000℃ or less, the thermal expansion coefficient of the well-known Pyrex glass or aluminosilicate glass is (30-60) ×
10 -7 1/℃. For example SiO2 57%,
Al2O3 15 %, B2O3 5 %, MgO7%, CaO10%,
BaO6% aluminosilicate glass is 52×
It exhibits a coefficient of thermal expansion of 10 -7 1/℃, and SiO 2 80.8%,
Al2O3 2.3 %, Fe2O3 0.03 %, B2O3 12.5 %,
Pyrex glass with Na 2 O 4.0% and K 2 O 0.4% is
It exhibited a coefficient of thermal expansion of 32×10 -7 1/°C.

本発明における多孔質ガラスは負または極めて
低い正の値の熱膨脹率を示し、その値は(−10〜
+5)×10-71/℃である。従つてこのような多孔
質ガラス中空繊維の端部を密封する隔壁の材料と
しては同様に熱膨脹率の小さな材料が要求され
る。また多孔質ガラスの細孔の変形温度の限界か
ら接着温度は1000℃以下に制限される。また分離
膜装置の使用温度が例えば400℃であれば隔壁材
料の軟化点は400℃より高くなければならない。
さらにこの隔壁の材料は単に多孔質ガラス中空繊
維を接着保持するだけではなく、分離すべき流体
に対する気密性、シール性が要求される。本発明
はこれらの制限条件を満足する隔壁材料として負
の熱膨脹率をもつセラミツクスと1000℃以下の軟
化点をもつ無機系結合体との混合物を用いるもの
である。この場合例えばセラミツクスと無機系結
合体との粒径10―150ミクロンメートルの粉体混
合物をセラミツクス55―90重量部、無機系結合体
55―90重量部の比で用いると、接着温度において
無機系結合剤のみが溶融軟化して多孔質ガラス中
空繊維とセラミツクス粉体とを濡らすので、次い
で冷却すると無機系結合剤の中にセラミツクスの
粉体が分散しかつ多孔質ガラス繊維が貫通した隔
壁が得られる。このような接着操作は成型すべき
隔壁の型を用意し、この型内にセラミツクスと無
機系結合剤との混合粉体および多孔質ガラス中空
繊維の端部を配置して行われるが、接着温度にお
ける無機系結合剤の流動性が十分でない場合には
ホツトプレス法を適用することも有効である。
The porous glass in the present invention exhibits a coefficient of thermal expansion with a negative or extremely low positive value, and the value is (-10 to
+5)×10 -7 1/℃. Therefore, the material for the partition walls that seal the ends of such porous glass hollow fibers is similarly required to have a low coefficient of thermal expansion. Furthermore, the bonding temperature is limited to 1000°C or less due to the limit of the deformation temperature of the pores of porous glass. Furthermore, if the operating temperature of the separation membrane device is, for example, 400°C, the softening point of the partition wall material must be higher than 400°C.
Furthermore, the material of this partition wall is required not only to adhere and hold the porous glass hollow fibers, but also to have airtightness and sealability against the fluid to be separated. The present invention uses a mixture of ceramics having a negative coefficient of thermal expansion and an inorganic bonding material having a softening point of 1000 DEG C. or less as a partition wall material that satisfies these limiting conditions. In this case, for example, a powder mixture of ceramics and an inorganic binder with a particle size of 10 to 150 micrometers is mixed with 55 to 90 parts by weight of ceramics and an inorganic binder.
When used at a ratio of 55 to 90 parts by weight, only the inorganic binder melts and softens at the bonding temperature and wets the porous glass hollow fibers and ceramic powder. A partition wall in which the powder is dispersed and porous glass fibers are penetrated is obtained. This type of bonding operation is carried out by preparing a mold for the partition wall to be molded, and placing a mixed powder of ceramics and an inorganic binder and the ends of porous glass hollow fibers in this mold, but the bonding temperature If the fluidity of the inorganic binder is not sufficient, it is also effective to apply a hot press method.

次に図面に従つて本発明の分離膜装置を構造を
説明するが、図面は本発明の具体例を示すもので
あつて本発明はこれらの図面により制限されるも
のでない。
Next, the structure of the separation membrane device of the present invention will be explained according to the drawings, but the drawings show specific examples of the present invention, and the present invention is not limited by these drawings.

第1図は本発明の一具体例を示す軸方向断面図
である。端部にフランジ19をもつ円筒部材1と
端板2,3とから成る筒状容器の中に中空繊維束
4が収納されており、中空繊維束4を構成する多
孔質ガラス中空繊維は隔壁5を貫通して左側に開
口している。一方多孔質ガラス中空繊維の他方の
端はブロツク6の中に埋めこまれて閉じている。
FIG. 1 is an axial sectional view showing a specific example of the present invention. A hollow fiber bundle 4 is housed in a cylindrical container consisting of a cylindrical member 1 having a flange 19 at the end and end plates 2 and 3. The porous glass hollow fibers constituting the hollow fiber bundle 4 are connected to a partition wall 5. It passes through and opens on the left side. On the other hand, the other end of the porous glass hollow fiber is embedded in the block 6 and closed.

また隔壁5は多孔質ガラス中空繊維の内側に連
通する流体室20と該中空繊維の外側に連通する
流体室21とを仕切るように配置される。中空繊
維束4の中心軸付近には多孔管7が配置され、多
孔質ガラス中空繊維はこの多孔管7のまわりに積
層されている。多孔管7は管壁に開口を有し、多
孔管内の流体流路8はこの開口を通して多孔質ガ
ラス中空繊維の外側に連通している。また隔壁5
は円筒部材1と端板2の間にはさみこまれた構造
になつている。ここで、9,10,11はパツキ
ン、12,13,14,15は円筒部材1のフラ
ンジ19と端板2又は3とを締結するためのボル
ト孔である。
Further, the partition wall 5 is arranged to partition a fluid chamber 20 communicating with the inside of the porous glass hollow fiber and a fluid chamber 21 communicating with the outside of the hollow fiber. A porous tube 7 is arranged near the central axis of the hollow fiber bundle 4, and the porous glass hollow fibers are laminated around this porous tube 7. The porous tube 7 has an opening in the tube wall, and the fluid flow path 8 in the porous tube communicates with the outside of the porous glass hollow fiber through this opening. Also, the partition wall 5
is sandwiched between the cylindrical member 1 and the end plate 2. Here, 9, 10, 11 are packings, and 12, 13, 14, 15 are bolt holes for fastening the flange 19 of the cylindrical member 1 and the end plate 2 or 3.

第1図に示した装置を用いて分離操作を行なう
場合、まず原料液体を端板3の開口16を通して
多孔管7の中に導入すると、原料流体は多孔管7
の開口を通つて中空繊維束4に入り多孔質ガラス
中空繊維の外側の流体室21を流れて端板3の開
口17より排出される。原料流体が中空繊維束4
を流れる間に原料流体の一部は多孔質ガラス中空
繊維の外周面側より中空部側に透過し、多孔質ガ
ラス中空繊維の中空部流路を通つて隔壁5を貫通
し該中空繊維の内側に連通する流体室20に入り
端板2の開口18より取り出される。
When performing a separation operation using the apparatus shown in FIG.
The liquid enters the hollow fiber bundle 4 through the opening in the porous glass hollow fiber, flows through the fluid chamber 21 outside the porous glass hollow fiber, and is discharged through the opening 17 in the end plate 3. The raw material fluid is hollow fiber bundle 4
While flowing, a part of the raw material fluid permeates from the outer circumferential side of the porous glass hollow fibers to the hollow side, passes through the hollow flow path of the porous glass hollow fibers, penetrates the partition wall 5, and flows inside the hollow fibers. The fluid enters the fluid chamber 20 communicating with the fluid chamber 20 and is taken out through the opening 18 of the end plate 2.

第2図は第1図で示した本発明の具体例に関し
て、その中空繊維束の斜視図を示す。多孔管7の
まわりに多孔質ガラス中空繊維が軸にほぼ平行に
配置されて中空繊維束4を構成し、多孔質ガラス
中空繊維の一方の端部が隔壁5を貫通して開口
し、他方の端部がブロツク6に埋めこまれて閉じ
ている様子が示されている。
FIG. 2 shows a perspective view of a hollow fiber bundle of the embodiment of the invention shown in FIG. Porous glass hollow fibers are arranged around the porous tube 7 almost parallel to the axis to constitute the hollow fiber bundle 4, and one end of the porous glass hollow fibers penetrates the partition wall 5 and opens, and the other end passes through the partition wall 5 and opens. The end is shown embedded in block 6 and closed.

第1図および第2図においては多孔質ガラス中
空繊維が一方の端部で開口し、他方の端部で閉じ
た例を示したが、両方の端部に夫々隔壁を設けて
多孔質ガラス中空繊維が両方の端部に開口する構
造をとることもできる。この場合多孔質ガラス中
空繊維の内側に第一の流体を、外側に第二の流体
を通してその膜壁を通して物質交換を行なう場合
に使われる。第1図においては多孔管7を示した
が、中空繊維束4の中心軸付近に流体流路を保持
するものであれば特に制限はなく例えば網管でも
かまわない。また多孔質ガラス中空繊維の外径が
比較的大きくそれ自体が強固な場合には多孔質ガ
ラス中空繊維のみで中心軸付近に流体流路を構成
することもできる。このように流体流路を設ける
ことにより原料流体を中空繊維束の半径方向に流
すことができ、軸方向に流す場合に比べて圧力損
失が小さい利点がある。また軸方向の流量分布が
均一になるので分離操作を効率よく行なうことが
できる。
In Figures 1 and 2, an example is shown in which the porous glass hollow fiber is open at one end and closed at the other end. It is also possible to adopt a structure in which the fibers are open at both ends. In this case, it is used when a first fluid is passed inside the porous glass hollow fiber and a second fluid is passed outside to perform mass exchange through the membrane wall. Although the porous tube 7 is shown in FIG. 1, there is no particular restriction as long as the fluid flow path is maintained near the central axis of the hollow fiber bundle 4, and for example, a mesh tube may be used. Further, when the outer diameter of the porous glass hollow fibers is relatively large and the porous glass hollow fibers themselves are strong, it is also possible to construct a fluid flow path in the vicinity of the central axis using only the porous glass hollow fibers. By providing the fluid flow path in this manner, the raw material fluid can flow in the radial direction of the hollow fiber bundle, which has the advantage of lower pressure loss than when flowing in the axial direction. Furthermore, since the flow rate distribution in the axial direction becomes uniform, the separation operation can be performed efficiently.

また、第1図において隔壁5が円筒部材1のフ
ランジ19と端板2との間にはさみこまれた構造
を示している。このような構造は高温度で使用さ
れる本発明の分離膜装置の場合に特に推奨され、
隔壁と円筒動材、フランジの材料が異なり、熱膨
脹率に差がある場合にも確実にシールを行うこと
ができる。すなわち昇温、降温操作における膨
脹、収縮にもかかわらず、多孔質ガラス中空繊維
の外側の流体室21と内側の流体室20のシール
が保証される。
Further, FIG. 1 shows a structure in which the partition wall 5 is sandwiched between the flange 19 of the cylindrical member 1 and the end plate 2. Such a structure is particularly recommended for the separation membrane device of the present invention used at high temperatures.
Even if the partition wall, the cylindrical moving member, and the flange are made of different materials and have different coefficients of thermal expansion, sealing can be achieved reliably. That is, the seal between the outer fluid chamber 21 and the inner fluid chamber 20 of the porous glass hollow fiber is guaranteed despite expansion and contraction during temperature raising and lowering operations.

第2図においては多孔質ガラス中空繊維を軸に
ほぼ平行に配置した例を示した。多孔質ガラス中
空繊維の配置の方法は分離操作の種類、原料流体
の性状、流体の流れ方向、多孔質ガラス中空繊維
の物理的性質によつて選択することができる。例
えば多孔質ガラス中空繊維が互に交叉積層するよ
うに配置することが好ましい場合もあり、また中
心軸のまわりにスパイラル状に巻いて積層するこ
とも可能である。
FIG. 2 shows an example in which porous glass hollow fibers are arranged substantially parallel to the axis. The method of arranging the porous glass hollow fibers can be selected depending on the type of separation operation, the properties of the raw fluid, the flow direction of the fluid, and the physical properties of the porous glass hollow fibers. For example, it may be preferable to arrange the porous glass hollow fibers so as to cross each other and stack them, or it is also possible to wrap them spirally around a central axis and stack them.

また粉状、ひも状、繊維状、布状のスペーサー
を多孔質ガラス繊維の間隙に配置して多孔質ガラ
ス繊維を強固に保持し、しかも多孔質ガラス繊維
が互に密着することもなく間隙を備えた構造にす
ることもできる。なお、粒状のスペーサーを用い
るには中空繊維束4を筒状容器内に収納後端板3
側より該粒状物を該容器内に充填し中空繊維束を
固定する。さらに繊維状のスペーサーは中空繊維
を多孔管7に巻上げるごとに例えば中実繊維をそ
の巻上層の上に積層させて形成させ中空繊維束を
固定することもできる。
In addition, spacers in the form of powder, string, fiber, or cloth are placed in the gaps between the porous glass fibers to firmly hold the porous glass fibers. It is also possible to have a structure with In addition, in order to use a granular spacer, the hollow fiber bundle 4 is housed in a cylindrical container and the rear end plate 3 is
The granules are filled into the container from the side and the hollow fiber bundle is fixed. Further, a fibrous spacer may be formed each time the hollow fibers are wound around the porous tube 7 by laminating, for example, solid fibers on the wound layer to fix the hollow fiber bundle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の分離膜装置の具体例について
その軸方向の断面図を示す。また第2図は第1図
に示した分離膜装置の中空繊維束の斜視図であ
る。 1…円筒部材、2,3…端板、4…中空繊維
束、5…隔壁、6…ブロツク、7…多孔管、20
…内側に連通する流体室、21…外側に連通する
流体室。
FIG. 1 shows an axial cross-sectional view of a specific example of the separation membrane device of the present invention. 2 is a perspective view of a hollow fiber bundle of the separation membrane device shown in FIG. 1. DESCRIPTION OF SYMBOLS 1... Cylindrical member, 2, 3... End plate, 4... Hollow fiber bundle, 5... Partition wall, 6... Block, 7... Porous pipe, 20
...Fluid chamber communicating with the inside, 21...Fluid chamber communicating with the outside.

Claims (1)

【特許請求の範囲】 1 外径が2mm以下でありかつ平均細孔径が10〜
3000オングストロームである多孔質ガラス中空繊
維より成る中空繊維束を筒状容器内に収納し、該
中空繊維束の少なくとも一端において該多孔質ガ
ラス中空繊維が隔壁を貫通して開口するととも
に、該隔壁が該多孔質ガラス中空繊維の内側に連
通する流体室と該多孔質ガラス中空繊維の外側に
連通する流体室とを仕切るように構成し、かつ該
隔壁を負の熱膨脹率をもつセラミツクスと1000℃
以下の軟化点をもつ無機系結合体との混合物で構
成することを特徴とする分離膜装置。 2 特許請求の範囲第1項において該筒状容器が
端部にフランジをもつ円筒部材および端板より成
り、該隔壁が該円筒部材フランジと該端板との間
にはさみこまれた構造を有する分離膜装置。 3 特許請求の範囲第1項において該多孔質ガラ
ス中空繊維の外側に連通する流体流路を該中空繊
維束の中心軸付近に設けた分離膜装置。 4 特許請求の範囲第1項において該多孔質ガラ
ス中空繊維が実質的に平行に配置されて該中空繊
維束を構成する分離膜装置。 5 特許請求の範囲第1項において該多孔質ガラ
ス中空繊維が互に交叉積層して該中空繊維束を構
成する分離膜装置。 6 特許請求の範囲第1項において粒状あるいは
繊維状のスペーサーを該多孔質ガラス中空繊維の
間隙に配置して該中空繊維束を固定する分離膜装
置。
[Claims] 1. The outer diameter is 2 mm or less and the average pore diameter is 10 to 10.
A hollow fiber bundle made of porous glass hollow fibers having a thickness of 3000 angstroms is housed in a cylindrical container, and at least one end of the hollow fiber bundle is opened through a partition wall, and the partition wall is opened. A fluid chamber communicating with the inside of the porous glass hollow fiber and a fluid chamber communicating with the outside of the porous glass hollow fiber are partitioned, and the partition wall is made of ceramic having a negative thermal expansion coefficient and heated to 1000°C.
A separation membrane device comprising a mixture with an inorganic binder having the following softening point. 2. According to claim 1, the cylindrical container comprises a cylindrical member having a flange at the end and an end plate, and the partition wall is sandwiched between the flange of the cylindrical member and the end plate. Separation membrane device. 3. The separation membrane device according to claim 1, wherein a fluid flow path communicating with the outside of the porous glass hollow fibers is provided near the central axis of the hollow fiber bundle. 4. The separation membrane device according to claim 1, wherein the porous glass hollow fibers are arranged substantially in parallel to form the hollow fiber bundle. 5. The separation membrane device according to claim 1, wherein the porous glass hollow fibers are cross-layered to form the hollow fiber bundle. 6. The separation membrane device according to claim 1, in which a granular or fibrous spacer is arranged in the gap between the porous glass hollow fibers to fix the hollow fiber bundle.
JP56045300A 1981-03-26 1981-03-26 Separation membrane apparatus Granted JPS57159502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56045300A JPS57159502A (en) 1981-03-26 1981-03-26 Separation membrane apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56045300A JPS57159502A (en) 1981-03-26 1981-03-26 Separation membrane apparatus

Publications (2)

Publication Number Publication Date
JPS57159502A JPS57159502A (en) 1982-10-01
JPS6329565B2 true JPS6329565B2 (en) 1988-06-14

Family

ID=12715457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56045300A Granted JPS57159502A (en) 1981-03-26 1981-03-26 Separation membrane apparatus

Country Status (1)

Country Link
JP (1) JPS57159502A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0385065U (en) * 1989-12-20 1991-08-28

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614509A (en) * 1984-06-15 1986-01-10 Agency Of Ind Science & Technol Bundle fixing plate of porous glass membrane thin tube
US4840769A (en) * 1985-04-18 1989-06-20 Asahi Kasei Kogyo Kabushiki Kaisha Process for sterilizing a filtration device
US5430471A (en) * 1991-08-30 1995-07-04 Canon Kabushiki Kaisha Liquid container, recording head using same and recording apparatus using same
JP2960235B2 (en) * 1991-11-12 1999-10-06 キヤノン株式会社 INK CONTAINER, PRINT HEAD UNIT USING THE SAME, AND PRINTING APPARATUS MOUNTING THE SAME
GB9822569D0 (en) * 1998-10-16 1998-12-09 Johnson Matthey Plc Substrate
JP6838817B2 (en) * 2015-06-22 2021-03-03 スリーエム イノベイティブ プロパティズ カンパニー Single weld contactor
CN108395091B (en) * 2018-03-09 2021-05-04 东华大学 Preparation method of flake material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0385065U (en) * 1989-12-20 1991-08-28

Also Published As

Publication number Publication date
JPS57159502A (en) 1982-10-01

Similar Documents

Publication Publication Date Title
US6716275B1 (en) Gas impermeable glaze for sealing a porous ceramic surface
US4671809A (en) Gas separation module
US6174490B1 (en) Method for producing an exchanger
US6402156B1 (en) Glass-ceramic seals for ceramic membrane chemical reactor application
US20080152893A1 (en) Process for Producing Gas-Tight and Temperature-Stable Modules with Ceramic Hollow-Fibre or Capillary Membranes
JPS6329565B2 (en)
JP3774037B2 (en) Porous ceramic membrane using titania as binder, ceramic filter using the same, and method for producing the same
US8043988B2 (en) FAU-structural-type supported zeolite membranes, their process for preparation and their applications
KR100271102B1 (en) Membrane
JPS646802B2 (en)
US20030184954A1 (en) Separation module and method for producing the same
CA1138034A (en) Helium-tight tubesheet for hollow fiber type battery cells and method of fabricating the same
JPH0525530B2 (en)
JPS614509A (en) Bundle fixing plate of porous glass membrane thin tube
US4629652A (en) Production of aerogels on a support
US6712131B1 (en) Method for producing an exchanger and exchanger
JPH10114516A (en) Production of zeolite film
JPS629544B2 (en)
JPS62298420A (en) Porous material for concentrating gas containing silica, manufacture thereof and method of concentrating gas by usingsaid manufacture
Pierre et al. Applications of sol-gel processing
JPH0152335B2 (en)
JP7359590B2 (en) A conjugate and a separation membrane module having the same
JPH0152332B2 (en)
JPH0582B2 (en)
US10005674B2 (en) Silica support structure for a zeolite membrane