JPS63295173A - Aspherical surface processing machine - Google Patents

Aspherical surface processing machine

Info

Publication number
JPS63295173A
JPS63295173A JP62127547A JP12754787A JPS63295173A JP S63295173 A JPS63295173 A JP S63295173A JP 62127547 A JP62127547 A JP 62127547A JP 12754787 A JP12754787 A JP 12754787A JP S63295173 A JPS63295173 A JP S63295173A
Authority
JP
Japan
Prior art keywords
workpiece
gap
tool
processing
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62127547A
Other languages
Japanese (ja)
Inventor
Takeshi Masaki
健 正木
Koichi Kawada
耕一 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62127547A priority Critical patent/JPS63295173A/en
Publication of JPS63295173A publication Critical patent/JPS63295173A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To create a figure in high precision by performing three-axis control so that the rotary shaft of a tool is identical to the normal to the aspherical surface of a work, controlling the gap between the work and the tool, and performing processing while this gap is filled with the processing liquid. CONSTITUTION:Three-axis control is made with an X-axis linear location mechanism 4, a Z-axis liner location mechanism 15, and a theta-axis rotational location mechanism 16 so that the rotary shaft of a tool 14 is identical with the normal to the aspherical surface of a work 1. The gap between the work 1 and tool 14 is finely controlled by a control mechanism 17 on the basis of measurements given by a gap sensor 30, and processing is performed while the gap is filled with a processing liquid 33 with abrasive grains. This accomplishes contactless processing, and performing processing with the gap measured enables creation of high precision figure.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、プラスチック、ガラスよりなる非球面レンズ
の成形に用いられる金型の高精度鏡面加工や、セラミッ
ク、ガラスなどの硬脆性材料よりなる非球面鏡、レンズ
の加工を行う非球面加工機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applicable to high-precision mirror finishing of molds used for molding aspherical lenses made of plastic or glass, and aspherical mirrors made of hard brittle materials such as ceramic or glass. , relates to an aspheric processing machine for processing lenses.

従来の技術 従来、非球面レンズの成形に用いられる金型の高精度鏡
面加工には、ONO旋盤やカーブゼネレータなどにより
形状の切削、研削加工を行い、その後、レンズ研摩機や
手作業により鏡面仕上げを行う方法や、超精密ダイヤモ
ンド旋盤を用いて形状加工と同時に鏡面加工を実現する
加工方法がある(平井健−他:非球面プラスチックレン
ズ用金型加工技術、National  Techni
cal  Report、31.5(1985)632
)。
Conventional technology Conventionally, high-precision mirror finishing of molds used for molding aspherical lenses involves cutting and grinding the shape using an ONO lathe, curve generator, etc., and then mirror finishing using a lens polisher or by hand. There is a processing method that uses an ultra-precision diamond lathe to achieve shape processing and mirror finishing at the same time (Ken Hirai et al.: Mold processing technology for aspherical plastic lenses, National Techni.
cal Report, 31.5 (1985) 632
).

一方、ガラスレンズの成形用金型の材質には超硬合金や
セラミックスが用いられるが、これらの硬脆性材料より
なる金型や鏡、レンズの非球面形状の加工には、高精度
で高速回転させたダイヤモンド砥石を所望加工形状に沿
って移動させるこ吉により形状の加工を行い、なおかつ
鏡面に加工しようとする加工方法がある(上田他、昭和
69年度精機学会秋季大会学術講演会論文集 PO2)
On the other hand, cemented carbide and ceramics are used as materials for molds for molding glass lenses, but high-precision, high-speed rotation is required to process the aspherical shapes of molds, mirrors, and lenses made of these hard and brittle materials. There is a processing method in which the diamond grindstone is moved along the desired processing shape to process the shape, and it also attempts to process it into a mirror surface (Ueda et al., Proceedings of the 1986 Japan Society of Precision Machinery Autumn Conference Academic Lectures, PO2) )
.

以上示した加工方法は定位置切込み加工方式であるため
、加工精度は加工機械の精度(位置決め、振れなど)に
一致する。そのため、通常の機械構成では、数ミクロン
のオーダが精度の限界であり、サブミクロンの精度を得
るためには、機械構成に静圧軸受やレーザ測長フィード
バックシステムを組み込むことにより高精度な位置決め
を行う必要がある。
Since the processing method described above is a fixed position cutting method, the processing accuracy matches the accuracy (positioning, runout, etc.) of the processing machine. Therefore, with a normal machine configuration, the accuracy limit is on the order of several microns, and in order to obtain submicron accuracy, high-precision positioning is required by incorporating hydrostatic bearings and a laser length measurement feedback system into the machine configuration. There is a need to do.

発明が解決しようとする問題点 しかし、上記のような従来例では、次のような問題点が
ある。
Problems to be Solved by the Invention However, the above conventional example has the following problems.

(1)切削、研削による加工だけでは加工面の表面粗さ
が粗く、ミクロンオーダであり、形状精度も同じくミク
ロンオーダである。超精密ダイヤモンド切削やダイヤモ
ンド精研削の高精度加工によれば、表面粗さ及び形状精
度はサブミクロン以下で鏡面が実現されるが、工具送り
マークが残る等の問題があり、いずれも最終の仕上げが
必要である。
(1) Machining by cutting and grinding alone results in roughness of the processed surface, which is on the order of microns, and the shape accuracy is also on the order of microns. High-precision processing such as ultra-precision diamond cutting and diamond fine grinding achieves a mirror surface with surface roughness and shape accuracy of submicron or less, but there are problems such as tool feed marks remaining, and in both cases the final finish is difficult to achieve. is necessary.

(2)上記(1)に記載した問題により仕上げ研摩加工
が行われることにより表面粗さが数ナノメータオーダで
加工されるが、その加工のために形状を前加工面以上に
することができないばかりか、それ以下に崩してしまう
ことが多い。
(2) Due to the problem described in (1) above, the surface roughness is processed on the order of several nanometers by performing the final polishing process, but due to this process, it is impossible to make the shape better than the previously processed surface. It often collapses to something like this or even less.

そこで、本発明は、高精度に形状を創成することができ
ると共に、サブミクロンオーダの非球面の鏡面加工を行
うことができ、また微小光学部品の加工を容易に実現す
ることができ、更には従来、加工が困難であった高硬質
脆性材料をも高精度に、かつ容易に加工することができ
るようにした非球面加工機を提供しようとするものであ
る。
Therefore, the present invention can create a shape with high precision, perform mirror finishing of an aspherical surface on the submicron order, easily realize the processing of micro optical components, and further The present invention aims to provide an aspherical surface processing machine that can easily process highly hard and brittle materials that have been difficult to process with high accuracy.

問題点を解決するための手段 そして上記問題点を解決するための本発明の技術的な手
段は、ワークを保持し、回転させるワーク回転機構と、
上記ワークを加工する加工工具と、この加工工具を保持
して回転させる駆動機構と、上記ワークと加工工具とを
直交する2軸方向で相対的に位置決めする直線位置決め
機構と、加工工具の回転軸を上記直交する2軸の座標平
面内で回転させる回転位置決め機構と、上記ワークと加
工工具のギャップを測定するギャップセンサと、このギ
ャップセンサの指令により上記ワークと加工工具のギャ
ップを制御する制御機構と、上記ワークと加工工具の間
に砥粒を混合した加工液を供給する手段とを具備したも
のである。
Means for solving the problems and technical means of the present invention for solving the above problems include a work rotation mechanism that holds and rotates the work,
A processing tool that processes the workpiece, a drive mechanism that holds and rotates the processing tool, a linear positioning mechanism that relatively positions the workpiece and the processing tool in two orthogonal axes, and a rotation axis of the processing tool. a rotational positioning mechanism that rotates the workpiece within the coordinate plane of the orthogonal two axes, a gap sensor that measures the gap between the workpiece and the processing tool, and a control mechanism that controls the gap between the workpiece and the processing tool based on commands from the gap sensor. and means for supplying a machining liquid mixed with abrasive grains between the workpiece and the machining tool.

作  用 上記技術的手段による作用は次のようになる。For production The effects of the above technical means are as follows.

すなわち、2軸の直線位置決め機構と回転位置決め機構
により加工工具の回転軸をワークの非球面形状の法線方
向に一致させるように3軸を制御し、ワークと加工工具
とのギャップをギャップセンサの測定に基づき制御機構
により極めて微小に制御し、ワークと加工工具の間に砥
粒を混入した加工液を介在させて加工することにより非
接触での加工を実現し、高精度鏡面加工を行うことがで
き、また、ワークと加工工具のギャップを測定しながら
加工を行うことにより高精度形状創成を実現することが
できる。
In other words, the three axes are controlled using a two-axis linear positioning mechanism and a rotational positioning mechanism so that the rotation axis of the processing tool matches the normal direction of the aspherical shape of the workpiece, and the gap between the workpiece and the processing tool is measured using a gap sensor. A control mechanism performs extremely fine control based on measurements, and a machining liquid mixed with abrasive particles is interposed between the workpiece and the machining tool to achieve non-contact machining and high-precision mirror machining. In addition, by performing machining while measuring the gap between the workpiece and the machining tool, high-precision shape creation can be achieved.

実施例 以下、本発明の実施例について図面を参照しながら説明
する。第1図は本発明の一実施例における非球面加工機
を示す一部破断正面図である。
EXAMPLES Hereinafter, examples of the present invention will be described with reference to the drawings. FIG. 1 is a partially cutaway front view showing an aspheric surface processing machine according to an embodiment of the present invention.

第1図に示すようにワーク1はロータリーテーブル2上
にチャック3により固定されている。ロータリーテーブ
ル2はX軸直線位置決め機構4により回転可能に支持さ
れ、かつX軸直線位置決め機構4によりX軸方向(水平
方向)へ移動されて位置決めされる。その詳細について
説明すると、固定台s上に可動台6がころがり軸受7を
介してX軸方向に移動可能に支持されている。可動台6
の下側にはボールねじのナツト8が取付けられ、このナ
ツト8に螺合されたボールねじのねじ軸9が固定台6に
回転可能に支持され、ねじ軸9は固定台5に支持された
モータ1oに連係されている。
As shown in FIG. 1, a workpiece 1 is fixed on a rotary table 2 by a chuck 3. The rotary table 2 is rotatably supported by an X-axis linear positioning mechanism 4, and is moved and positioned in the X-axis direction (horizontal direction) by the X-axis linear positioning mechanism 4. To explain the details, a movable base 6 is supported on a fixed base s via a rolling bearing 7 so as to be movable in the X-axis direction. Movable stand 6
A ball screw nut 8 is attached to the lower side of the ball screw, and a screw shaft 9 of the ball screw screwed into the nut 8 is rotatably supported by the fixed base 6, and the screw shaft 9 is supported by the fixed base 5. It is linked to the motor 1o.

可動台6は枠状に形成され、上面の穴6aにロータリー
テーブル2の中間部の小径部2aが抜止めされて回転可
能に支持されている。ロータリーテーブル2はモータ1
1により回転される。このモータ11はステータ12と
ロータ13とより構成され、ステータ12は可動台6の
底部に支持され、ロータ13はロータリーテーブル2の
下端に取付けられている。したがってモータ10の駆動
によりねじ軸9を回転させることによりナツト8を介し
て可動台6、ロータリーテーブル2、ワーク1等を固定
台6に対しX軸方向に移動させることができる。
The movable table 6 is formed into a frame shape, and a small diameter portion 2a at the middle portion of the rotary table 2 is fixed and rotatably supported in a hole 6a in the upper surface. Rotary table 2 is motor 1
Rotated by 1. This motor 11 is composed of a stator 12 and a rotor 13. The stator 12 is supported at the bottom of the movable table 6, and the rotor 13 is attached to the lower end of the rotary table 2. Therefore, by rotating the screw shaft 9 by driving the motor 10, the movable table 6, rotary table 2, workpiece 1, etc. can be moved in the X-axis direction with respect to the fixed table 6 via the nut 8.

加工工具14はZ軸直線位置法め機構16、θ軸回転位
置決め機構16によりワーク1の非球面形状の法線方向
に一致され、また制御機構17によりワーク1との間隔
が制御される。その詳細について説明すると、枠状の案
内柱17に可動板18がころがり軸受19を介してZ軸
方向(垂直方向)に移動可能に支持され、可動板18は
モータ2o、ねじ軸21等の駆動手段によりZ軸方向に
移動される。可動板18には円板22が回転可能に支持
され、駆動手段(図示省略)により回転される。円板2
2には案内部材23が取付けられ、案内部材23には保
持枠24がころがり軸受26を介して直線状に移動可能
に支持され、保持枠24には上記加工工具14を有する
スピンドル26が支持され、スピンドル26および加工
工具14がモータ27の駆動により回転される。保持枠
24、スピンドル26、加工工具14等はモータ28、
ねじ軸29等の駆動手段により案内部材23に沿って移
動され、加工工具14の先端が円板22のほぼ中心に向
けられるようになっている。
The processing tool 14 is aligned with the normal direction of the aspherical shape of the workpiece 1 by a Z-axis linear positioning mechanism 16 and a θ-axis rotational positioning mechanism 16, and the distance from the workpiece 1 is controlled by a control mechanism 17. To explain the details, a movable plate 18 is supported by a frame-shaped guide column 17 via a rolling bearing 19 so as to be movable in the Z-axis direction (vertical direction). The device is moved in the Z-axis direction. A disk 22 is rotatably supported by the movable plate 18 and rotated by a driving means (not shown). Disk 2
A guide member 23 is attached to the guide member 2, a holding frame 24 is supported on the guide member 23 so as to be linearly movable via a rolling bearing 26, and a spindle 26 having the processing tool 14 is supported on the holding frame 24. , the spindle 26 and the processing tool 14 are rotated by the drive of the motor 27. The holding frame 24, spindle 26, processing tool 14, etc. are powered by a motor 28,
The processing tool 14 is moved along the guide member 23 by a driving means such as a screw shaft 29 so that the tip of the processing tool 14 is directed approximately to the center of the disk 22.

ワーク1と加工工具14のギャップは両者間に生じる静
電容量に基づきギャップセンサ30により検出される。
The gap between the workpiece 1 and the processing tool 14 is detected by the gap sensor 30 based on the capacitance generated between the two.

容器31には砥粒32を混入した加工液33(第2図参
照)が納められ、この砥粒32を混入した加工液33は
容器31に連通された供給口34よりワーク1と加工工
具14との間に供給される。
A machining fluid 33 (see FIG. 2) mixed with abrasive grains 32 is stored in the container 31, and the machining fluid 33 mixed with abrasive grains 32 is supplied to the workpiece 1 and the machining tool 14 through a supply port 34 communicating with the container 31. will be supplied between.

次に上記実施例による非球面の加工動作について説明す
る。
Next, the operation of machining an aspherical surface according to the above embodiment will be explained.

非球面形状は2次関数として表現されるので、X軸直線
位置決め機構4と2軸直線位置決め機構15によりワー
ク1と加工工具14のX、2両軸の位置を決定すること
によりワークの非球面形状を創成することができる。本
発明では更に加工工具14の一点が常に加工を施す点と
なるように、加工工具14の回転軸を上記直交するX、
Z2軸の座標平面内で、θ軸回転位置決め機構16によ
り加工工具14のワーク1に対する位置決めを加え、3
軸の制御を行う。そしてワーク1と加工工具14を相対
的に位置決めし、モータ11と27の駆動によりワーク
1と加工工具14を回転させて非球面形状の加工を行う
に際し、実際にはワーク1の前加工での形状に誤差があ
るので、各加工位置でのワーク1と加工工具14とギャ
ップに偏差がある。そこで、このギャップをギャップセ
ンサ30によって常時測定し、偏差に応じて制御機構1
7により加工工具14をθ軸方向で移動させ、ギャップ
を制御することで形状の制御を行うことができる。
Since the aspherical shape is expressed as a quadratic function, the aspherical surface of the workpiece is determined by determining the positions of both the X and 2 axes of the workpiece 1 and the processing tool 14 using the Shapes can be created. In the present invention, the rotation axis of the processing tool 14 is set to the above-mentioned orthogonal X, so that one point of the processing tool 14 is always the point where processing is performed.
In addition to positioning the processing tool 14 with respect to the workpiece 1 by the θ-axis rotation positioning mechanism 16 within the Z2-axis coordinate plane,
Controls the axis. Then, when the workpiece 1 and the processing tool 14 are relatively positioned, and the motors 11 and 27 are driven to rotate the workpiece 1 and the processing tool 14 to machine an aspherical shape, the workpiece 1 is actually pre-processed. Since there is an error in the shape, there is a deviation in the gap between the workpiece 1 and the processing tool 14 at each processing position. Therefore, this gap is constantly measured by the gap sensor 30, and the control mechanism 1
7, the machining tool 14 is moved in the θ-axis direction and the gap is controlled, thereby making it possible to control the shape.

上記ギャップ制御による形状の制御について更に詳細に
説明する第2図はワーク1と加工工具14をワーク1の
中心より見た加工動作説明用の拡大図である。第2図に
おいてワーク1は回転によって右から左へ移動している
。加工工具14は数ミクロンのギャップをもってワーク
1上に位置しており、両者間には砥粒32を混入した加
工液33が存在している。ワーク1の回転によって加工
液33が矢印で示すような流れを生じ、加工液33中の
砥粒32がワーク1に衝突し、ワーク1を削ることによ
り加工が進行する。この加工の進行の速度に寄与する主
たる要因としては、ワーク10回転速度とギャップ長を
挙げることができ、この他の要因として、加工工具14
の回転速度、砥粒径等を挙げることができる。そしてギ
ャップを小さくすると加工速度が早まり、大きくすると
その逆に加工速度が遅くなる。
FIG. 2, which explains the shape control by the gap control in more detail, is an enlarged view of the workpiece 1 and the processing tool 14 viewed from the center of the workpiece 1 to explain the processing operation. In FIG. 2, the workpiece 1 is moving from right to left due to rotation. The machining tool 14 is positioned on the workpiece 1 with a gap of several microns, and a machining fluid 33 containing abrasive grains 32 exists between the two. As the workpiece 1 rotates, the machining fluid 33 causes a flow as shown by the arrow, and the abrasive grains 32 in the machining fluid 33 collide with the workpiece 1 to scrape the workpiece 1, thereby progressing machining. The main factors that contribute to the speed of progress of this machining include the rotational speed of the workpiece 10 and the gap length, and other factors include the machining tool 14
The rotation speed, abrasive grain size, etc. can be mentioned. When the gap is made smaller, the machining speed increases, and when the gap is made larger, the machining speed becomes slower.

第3図にワーク1の前形状に対するギャップ制御の例を
示す。第3図(、)はワーク1の前形状を示し、縦軸が
所望形状からの誤差である。同図(b)は一定ギャップ
になるように位置決めした際のギャップセンサ3oの出
力を示し、縦軸がギャップ長であり、同図(a)とは逆
の出力形状となっている。
FIG. 3 shows an example of gap control for the front shape of the workpiece 1. FIG. 3 (,) shows the previous shape of the workpiece 1, and the vertical axis represents the error from the desired shape. The figure (b) shows the output of the gap sensor 3o when the gap sensor 3o is positioned to have a constant gap, the vertical axis is the gap length, and the output shape is opposite to that in the figure (a).

この状態で加工を進めても偏差を除去することはできる
。しかし、時間効率良く加工するために。
Even if machining is continued in this state, deviations can be removed. However, in order to process time efficiently.

同図(c)に示すようにギャップを制御する。ギャップ
長gは全く加工が進行しない距離である。以上用いた第
3図(a)、(b)、(C)の横軸はワーク10半径方
向もしくは同じ半径内の円周方向と考えても良G1゜ また、上記のようにワーク1に対し加工工具14を3軸
制御し、ワーク1と加工工具14のギャップをギャップ
センサ30の測定に基づき極めて微小に制御し、ワーク
1と加工工具140間に砥粒32を混合した加工液33
を介在させ、ワーク1と加工工具14をモータ11と2
7の駆動により回転させることにより、非接触で、高精
度鏡面加工を行うことができる。
The gap is controlled as shown in FIG. 4(c). The gap length g is a distance at which no machining progresses. The horizontal axis of Fig. 3 (a), (b), and (C) used above can be considered to be the radial direction of the workpiece 10 or the circumferential direction within the same radius. The machining tool 14 is controlled in three axes, the gap between the workpiece 1 and the machining tool 14 is extremely finely controlled based on the measurement of the gap sensor 30, and a machining fluid 33 mixed with abrasive grains 32 is provided between the workpiece 1 and the machining tool 140.
The work 1 and the processing tool 14 are connected to the motors 11 and 2.
By rotating with the drive of 7, high-precision mirror finishing can be performed in a non-contact manner.

発明の効果 以上要するに本発明の非球面加工機によれば、2軸の直
線位置決め機構と回転位置決め機構により加工工具の回
転軸をワークの非球面形状の法線方向に一致させるよう
に3軸制御し、ワークと加工工具のギャップをセンサの
測定に基づき制御機構により制御し、ワークと加工工具
の間に砥粒を混入した加工液を介在させて加工するよう
にしている。このように加工工具によるワークの非接触
加工を実現することができ、ワークと加工工具のギャッ
プを微小に制御することによりあらゆる材質に対して高
精度な鏡面加工を行うことができる。
Effects of the Invention In short, according to the aspheric processing machine of the present invention, three-axis control is performed using a two-axis linear positioning mechanism and a rotational positioning mechanism so that the rotational axis of the processing tool is aligned with the normal direction of the aspherical shape of the workpiece. However, the gap between the workpiece and the processing tool is controlled by a control mechanism based on sensor measurements, and processing is performed by interposing a processing fluid containing abrasive particles between the workpiece and the processing tool. In this way, it is possible to realize non-contact machining of a workpiece using a machining tool, and by minutely controlling the gap between the workpiece and the machining tool, highly accurate mirror machining can be performed on any material.

また、ワークと加工工具のギャップを測定しながら加工
を行うことによりワーク全面の形状誤差に対しての補正
加工が可能となり、同芯度良く、高精度な形状創成を実
現することができる。また、上記のように3軸制御によ
る形状創成であるため、あらゆる形状の加工が可能とな
り、特に従来困難であった微小光学部品の高精度加工を
容易に実現することができる。
In addition, by performing machining while measuring the gap between the workpiece and the machining tool, it is possible to perform corrective machining for shape errors on the entire surface of the workpiece, and it is possible to create a highly accurate shape with good concentricity. In addition, since the shape is created by three-axis control as described above, it is possible to process any shape, and in particular, it is possible to easily realize high-precision machining of micro optical components, which has been difficult in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明の一実施例における非球面
加工機を示し、第1図は全体の一部破断正面図、第2図
はワークと加工工具をワークの中心より見た加工動作説
明用の拡大図、第3図(a)〜(c)は加工制御の説明
図である。 1・・・ワーク、2・・・ロータリーテーブル、4・・
・X軸直線位置決め機構、11・・・モータ、14・・
・加工工具、15・・・Z軸直線位置決め機構、1e・
・・θ軸回転位置決め機構、17・・・制御機構、3o
・・・ギャップセンサ、32・・・砥粒、33・・・加
工液。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
Figures 1 to 3 show an aspherical surface machining machine according to an embodiment of the present invention, where Figure 1 is a partially cutaway front view of the whole, and Figure 2 is a machining machine showing a workpiece and a processing tool viewed from the center of the workpiece. The enlarged views for explaining the operation and FIGS. 3(a) to 3(c) are diagrams for explaining processing control. 1... Workpiece, 2... Rotary table, 4...
・X-axis linear positioning mechanism, 11...Motor, 14...
・Processing tool, 15...Z-axis linear positioning mechanism, 1e・
... θ-axis rotation positioning mechanism, 17... control mechanism, 3o
... Gap sensor, 32 ... Abrasive grain, 33 ... Machining liquid. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure

Claims (1)

【特許請求の範囲】[Claims] ワークを保持し、回転させるワーク回転機構と、上記ワ
ークを加工する加工工具と、この加工工具を保持して回
転させる駆動機構と、上記ワークと加工工具とを直交す
る2軸方向で相対的に位置決めする直線位置決め機構と
、加工工具の回転軸を上記直交する2軸の座標平面内で
回転させる回転位置決め機構と、上記ワークと加工工具
のギャップを測定するギャップセンサと、このギャップ
センサの指令により上記ワークと加工工具のギャップを
制御する制御機構と、上記ワークと加工工具の間に砥粒
を混合した加工液を供給する手段とを具備したことを特
徴とする非球面加工機。
A workpiece rotation mechanism that holds and rotates a workpiece, a processing tool that processes the workpiece, a drive mechanism that holds and rotates the processing tool, and a drive mechanism that rotates the workpiece and processing tool relative to each other in two orthogonal axes directions. A linear positioning mechanism for positioning, a rotary positioning mechanism for rotating the rotary axis of the machining tool within the coordinate plane of the two orthogonal axes, a gap sensor for measuring the gap between the workpiece and the machining tool, and a command from the gap sensor. An aspherical surface machining machine comprising: a control mechanism for controlling the gap between the workpiece and the machining tool; and means for supplying a machining fluid containing abrasive grains between the workpiece and the machining tool.
JP62127547A 1987-05-25 1987-05-25 Aspherical surface processing machine Pending JPS63295173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62127547A JPS63295173A (en) 1987-05-25 1987-05-25 Aspherical surface processing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62127547A JPS63295173A (en) 1987-05-25 1987-05-25 Aspherical surface processing machine

Publications (1)

Publication Number Publication Date
JPS63295173A true JPS63295173A (en) 1988-12-01

Family

ID=14962706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62127547A Pending JPS63295173A (en) 1987-05-25 1987-05-25 Aspherical surface processing machine

Country Status (1)

Country Link
JP (1) JPS63295173A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109923A (en) * 2001-09-28 2003-04-11 Sumitomo Mitsubishi Silicon Corp Device for polishing semiconductor wafer
CN101823230A (en) * 2010-04-12 2010-09-08 厦门大学 Triaxial non-spherical processing clamp with adjustable inclination angle
CN101890670A (en) * 2010-07-09 2010-11-24 厦门大学 Pneumatic non-spherical processing clamp with adjustable inclination angle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109923A (en) * 2001-09-28 2003-04-11 Sumitomo Mitsubishi Silicon Corp Device for polishing semiconductor wafer
CN101823230A (en) * 2010-04-12 2010-09-08 厦门大学 Triaxial non-spherical processing clamp with adjustable inclination angle
CN101890670A (en) * 2010-07-09 2010-11-24 厦门大学 Pneumatic non-spherical processing clamp with adjustable inclination angle

Similar Documents

Publication Publication Date Title
CN101088706B (en) Grinding and polishing machine for grinding and/or polishing workpieces in optical quality
US4928435A (en) Apparatus for working curved surfaces on a workpiece
US4760672A (en) Simultaneously grinding and polishing preforms for optical lenses
JPS60228063A (en) Polishing device for generating curved surface
KR20000076987A (en) Method and apparatus for grinding a workpiece
JP2006320970A (en) Machining device
JP2005279902A (en) Polishing device and polishing method
JPS63295173A (en) Aspherical surface processing machine
JPH10296631A (en) Super precise trueing device for grinding wheel
JPH0425301A (en) Cutting device
JPH05138521A (en) Aspheric surface manufacturing device and method
JPH0450152B2 (en)
JPS59219152A (en) Mirror finishing machine
JPH02139112A (en) Profile grinding machine
JPS61241055A (en) Precision grinding device
JPS59232758A (en) Spherical face working system
JPS6328552A (en) Nonspherical face machining method
JPS618270A (en) Curved-face polishing apparatus
JPS63237866A (en) Highly precision grinding machine
JPS6133858A (en) Accurate polishing device
JPS6133665B2 (en)
JPS59129649A (en) Precise slant face grinding machine
JPH0430961A (en) Device and method for working lens in toric shape and nonspherical shape
JPS59219155A (en) Mirror finishing machine
JPS6389258A (en) Aspheric surface processing machine