JPS63295058A - Production of heat exchanger made of aluminum - Google Patents

Production of heat exchanger made of aluminum

Info

Publication number
JPS63295058A
JPS63295058A JP62132660A JP13266087A JPS63295058A JP S63295058 A JPS63295058 A JP S63295058A JP 62132660 A JP62132660 A JP 62132660A JP 13266087 A JP13266087 A JP 13266087A JP S63295058 A JPS63295058 A JP S63295058A
Authority
JP
Japan
Prior art keywords
furnace
flux
heat exchanger
brazing
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62132660A
Other languages
Japanese (ja)
Other versions
JPH0736950B2 (en
Inventor
Kazunori Ishikawa
石川 和徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP13266087A priority Critical patent/JPH0736950B2/en
Priority to EP87907531A priority patent/EP0292565B1/en
Priority to AU82745/87A priority patent/AU8274587A/en
Priority to DE87907531T priority patent/DE3787644T2/en
Priority to KR1019880700838A priority patent/KR0139548B1/en
Priority to PCT/JP1987/000886 priority patent/WO1988003851A1/en
Priority to CA000566900A priority patent/CA1295114C/en
Publication of JPS63295058A publication Critical patent/JPS63295058A/en
Priority to US07/357,673 priority patent/US4911351A/en
Priority to AU70077/91A priority patent/AU7007791A/en
Priority to AU52131/93A priority patent/AU669755B2/en
Publication of JPH0736950B2 publication Critical patent/JPH0736950B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To easily produce a heat exchanger made of aluminum having excellent pitting corrosion resistance at a low cost by subjecting an Al member coated with a fluoride flux to soldering under heating and melting Zn to evaporate in a furnace in which an inert gaseous atmosphere is maintained. CONSTITUTION:The fluoride flux is coated on the Al member and after the flux is dried by heating at about 200 deg.C, the flux is heated and held to and at about 600 deg.C and is thereby soldered in the furnace in which the inert gaseous atmosphere of N2 or the like is maintained. The Zn is disposed in the position of 430-620 deg.C in the furnace and is melted to evaporate. The concn. of the oxygen in the furnace is preferably maintained at<=1000ppm, the dew point at <=-30 deg.C, the flow rate of the inert gas at 0.1-1 times the volume of the furnace per minute, and the surface area of the molten Zn at 0.05-2.5cm<2> per unit volume l of the furnace at this time. The evaporated Zn vapor is brought into the Al member simultaneously with the soldering of the Al member by heating, by which the Al member is subjected to the Zn diffusion treatment. The pitting corrosion resistance of the resulted heat exchanger made of Al is thereby improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はろう付けによるアルミ製熱交換器の製造法に関
するもので、特に耐孔食性を改善するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing an aluminum heat exchanger by brazing, and in particular improves pitting corrosion resistance.

(従来の技術〕 従来アルミ製熱交換器は、ZnCJ!2を含有する塩化
物系フラックスを用いたろう付けにより造られ、この方
法によればフラックスからのzn拡散により耐孔食性は
優れたものとなるが、腐食性のフラックス残漬を生ずる
ため、ろう付は後に洗浄除去する必要があり、排水処理
等に問題がある。
(Prior art) Aluminum heat exchangers have traditionally been manufactured by brazing using a chloride flux containing ZnCJ!2, and this method provides excellent pitting corrosion resistance due to Zn diffusion from the flux. However, since corrosive flux is left behind, it is necessary to wash and remove it after brazing, which poses problems in wastewater treatment, etc.

近年フッ化物系の非吸湿非腐食性の塩化物系フラックス
を使用したろう付は法が開発され、アルミ製熱交換器の
製造に広く用いられるようになった。この方法はフラッ
クスに例えばに/M!F4−に3 AfF6の共晶組織
を使用し、不活性ガス、主にN2を導入し、露点−40
°C以下、αの分圧i oooppm以下に管理された
炉中で600℃程度に加熱してろう付けを行なうもので
、ろう付は後の洗浄が不要である。例えばコンデンサー
は押出多穴管(チューブ)とコルゲート加工したフィン
材を組み合せてろう付けするもので、フィン材にはJI
S 3003+1%Zn合金からなる芯材の両面にAl
−5;・系のJIS 4343合金をろう材として張り
合せたプレージングシート(厚ざ0.16m)が用いら
れている。
In recent years, a brazing method using a fluoride-based non-hygroscopic and non-corrosive chloride-based flux has been developed and is now widely used in the manufacture of aluminum heat exchangers. This method can be applied to fluxes, for example /M! A eutectic structure of 3AfF6 is used for F4-, an inert gas, mainly N2 is introduced, and the dew point is -40.
Brazing is carried out by heating to about 600° C. in a furnace controlled at a temperature below 0.degree. For example, condensers are made by combining and brazing an extruded multi-hole tube with corrugated fin material.
Al on both sides of the core material made of S 3003 + 1% Zn alloy
-5; A plating sheet (thickness: 0.16 m) made of JIS 4343 alloy as a brazing material is used.

しかるに自動車が塩害地域を走行するところからアルミ
製熱交換器の外部耐孔食性の改善が重要な課題となって
おり、特に上記非吸湿非腐食性フラックスを使用するろ
う付は法(以下NB法と略記)においては、犠牲フィン
の使用にとどまらず、次のようなチューブ材自体の防食
処理が行なわれている。
However, since automobiles drive in salt-affected areas, improving the external pitting corrosion resistance of aluminum heat exchangers has become an important issue, and in particular, brazing using the above-mentioned non-hygroscopic, non-corrosive flux is based on the NB method (hereinafter referred to as NB method). In addition to the use of sacrificial fins, the following anti-corrosion treatment is applied to the tube material itself.

(1)ろう付は前にAl部材をジンケート処理すること
により、チューブ表面にZnを析出させ、ろう付は加熱
によりZnの拡散を図る。
(1) Before brazing, Zn is deposited on the tube surface by subjecting the Al member to zincate treatment, and during brazing, Zn is diffused by heating.

(2)フラックス中にZnを添加し、ろう付は加熱によ
りAl部材にフラックスからZnを拡散ざぜる。
(2) Zn is added to the flux, and during brazing, Zn is diffused from the flux into the Al member by heating.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ろうイ4け前のジンケート処理はコスト高となると共に
、チューブ材をエツチングするところからアルカリ液を
使用するため、液がチューブ内部へ侵入するのを防止す
る等作業上難点が多い。
The zincate treatment before waxing is expensive, and since an alkaline solution is used to etch the tube material, there are many operational difficulties, such as preventing the solution from entering the tube.

フラックス中にZnを入れる方法は、塩化物系フラック
スを使用する方法では50〜60%の高濃度フラックス
を使用するため、良好な拡散が得られるのに対し、NB
法ではフッ化物の活性が強く、10%程度の低濃度フラ
ックスを使用するため十分にZnを拡散させることがで
きない。
The method of adding Zn to the flux uses a high concentration flux of 50 to 60%, which results in good diffusion, whereas the method of using chloride-based flux uses a high concentration flux of 50 to 60%.
In this method, the activity of fluoride is strong, and since a low concentration flux of about 10% is used, Zn cannot be sufficiently diffused.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこれに鑑み種々検討の結果、NBろう付は法に
より簡単かつ低コストによってろう付けするAl部材の
表面にZnを拡散し、耐孔食性を改善したアルミ製熱交
換器の製造法を開発したもので、フッ化物系フラックス
を塗布したAl.部材を不活性ガス雰囲気のろ内で加熱
ろう付けするアルミ製熱交換器の製造において、炉内の
430〜620℃の位置にznを配置して溶融蒸発せし
め、Al部材の加熱ろう付けと同時にAl部材にZn蒸
気を接触させてZn拡散処理することを特徴とするもの
である。
In view of this, as a result of various studies, the present invention has developed a method for producing an aluminum heat exchanger that improves pitting corrosion resistance by diffusing Zn on the surface of the Al member to be brazed using a simple and low-cost NB brazing method. This is an Al. In the manufacture of aluminum heat exchangers, parts are heated and brazed in a filter in an inert gas atmosphere. This method is characterized in that Zn diffusion treatment is carried out by bringing Zn vapor into contact with the Al member.

即ら本発明は熱交換器用Al部材にフッ化物系フラック
スを塗布俊、予熱ゾーンで200℃程度に加熱屹燥する
。次に不活性ガス雰囲気のブレージングゾーンで600
℃に数分加熱(実体温度)してろう付けを行なう際、炉
内温度が430〜620℃となる位置にznを置いて溶
融蒸発せしめ、Al部材の加熱ろう付けと同時にAl部
材を発生したZn蒸気と接触させてZn拡散処理するも
のである。
That is, in the present invention, a fluoride flux is coated on an Al member for a heat exchanger, and then heated and dried at about 200° C. in a preheating zone. Next, in the brazing zone in an inert gas atmosphere,
When performing brazing by heating to ℃ for several minutes (actual temperature), Zn was placed at a position where the temperature inside the furnace was 430 to 620 ℃ to melt and evaporate, and Al members were generated at the same time as the Al members were heated and brazed. Zn diffusion treatment is performed by contacting with Zn vapor.

〔作 用〕[For production]

AZ−St系ろう材は577℃付近で溶融するが、zn
の拡散は表面に付着したフラックスの状況(溶融前後)
に関係なく、これより低温側から進行し、Al部材のろ
う付けと同時にAl部材のZn拡散処理が行なわれる。
AZ-St brazing filler metal melts at around 577°C, but zn
The diffusion of the flux depends on the state of the flux attached to the surface (before and after melting).
Irrespective of this, the process proceeds from the lower temperature side, and the Zn diffusion treatment of the Al member is performed at the same time as the brazing of the Al member.

Znの拡散状況はZnの蒸気発生状況に左右される。The state of Zn diffusion depends on the state of Zn vapor generation.

しかして炉内の430〜620℃の位置にznを配置し
て溶融蒸発させるのは、Znの蒸気発生は7nの溶融温
度(430℃)以上でないと無理であり、この温度以上
にZnを保持する必要がある。一方ろう付けと同時にz
nの拡散処理を行なうためには上限温度は620℃であ
る。また炉内の不活性ガス雰囲気の酸素濃度を1100
OpD以下、露点を一30℃以下としたのは、この範囲
内でないと良好なろう付けが得られないばかりか、Zn
蒸気の発生効率が低下するためである。
However, placing Zn at a temperature of 430 to 620°C in the furnace to melt and evaporate it is impossible to generate Zn vapor unless it is above the melting temperature of 7N (430°C), and it is necessary to maintain Zn above this temperature. There is a need to. On the other hand, at the same time as brazing
The upper limit temperature for performing n diffusion treatment is 620°C. In addition, the oxygen concentration in the inert gas atmosphere inside the furnace was set to 1100.
The reason for setting the dew point below OpD and below -30°C is that good brazing cannot be obtained unless it is within this range, and Zn
This is because the steam generation efficiency decreases.

また不活性ガスの流量を毎分あたりろ容積の0.1〜1
倍としたのは、ガスの酸素濃度を11000pp以下、
露点を一30℃以下に維持するためと、Zn蒸気の発生
を促進させるためで、下限未満では酸素濃度と露点を上
記範囲に維持することができず、上限を越えると不活性
ガスの消費が増大し、かつZn蒸気の発生も増加して拡
散過剰となり、耐食性を低下させるためである。
In addition, the flow rate of inert gas is 0.1 to 1 of the filtration volume per minute.
The reason why the oxygen concentration of the gas was doubled was 11,000 pp or less.
This is to maintain the dew point below -30°C and to promote the generation of Zn vapor. Below the lower limit, it is not possible to maintain the oxygen concentration and dew point within the above range, and when the upper limit is exceeded, inert gas consumption increases. This is because the corrosion resistance increases, and the generation of Zn vapor also increases, resulting in excessive diffusion and deterioration of corrosion resistance.

更にZn溶湯の表面積をろの単位容積(1)必たり、0
.05〜2.5 crAとしたのは、Zn蒸気の発生及
び効率よい拡散処理を行なうためにはこの範囲がよいた
めである。
Furthermore, the surface area of the Zn molten metal is 0 per unit volume (1) of the filter.
.. The reason why the range is 05 to 2.5 crA is that this range is good for generating Zn vapor and performing efficient diffusion treatment.

尚Al部材に均一にZnを拡散させるには、Al部材と
Zn蒸気との接触を均一にすることが重要であり、ガス
フローだけでなく適度に撹拌することが望ましい。
In order to uniformly diffuse Zn into the Al member, it is important to make the contact between the Al member and the Zn vapor uniform, and it is desirable to use not only gas flow but also appropriate stirring.

〔実施例〕〔Example〕

長さ9m、マツフル間口300 rrvn、高ざ110
0n。
Length 9m, pine full frontage 300 rrvn, height 110
0n.

容積2701の連続雰囲気炉と乾燥炉を用い、外寸法7
0x200 rrunのコンデンサーコアのろう付けを
行った。チューブにはJIS 1050合金からなる第
1図に示す厚さ5#巾22#の4穴押出型材を用い、こ
れを折り曲げ加工した。またフィンにはJIS 434
3合金をろう材としJIS 3003合、金からなる芯
材の両面にクラッド(板厚0.16m、ろう材クラッド
率10%)したプレージングシートを用い、これをコル
ゲート加工した。このチューブとフィンを第2図に示す
ようにチューブ(2)間にフィン(1)を配置し、治具
で固定し、脱脂(U5wt%m度のフッ化物系フラック
スを塗布し、200℃の乾燥炉で水分を除去した。これ
を連続雰囲気炉に入れてろう付けを行なった。
Using a continuous atmosphere furnace and a drying furnace with a capacity of 2701, the external dimension is 7.
The capacitor core of 0x200 rrun was brazed. A 4-hole extruded material made of JIS 1050 alloy and having a thickness of 5# and a width of 22# as shown in FIG. 1 was used as the tube, and this was bent. In addition, JIS 434 is used for the fins.
A plating sheet made of JIS 3003 alloy with 3 alloys as a brazing material and a core material made of gold with cladding on both sides (plate thickness 0.16 m, brazing material cladding ratio 10%) was used and corrugated. As shown in Fig. 2, the fin (1) is placed between the tube (2), fixed with a jig, degreased (U5wt%m degree fluoride flux is applied), and heated at 200℃. Moisture was removed in a drying oven.This was placed in a continuous atmosphere oven and brazed.

連続雰囲気炉は予熱部とろう付部と冷却部からなり、予
熱部は35℃1ろう付部は550℃と600℃に保持し
、冷却部は水冷ジャケット構造として300℃程度まで
冷却可能とし、炉内にはN2ガスを流した。このように
して炉中に保持される時間を20分、ろう付部に15分
保持し、ろう付部の55℃保持部に表面積10〜800
 cniの容器に溶融Znを入れたものを置き、N2ガ
ス流ff120〜3501/minとしてろう付けと同
時にZn拡散処理を行なった。これ等についてZn拡散
状況を調べると共にキャス試験を500時間行なった。
The continuous atmosphere furnace consists of a preheating section, a brazing section, and a cooling section.The preheating section is maintained at 35℃, the brazing section is maintained at 550℃ and 600℃, and the cooling section has a water-cooled jacket structure that allows cooling to about 300℃. N2 gas was flowed into the furnace. In this way, the temperature was maintained in the furnace for 20 minutes, and the brazed area was maintained for 15 minutes, and the surface area was 10 to 800 ℃ in the 55°C maintained area of the brazed area.
A container containing molten Zn was placed in a CNI container, and a Zn diffusion treatment was performed simultaneously with brazing using a N2 gas flow of 120 to 3501/min. Regarding these, the Zn diffusion situation was investigated and a Cath test was conducted for 500 hours.

その結果を第1表に示す。The results are shown in Table 1.

Zn拡散状況はEPMAにより各コアの5点を分析し、
その平均値を示した。またキャス試験は腐食生成物を除
去した後、焦点深度法により最大孔食深さを求めた。
The Zn diffusion status was analyzed at five points in each core using EPMA.
The average value is shown. In addition, in the CASS test, after removing corrosion products, the maximum pitting depth was determined using the depth of focus method.

第1表から明らかなように、本発明法Nα1〜9は何れ
も表面ZnC度が2.1〜9.5%、Zn拡散深さ11
0〜160μmのZn拡散パターンがチューブ表面に形
成され、キャス試験による耐食試験においても優れた耐
孔食性を示す。
As is clear from Table 1, all of the methods Nα1 to Nα9 of the present invention have a surface ZnC degree of 2.1 to 9.5% and a Zn diffusion depth of 11%.
A Zn diffusion pattern of 0 to 160 μm is formed on the tube surface, and exhibits excellent pitting corrosion resistance in a corrosion resistance test using a CASS test.

一方条件の異なる比較法NQIOではZn溶湯表面積が
小さいところから表面Z n 4度が低く、耐孔食性が
劣り、比較法Nα11では露点が高く、フィン材のろう
付けが一部不十分であった。また比較法Nα12はZn
溶湯表面積が大きく、比較法Nα13はN2流mが大き
いため、何れも表面7n濃度が高く、拡散深さも深く、
深い孔食が発生することが判る。
On the other hand, in the comparative method NQIO, which has different conditions, the surface Z n 4 degree was low due to the small surface area of the Zn molten metal, resulting in poor pitting corrosion resistance, and in the comparative method Nα11, the dew point was high and the brazing of the fin material was partially insufficient. . In addition, the comparative method Nα12 is Zn
Since the molten metal surface area is large and the comparative method Nα13 has a large N2 flow m, the surface 7n concentration is high and the diffusion depth is deep.
It can be seen that deep pitting corrosion occurs.

〔発明の効果〕 このように本発明によれば非腐食性フラックスを使用し
たろう付けにおいて、ろう付けと同時に耐孔食性の良好
なZn拡散パターンをAl部材に容易に形成することが
できるもので、ろう付は前のジンケート処理に比較し、
作業工程が著しく少なく、製造コストを低減することが
できる等工業上顕著な効果を秦するものである。
[Effects of the Invention] As described above, according to the present invention, in brazing using non-corrosive flux, a Zn diffusion pattern with good pitting corrosion resistance can be easily formed in an Al member at the same time as brazing. , brazing compared to the previous zincating treatment,
It has significant industrial effects such as significantly fewer work steps and reduced manufacturing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例に使用したデユープの一例を示す断面図
、第2図は実施例に使用したコンデンサーコアの一例を
示す説明図である。 1、フィン 2、チューブ 手続補正M輸発)    亡 昭和63年1月25日 特許庁長官 l」\11央β夫 殿 1、事件の表示 。 昭和62年 特許願 第132660号2、発明の名称 アルミ製熱交換器の製造法 3、補正をする者 名称  古河アルミニウム工業株式会社4、代理人 5、補正の対象 明細書の発明の詳細な説明の欄
FIG. 1 is a cross-sectional view showing an example of a duplex used in the example, and FIG. 2 is an explanatory view showing an example of the capacitor core used in the example. 1, Fin 2, Tube Procedure Amendment M Import) Passed away on January 25, 1986, Commissioner of the Patent Office l''\11 Obetao 1, Indication of the case. 1988 Patent Application No. 132660 2 Name of the invention Method for manufacturing an aluminum heat exchanger 3 Name of the person making the amendment Furukawa Aluminum Industry Co., Ltd. 4 Agent 5 Detailed description of the invention in the specification to be amended column

Claims (2)

【特許請求の範囲】[Claims] (1) フツ化物系フラツクスを塗布したAl部材を不
活性ガス雰囲気のろ内で加熱ろう付けするアルミ製熱交
換器の製造において、ろ内の430〜62℃の位置にZ
nを配置して溶融蒸発せしめ、Al部材の加熱ろう付け
と同時にAl部材にZn蒸気を接触させてZn拡散処理
することを特徴とするアルミ製熱交換器の製造法。
(1) In the manufacture of aluminum heat exchangers in which aluminum parts coated with fluoride flux are heated and brazed in a filter in an inert gas atmosphere, a Z
A method for manufacturing an aluminum heat exchanger, characterized in that Zn is diffused by disposing Zn vapor and melting and evaporating the Al member, and simultaneously bringing Zn vapor into contact with the Al member at the same time as heating and brazing the Al member.
(2) ろ内の酸素濃度を1000ppm以下、露点を
−30℃以下、不活性ガスの流量を毎分あたりろ容積の
0.1〜1倍、Zn溶湯の表面積をろの単位容積(l)
あたり0.05〜2.5cm^2とする特許請求の範囲
第1項記載のアルミ製熱交換器の製造法。
(2) The oxygen concentration in the filter is 1000 ppm or less, the dew point is -30°C or less, the flow rate of inert gas is 0.1 to 1 times the filter volume per minute, and the surface area of the molten Zn is the unit volume of the filter (l).
The method for manufacturing an aluminum heat exchanger according to claim 1, wherein the thickness is 0.05 to 2.5 cm^2.
JP13266087A 1986-11-17 1987-05-28 Manufacturing method of aluminum heat exchanger Expired - Lifetime JPH0736950B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP13266087A JPH0736950B2 (en) 1987-05-28 1987-05-28 Manufacturing method of aluminum heat exchanger
PCT/JP1987/000886 WO1988003851A1 (en) 1986-11-17 1987-11-16 Process for manufacturing heat exchanger
AU82745/87A AU8274587A (en) 1986-11-17 1987-11-16 Process for manufacturing heat exchanger
DE87907531T DE3787644T2 (en) 1986-11-17 1987-11-16 METHOD FOR PRODUCING A HEAT EXCHANGER.
KR1019880700838A KR0139548B1 (en) 1986-11-17 1987-11-16 Method pof manufacturing heat exchanger
EP87907531A EP0292565B1 (en) 1986-11-17 1987-11-16 Process for manufacturing heat exchanger
CA000566900A CA1295114C (en) 1987-05-28 1988-05-16 Method of manufacturing a heat-exchanger
US07/357,673 US4911351A (en) 1986-11-17 1989-05-30 Method of manufacturing heat-exchanger
AU70077/91A AU7007791A (en) 1986-11-17 1991-01-30 Method of manufacturing heat-exchanger
AU52131/93A AU669755B2 (en) 1986-11-17 1993-12-03 Method of manufacturing heat-exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13266087A JPH0736950B2 (en) 1987-05-28 1987-05-28 Manufacturing method of aluminum heat exchanger

Publications (2)

Publication Number Publication Date
JPS63295058A true JPS63295058A (en) 1988-12-01
JPH0736950B2 JPH0736950B2 (en) 1995-04-26

Family

ID=15086517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13266087A Expired - Lifetime JPH0736950B2 (en) 1986-11-17 1987-05-28 Manufacturing method of aluminum heat exchanger

Country Status (1)

Country Link
JP (1) JPH0736950B2 (en)

Also Published As

Publication number Publication date
JPH0736950B2 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
KR0139548B1 (en) Method pof manufacturing heat exchanger
US5316206A (en) Method of joining aluminium members
US3852873A (en) Method for manufacturing and brazing various apparatuses and particularly heat exchangers
US5806752A (en) Manufacture of aluminum assemblies by open-air flame brazing
JPH09500422A (en) Aluminum / lithium filler alloy for brazing
KR20060015749A (en) Method for brazing aluminum material
US4119262A (en) Method of joining metal, particularly aluminum or aluminum alloys, using bromine fluxing agent
US6152354A (en) Brazing filler alloy containing calcium
JPS63295058A (en) Production of heat exchanger made of aluminum
JPS6119357B2 (en)
CA1295114C (en) Method of manufacturing a heat-exchanger
JPS6342547B2 (en)
JPH0773789B2 (en) Preparation method of heat exchanger with excellent pitting corrosion resistance
JPS63128163A (en) Zinc thickening treatment of surface layer of aluminum member
JP2685859B2 (en) Brazing method of Al or Al alloy
JPH0830259B2 (en) Method for generating Zn vapor for surface Zn concentration of Al member
JPS6149770A (en) Brazing method of aluminum compound material
JPS6174771A (en) Production of aluminum heat exchanger
EP0933158B1 (en) Furnace brazing
JPH05245688A (en) Heat exchanger made of aluminum and production thereof
JP2680763B2 (en) Aluminum shaped article coated with brazing material
JPS63115672A (en) Brazing method for aluminum or aluminum alloy material
JPH05277787A (en) Material and the joining method for joining heat exchanger parts made of aluminum
JPS6083771A (en) Brazing method of aluminum material
JPS63262236A (en) Sacrifice fin material