JPH0773789B2 - Preparation method of heat exchanger with excellent pitting corrosion resistance - Google Patents

Preparation method of heat exchanger with excellent pitting corrosion resistance

Info

Publication number
JPH0773789B2
JPH0773789B2 JP22157487A JP22157487A JPH0773789B2 JP H0773789 B2 JPH0773789 B2 JP H0773789B2 JP 22157487 A JP22157487 A JP 22157487A JP 22157487 A JP22157487 A JP 22157487A JP H0773789 B2 JPH0773789 B2 JP H0773789B2
Authority
JP
Japan
Prior art keywords
flux
heat exchanger
brazing
temperature
tube material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22157487A
Other languages
Japanese (ja)
Other versions
JPS6466067A (en
Inventor
和徳 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP22157487A priority Critical patent/JPH0773789B2/en
Priority to DE87907531T priority patent/DE3787644T2/en
Priority to PCT/JP1987/000886 priority patent/WO1988003851A1/en
Priority to AU82745/87A priority patent/AU8274587A/en
Priority to EP87907531A priority patent/EP0292565B1/en
Priority to KR1019880700838A priority patent/KR0139548B1/en
Priority to CA000566900A priority patent/CA1295114C/en
Publication of JPS6466067A publication Critical patent/JPS6466067A/en
Priority to US07/357,673 priority patent/US4911351A/en
Priority to AU70077/91A priority patent/AU7007791A/en
Priority to AU52131/93A priority patent/AU669755B2/en
Publication of JPH0773789B2 publication Critical patent/JPH0773789B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐孔食性の優れたAl製熱交換器の製造方法に関
するものである。
TECHNICAL FIELD The present invention relates to a method for manufacturing an Al heat exchanger having excellent pitting corrosion resistance.

〔従来の技術〕[Conventional technology]

従来フッ化物系の非腐食性フラックス(例えばKAlF4−K
3AlF6の共晶組成)を使用したAl製熱交換器のろう付け
は通常はN2等の不活性ガスを導入し、露点−40℃以下、
及び酸素分圧は1000ppm以下に管理された炉中で約600℃
に加熱して行なわれていた(以下このようなろう付け法
をNB法と記す)。
Conventional fluoride-based non-corrosive flux (eg KAlF 4 -K
3 AlF 6 eutectic composition) is used for brazing an Al heat exchanger, which is usually performed by introducing an inert gas such as N 2 and having a dew point of −40 ° C.
And oxygen partial pressure is about 600 ℃ in a furnace controlled to 1000ppm or less.
It was carried out by heating (hereinafter, such brazing method is referred to as NB method).

例えばAl製熱交換器のコンデンサーの場合はNB法では第
1図(イ)に示すようなS字状に大きくうねった形状に
ベンダー加工した押出多穴管(以下チューブ材と略記)
(1)と、芯材の両面にAl−Si系合金のろう材をクラッ
ドしたブレージングシートを第1図(ロ)に示すように
コルゲート加工したフィン材(2)を第1図(ハ)に示
すように組み付け、チューブ材(1)の冷媒の出入口に
ユニオン(3)(3′)を取り付けた後、押え治具
(4)で固定してコア(5)とし、該コアを洗浄した後
フッ化物系フラックスを全体に塗布し、しかる後ブレー
ジング炉に送入して第3図の(B)で示す温度分布曲線
に従って余熱・加熱をしてフィン材とチューブ材とをろ
う付けし一体化する。
For example, in the case of an Al heat exchanger condenser, in the NB method, an extruded multi-hole pipe (hereinafter abbreviated as a tube material) bender-processed into a large S-shaped shape as shown in Fig. 1 (a).
(1) and a fin material (2) obtained by corrugating a brazing sheet in which a brazing material of an Al-Si alloy is clad on both sides of the core material as shown in FIG. 1 (b). After assembling as shown in the figure, after attaching the unions (3) and (3 ') to the refrigerant inlet and outlet of the tube material (1), they are fixed by the holding jig (4) to form the core (5), and after cleaning the core Fluoride-based flux is applied to the entire surface, and then it is fed into a brazing furnace and residual heat / heating is performed according to the temperature distribution curve shown in Fig. 3 (B) to braze and integrate the fin material and tube material. To do.

このように製造されたAl製熱交換器を装備した自動車が
塩害地域を走行するようになってきたことから近年該熱
交換器の外部耐孔食性の改善が重要な課題となってきて
いる。このため上記NB法においては犠牲フィンの使用の
みならず次のようなチューブ材自体の防食処理がなされ
るようになってきた。
Since automobiles equipped with the Al heat exchanger manufactured as described above have come to run in a salt damage area, improvement of external pitting corrosion resistance of the heat exchanger has become an important issue in recent years. Therefore, in the NB method, not only the use of sacrificial fins but also the following anticorrosion treatment of the tube material itself has been performed.

(1)ろう付け前にチューブ材にジンケート処理を施す
ことにより、チューブ材表面にZnを析出させ、ろう付け
加熱によりZnをチューブ材中に拡散させる。
(1) By subjecting the tube material to a zincate treatment before brazing, Zn is deposited on the surface of the tube material, and Zn is diffused into the tube material by heating for brazing.

(2)フッ化物系フラックス中にZnを添加し、ろう付け
加熱時にフラックスからZnをチューブ材中に拡散させ
る。
(2) Zn is added to the fluoride-based flux to diffuse Zn into the tube material from the flux during brazing and heating.

これらは従来ZnCl2を含有した塩化物系フラックスを用
いたフラックスろう付けによればフラックスからのZnの
拡散が行なわれるため防食効果は優れるものの腐食性の
フラックス残渣を洗浄・除去する必要がある点をフッ化
物系のフラックスを使用することにより改良したもので
ある。
According to the conventional method, flux brazing using a chloride-based flux containing ZnCl 2 diffuses Zn from the flux, so it has an excellent anticorrosion effect, but it is necessary to clean and remove corrosive flux residues. Is improved by using a fluoride-based flux.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながらろう付け前のジンケート処理はコスト互と
なるとともに、チューブ材をエッチングするためアルカ
リ液を使用するので液がチューブ内部へ侵入するのを防
止しなければならず作業上の難点が多い。
However, the zincate treatment before brazing is costly, and since an alkaline solution is used to etch the tube material, it is necessary to prevent the solution from entering the inside of the tube, and there are many operational difficulties.

またフラックス中にZnを添加する方法は塩化物系フラッ
クスの場合は50〜60%の高濃度フラックスを使用するの
に対してフッ化物系フラックスの場合はそれ自身活性が
強いため10%程度の低濃度フラックスにて十分であるの
で多量のZnを供給できず、表面全体に所望の量のZnを拡
散させることはできない。
As for the method of adding Zn to the flux, a high concentration flux of 50 to 60% is used in the case of chloride type flux, whereas a high activity is itself in the case of fluoride type flux, so it is as low as about 10%. Since the concentration flux is sufficient, a large amount of Zn cannot be supplied, and a desired amount of Zn cannot be diffused over the entire surface.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこれに鑑み種々検討の結果、簡単でかつ低コス
トでNB法による熱交換器の耐孔食性を改善した製造方法
を開発したもので、Al製熱交換器の冷媒通路を形成する
チューブ材とコルゲート加工したフィン材とを組み付け
て不活性ガス中でフッ化物系フラックスを用いてろう付
けする熱交換器の製造において、フッ化物系フラックス
を塗布後乾燥したフィン材とフラックスを塗布しないチ
ューブ材とを組み付け、不活性ガス中にて該フラックス
の融点より低く、かつこれら部材が加熱されている温度
以上の温度のZn蒸気中に1分以上保持し、しかる後フラ
ックスの融点より高い温度でろう付けを行なうことを特
徴とするものである。
The present invention is a result of various studies in view of this, a simple and at low cost to develop a manufacturing method with improved pitting corrosion resistance of the heat exchanger by the NB method, the tube forming the refrigerant passage of the Al heat exchanger Tube in which a flux is applied after the fluoride flux is applied and a flux is not applied in the production of a heat exchanger in which a fin material subjected to corrugated processing is assembled and brazed using a fluoride flux in an inert gas And the material is assembled and held in Zn vapor at a temperature lower than the melting point of the flux in an inert gas and higher than the temperature at which these members are heated for 1 minute or more, and then at a temperature higher than the melting point of the flux. It is characterized by brazing.

〔作 用〕[Work]

このようにフィン材にのみフラックスを塗布しておくの
はチューブ材との組み付け後、Zn蒸気中に曝してZnをチ
ューブ材中に拡散させるときにチューブ材にもあらかじ
めフラックスが塗布されていると、フラックスが防御膜
として働きZn蒸気がチューブ材表面に付着するのを妨げ
てしまうからであり、さらにこれら組み付け部材を不活
性ガス中で加熱してZn蒸気に曝す際に上記フラックスの
融点より低い温度で実施するのもチューブ材へのZn拡散
処理中にフィン材に塗布したフラックスが溶融してチュ
ーブ材表面を被覆するのを避けるためである。
In this way, applying the flux only to the fin material means that the flux is already applied to the tube material when it is exposed to Zn vapor and diffused into the tube material after being assembled with the tube material. , Because the flux acts as a protective film and prevents Zn vapor from adhering to the surface of the tube material. Furthermore, when these assembly members are heated in an inert gas and exposed to Zn vapor, the melting point is lower than the above-mentioned flux. The temperature is also used to prevent the flux applied to the fin material from melting and coating the surface of the tube material during the Zn diffusion treatment to the tube material.

またフッ化物系フラックスの溶融前に効率よくZn蒸気か
らチューブ表面にZnを付着させるにはZn蒸気の温度はチ
ューブ材の加熱温度より高くフラックスの融点(約562
℃)よりも低い550〜560℃が最適であり、保持時間は1
分未満ではZnのチューブ表面への付着量が十分でなく、
従って防食効果も不十分である。なお上記Zn蒸気の温度
を低くした場合はそれに応じて保持時間も長くする必要
がある。
In order to efficiently attach Zn from the Zn vapor to the tube surface before melting the fluoride flux, the temperature of the Zn vapor is higher than the heating temperature of the tube material and the melting point of the flux (about 562
550-560 ° C, which is lower than the
If it is less than a minute, the amount of Zn adhering to the tube surface is not sufficient,
Therefore, the anticorrosion effect is also insufficient. When the temperature of the Zn vapor is lowered, it is necessary to lengthen the holding time accordingly.

さらにろう付け炉内でZn蒸気の発生を効率よく行なうに
は炉内の酸素濃度を1000ppm以下、露点を−30℃以下と
するのが良く、不活性ガスの1分間当りの流量は炉の有
効内容積の0.1〜1倍が炉内雰囲気の維持とZn蒸気の発
生には最適かつ経済的であり、炉内のZn溶湯の表面積は
炉の単位有効内容積(リットル)当り0.05〜2.5cm2とす
るのが有効である。
Furthermore, in order to efficiently generate Zn vapor in the brazing furnace, the oxygen concentration in the furnace should be 1000ppm or less and the dew point should be -30 ° C or less, and the flow rate of the inert gas per minute is effective in the furnace. 0.1 to 1 times the internal volume is optimal and economical for maintaining the atmosphere in the furnace and generating Zn vapor, and the surface area of the molten Zn in the furnace is 0.05 to 2.5 cm 2 per unit effective internal volume (liter) of the furnace. Is effective.

〔実施例〕〔Example〕

本発明を実施例に基づき説明する。 The present invention will be described based on examples.

JIS 3003合金(0.05〜0.2%Cu−1.0〜1.5%Mn−Al合
金)芯材の両面にJIS 4343合金(6.8〜8.2%Si−Al合
金)ろう材をクラッド率10%でクラッドした板厚0.16mm
のブレージングシートをコルゲート加工してフィン材を
製作し、用材洗浄後フッ化物系フラックスの5%濃度溶
液中に浸漬した後、200℃の乾燥炉を通して乾燥し、表
面にフラックスを塗布した。該フィン材とJIS 1050合金
(Al99.5%以上)を押出加工して肉厚0.8mm、幅22mm及
び厚さ5mmの4穴チューブ材をベンダー加工して溶剤洗
浄したものとを第1図(ハ)のように押え治具(4)で
押えて、ユニオンを取り付けないコア(5)としてろう
付け試料に供した。このようなコアを以下に示すような
炉中でNB法によりろう付け試験を行なった。
JIS 3003 alloy (0.05-0.2% Cu-1.0-1.5% Mn-Al alloy) core material with JIS 4343 alloy (6.8-8.2% Si-Al alloy) brazing filler metal clad at a clad rate of 10% 0.16 mm
The brazing sheet of 1 was corrugated to produce a fin material, which was washed with a material, immersed in a 5% concentration solution of a fluoride-based flux, and then dried through a drying oven at 200 ° C. to apply the flux to the surface. The fin material and JIS 1050 alloy (Al 99.5% or more) are extruded and a 4-hole tube material with a wall thickness of 0.8 mm, a width of 22 mm and a thickness of 5 mm is bender processed and solvent-cleaned. It was held by the holding jig (4) as shown in (c) and used as the core (5) without the union attached to the brazed sample. A brazing test was conducted on such a core by the NB method in a furnace as shown below.

第2図に示すように間口の幅300mm、間口の高さ100mm及
び長さ9mのマッフル(6)(有効内容積270)内を走
行するエンドレスメッシュベルト(7)を備え、該ベル
ト(7)の進行方向の手前よりベルト(7)上に載置さ
れて該ベルト(7)により搬送されるコア(5)を予熱
する予熱ゾーン(8)、該コア(5)をろう付けするブ
レージングゾーン(9)さらにろう付けされたものを冷
却する冷却ゾーン(10)を設けた連続雰囲気炉(11)の
マッフル(6)内に30/minのN2ガスを流し、ブレージ
ングゾーン(9)内は600℃に設定し、表面積50cm2のZn
容器(12)内にZn溶湯を入れ予熱ゾーン(8)内に置い
た。
As shown in FIG. 2, an endless mesh belt (7) running in a muffle (6) (effective internal volume 270) having a width of 300 mm, a height of 100 mm and a length of 9 m is provided, and the belt (7) is provided. The preheating zone (8) for preheating the core (5) placed on the belt (7) and conveyed by the belt (7) from the front in the traveling direction of, and the brazing zone (for brazing the core (5) ( 9) 30 / min N 2 gas is flowed into the muffle (6) of the continuous atmosphere furnace (11) provided with the cooling zone (10) for cooling the brazed product, and the brazing zone (9) is 600 Zn with a surface area of 50 cm 2 set to ℃
The molten Zn was placed in the container (12) and placed in the preheating zone (8).

このようなに連続雰囲気炉で上記コアのチューブへのZn
蒸気拡散処理を行なうための予熱ゾーンでの予熱温度と
予熱時間とを第1表に示すように変化させ第3図の
(A)で示す炉内温度分布曲線にて上記コアをろう付け
し、それぞれの条件で得られたコアのチューブ材の表面
Zn濃度とZn拡散深さをX線マイクロアナライザーでそれ
ぞれ5ヶ所測定し、その結果を第1表に併記した。なお
ろう付け時の炉内雰囲気の露点は−35℃、酸素濃度は10
0ppmであった。さらに得られたコアについて500hrのキ
ャス試験を行ないその時の最大ピット深さを焦点深度法
により求めその結果を第1表に併記した。
Zn in the above core tube in a continuous atmosphere furnace like this
The preheating temperature and the preheating time in the preheating zone for performing the vapor diffusion treatment are changed as shown in Table 1, and the core is brazed according to the in-furnace temperature distribution curve shown in FIG. Surface of core tube material obtained under each condition
The Zn concentration and the Zn diffusion depth were measured at 5 points with an X-ray microanalyzer, and the results are also shown in Table 1. The dew point of the furnace atmosphere during brazing is -35 ° C and the oxygen concentration is 10
It was 0 ppm. Further, the obtained core was subjected to a cast test for 500 hours, the maximum pit depth at that time was determined by the depth of focus method, and the results are also shown in Table 1.

また比較のため上記コアへフラックスを全面塗布後、上
記の連続雰囲気炉にてZn溶湯を予熱ゾーンに置き第3図
の(B)で示す炉内温度分布曲線にて600℃でろう付け
を行なう方法で製作したコアについて、同様な試験を実
施してその結果を第1表に併記した。
Further, for comparison, after applying the flux to the whole surface of the core, the molten Zn is placed in the preheating zone in the continuous atmosphere furnace and brazing is performed at 600 ° C. according to the temperature distribution curve in the furnace shown in FIG. 3B. Similar tests were conducted on the cores manufactured by the method, and the results are also shown in Table 1.

第1表から明らかなように本発明法によるコアは表面Zn
濃度が1〜2%と高く、拡散深さも100μm程度の良好
な拡散パターンが得られ、さらにフィン直下、即ちろう
付け部におけるチューブ材表面であっても同様な拡散パ
ターンが認められた。またキャス試験によるピット深さ
も良好であることが判る。一方予熱時間が1分に満たな
い比較法No.9及び予熱温度がフラックス溶融温度より高
い比較法No.10〜No.12は良好な拡散パターンが得られ
ず、さらにピット深さも本発明法の場合より2〜3倍も
大きいことが判る。また全面にフラックスを塗布した
後、Zn蒸気中を通してろう付けした比較法No.13は拡散Z
nの濃度が小さく防食効果が大きく劣っており、チュー
ブ表面のフラックスがZnの付着を抑制していることが判
る。
As is clear from Table 1, the core according to the method of the present invention has a surface Zn
A good diffusion pattern having a high concentration of 1 to 2% and a diffusion depth of about 100 μm was obtained, and a similar diffusion pattern was observed immediately below the fins, that is, even on the surface of the tube material in the brazed portion. Also, it is found that the pit depth by the cass test is good. On the other hand, the comparative method No. 9 in which the preheating time is less than 1 minute and the comparative methods No. 10 to No. 12 in which the preheating temperature is higher than the flux melting temperature do not give a good diffusion pattern, and the pit depth is also the value of the method of the present invention. It can be seen that it is 2-3 times larger than the case. Comparative method No. 13 in which flux is applied to the entire surface and then brazed through Zn vapor is diffusion Z
It is clear that the concentration of n is small and the anticorrosion effect is greatly inferior, and the flux on the tube surface suppresses the adhesion of Zn.

なおフィンのみフラックスを塗布したコアを第3図の
(B)のように連続的に昇温してろう付けする場合で
も、フラックスの融点(約562℃)以下の温度に保持さ
れている炉内の数ヶ所にZn発生源を配置することでも本
発明法と同様の効果が得られる。
In addition, even when the core coated with the flux only on the fins is continuously heated and brazed as shown in FIG. 3 (B), the temperature inside the furnace is kept below the melting point (about 562 ° C.) of the flux. The same effects as those of the method of the present invention can be obtained by arranging Zn generating sources at several places.

〔発明の効果〕〔The invention's effect〕

このように本発明によれば耐孔食性が要求される熱交換
器の非腐食性フラックスろう付けでチューブ材へフラッ
クスを塗布せずにかつフラックスの流動前の温度でZn蒸
気処理を行なうことでフラックス皮膜のZn付着を抑制す
る作用を防止することが可能となり耐孔食性が向上し、
さらにチューブ材に押出多穴管を用いるコンデンサーコ
アやエバポレーターコアについてだけでなく、チューブ
材にブレージングシートを使用するドロンカップエバポ
レーターや電縫管(ブレージングシート)を使用するラ
ジエーター等についても利用できる等実用上顕著な効果
を奏するものである。
As described above, according to the present invention, by performing non-corrosive flux brazing of a heat exchanger that requires pitting corrosion resistance without performing flux application to the tube material and performing Zn vapor treatment at the temperature before the flux flows. It is possible to prevent the effect of suppressing the Zn adhesion of the flux film, improving the pitting corrosion resistance,
Furthermore, it can be used not only for condenser cores and evaporator cores that use extruded multi-hole tubes for tube materials, but also for drone cup evaporators that use brazing sheets for tube materials and radiators that use electric resistance welded tubes (brazing sheets). It has a remarkable effect.

【図面の簡単な説明】[Brief description of drawings]

第1図(イ)(ロ)(ハ)はAl製熱交換器のコアの組み
付けを示すもので(イ)はベンダー加工した押出チュー
ブ材の斜視図、(ロ)はコルゲート加工したフィン材の
斜視図、(ハ)は治具で押えて組み付けたコアの斜視
図、第2図は連続雰囲気炉を示す外観図、第3図は連続
雰囲気炉でろう付けする際の炉内の温度分布曲線を示す
グラフである。 1……押出多穴管(チューブ材) 2……フィン材 3,3′……ユニオン 4……押え治具 5……コア 6……マッフル 7……エンドレスメッシュベルト 8……予熱ゾーン 9……ブレージングゾーン 10……冷却ゾーン 11……連続雰囲気炉 12……Zn容器
1 (a), (b) and (c) show the assembly of the core of the Al heat exchanger. (A) is a perspective view of the extruded tube material that has been bender processed, and (b) is the corrugated fin material. A perspective view, (C) is a perspective view of a core assembled by pressing with a jig, FIG. 2 is an external view showing a continuous atmosphere furnace, and FIG. 3 is a temperature distribution curve in the furnace when brazing in a continuous atmosphere furnace It is a graph which shows. 1 …… Extruded multi-hole tube (tube material) 2 …… Fin material 3,3 ′ …… Union 4 …… Holding jig 5 …… Core 6 …… Muffle 7 …… Endless mesh belt 8 …… Preheating zone 9… … Brazing zone 10 …… Cooling zone 11 …… Continuous atmosphere furnace 12 …… Zn container

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Al製熱交換器の冷媒通路を形成するチュー
ブ材とコルゲート加工したフィン材とを組み付けて、不
活性ガス中でフッ化物系フラックスを用いてろう付けす
る熱交換器の製造において、フッ化物系フラックスを塗
布後乾燥したフィン材とフラックスを塗布しないチュー
ブ材とを組み付け、不活性ガス中にて該フラックスの融
点より低く、かつこれら部材が加熱されている温度以上
の温度のZn蒸気中に1分以上保持し、しかる後フラック
スの融点より高い温度でろう付けを行なうことを特徴と
する耐孔食性の優れた熱交換器の製造方法。
1. A method of manufacturing a heat exchanger in which a tube material forming a refrigerant passage of an Al heat exchanger and a corrugated fin material are assembled and brazed with a fluoride flux in an inert gas. Assembling a fin material that has been dried after applying a fluoride-based flux and a tube material that is not applied with a flux, and a Zn temperature that is lower than the melting point of the flux in an inert gas and that is higher than the temperature at which these members are heated. A method for producing a heat exchanger having excellent pitting corrosion resistance, which comprises holding in steam for 1 minute or more and then brazing at a temperature higher than the melting point of the flux.
JP22157487A 1986-11-17 1987-09-04 Preparation method of heat exchanger with excellent pitting corrosion resistance Expired - Lifetime JPH0773789B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP22157487A JPH0773789B2 (en) 1987-09-04 1987-09-04 Preparation method of heat exchanger with excellent pitting corrosion resistance
KR1019880700838A KR0139548B1 (en) 1986-11-17 1987-11-16 Method pof manufacturing heat exchanger
PCT/JP1987/000886 WO1988003851A1 (en) 1986-11-17 1987-11-16 Process for manufacturing heat exchanger
AU82745/87A AU8274587A (en) 1986-11-17 1987-11-16 Process for manufacturing heat exchanger
EP87907531A EP0292565B1 (en) 1986-11-17 1987-11-16 Process for manufacturing heat exchanger
DE87907531T DE3787644T2 (en) 1986-11-17 1987-11-16 METHOD FOR PRODUCING A HEAT EXCHANGER.
CA000566900A CA1295114C (en) 1987-05-28 1988-05-16 Method of manufacturing a heat-exchanger
US07/357,673 US4911351A (en) 1986-11-17 1989-05-30 Method of manufacturing heat-exchanger
AU70077/91A AU7007791A (en) 1986-11-17 1991-01-30 Method of manufacturing heat-exchanger
AU52131/93A AU669755B2 (en) 1986-11-17 1993-12-03 Method of manufacturing heat-exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22157487A JPH0773789B2 (en) 1987-09-04 1987-09-04 Preparation method of heat exchanger with excellent pitting corrosion resistance

Publications (2)

Publication Number Publication Date
JPS6466067A JPS6466067A (en) 1989-03-13
JPH0773789B2 true JPH0773789B2 (en) 1995-08-09

Family

ID=16768869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22157487A Expired - Lifetime JPH0773789B2 (en) 1986-11-17 1987-09-04 Preparation method of heat exchanger with excellent pitting corrosion resistance

Country Status (1)

Country Link
JP (1) JPH0773789B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7096638B2 (en) * 2016-09-12 2022-07-06 株式会社Uacj Pre-coated fins and heat exchangers using them

Also Published As

Publication number Publication date
JPS6466067A (en) 1989-03-13

Similar Documents

Publication Publication Date Title
KR0139548B1 (en) Method pof manufacturing heat exchanger
US7293602B2 (en) Fin tube assembly for heat exchanger and method
RU2194596C2 (en) Method for making section of heat exchanger with aluminum base tubes
JP2006188756A (en) Heat exchanger tube with high corrosion resistance, heat exchanger, and method for producing the heat exchanger
JPH0773789B2 (en) Preparation method of heat exchanger with excellent pitting corrosion resistance
JPS6363567A (en) Production of heat exchanger having excellent corrosion resistance
JP4452561B2 (en) High corrosion resistance tube for heat exchanger and heat exchanger
JPH10263799A (en) Manufacture of heat exchanger excellent in corrosion resistance
CA1295114C (en) Method of manufacturing a heat-exchanger
JPH0459077B2 (en)
JP2662047B2 (en) Gas phase brazing of Al or Al alloy
JP2685859B2 (en) Brazing method of Al or Al alloy
JP2690889B2 (en) Manufacturing method of aluminum heat exchanger
JP2662048B2 (en) Vapor phase brazing of Mg-containing Al alloy
JP2662045B2 (en) Low temperature vapor phase brazing of Al or Al alloy
JP2662034B2 (en) Low temperature vapor phase brazing of Al or Al alloy
JPH02284766A (en) Vapor phase soldering method of al or al alloy
JPH05277787A (en) Material and the joining method for joining heat exchanger parts made of aluminum
JPH0736950B2 (en) Manufacturing method of aluminum heat exchanger
JPS6015065A (en) Manufacture of heat exchanger
JPH03114663A (en) Heat exchanger made of al alloy
JPS6149770A (en) Brazing method of aluminum compound material
JP2680763B2 (en) Aluminum shaped article coated with brazing material
JPH0399795A (en) Flux for vapor phase brazing of aluminum or aluminum alloy
JPH0390276A (en) Vapor brazing method for al or al alloy