JPH0830259B2 - Method for generating Zn vapor for surface Zn concentration of Al member - Google Patents

Method for generating Zn vapor for surface Zn concentration of Al member

Info

Publication number
JPH0830259B2
JPH0830259B2 JP62146501A JP14650187A JPH0830259B2 JP H0830259 B2 JPH0830259 B2 JP H0830259B2 JP 62146501 A JP62146501 A JP 62146501A JP 14650187 A JP14650187 A JP 14650187A JP H0830259 B2 JPH0830259 B2 JP H0830259B2
Authority
JP
Japan
Prior art keywords
vapor
furnace
brazing
concentration
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62146501A
Other languages
Japanese (ja)
Other versions
JPS63310953A (en
Inventor
和徳 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP62146501A priority Critical patent/JPH0830259B2/en
Priority to EP87907531A priority patent/EP0292565B1/en
Priority to DE87907531T priority patent/DE3787644T2/en
Priority to PCT/JP1987/000886 priority patent/WO1988003851A1/en
Priority to AU82745/87A priority patent/AU8274587A/en
Priority to KR1019880700838A priority patent/KR0139548B1/en
Priority to CA000566900A priority patent/CA1295114C/en
Publication of JPS63310953A publication Critical patent/JPS63310953A/en
Priority to US07/357,673 priority patent/US4911351A/en
Priority to AU70077/91A priority patent/AU7007791A/en
Priority to AU52131/93A priority patent/AU669755B2/en
Publication of JPH0830259B2 publication Critical patent/JPH0830259B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0012Brazing heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/282Zn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
    • C23C10/08Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases only one element being diffused
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はAl部材の表面Zn濃化用Zn蒸気発生方法に関
し、特に自動車用熱交換器のろう付けに適用し、ろう付
けと同時にAl部材の表面に耐孔食性の優れたZn拡散層を
形成するのに適したものである。
Description: TECHNICAL FIELD The present invention relates to a method for generating Zn vapor for surface Zn concentration of an Al member, which is particularly applied to brazing of a heat exchanger for automobiles, and Al member at the same time as brazing. It is suitable for forming a Zn diffusion layer having excellent pitting corrosion resistance on the surface of.

〔従来の技術〕[Conventional technology]

Al押出材の表面にZn蒸気を吹付けてZn被覆層を形成
し、これをろう付け等の加熱によってAl押出材の表面に
拡散処理し、表面層の犠牲効果により耐食性を向上させ
ることが特公昭59−31588号公報に示されている。この
場合のZn蒸気の発生は550℃に保持したZn溶湯内にガス
導入管を差し込み、N2ガスを供給してバブリングするこ
とによりキャリヤとなるN2ガス中にZn蒸気を分散させ、
保温した通路を介してAl押出型材の表面にZn蒸気を吹付
け、Al押出型材の表面にZn被覆層を形成している。Zn被
覆層の厚さはAl押出型材の押出速度とガス供給量によっ
て調整している。
A special feature is to spray Zn vapor on the surface of the Al extruded material to form a Zn coating layer, which is then diffused to the surface of the Al extruded material by heating such as brazing to improve the corrosion resistance by the sacrificial effect of the surface layer. It is disclosed in Japanese Patent Publication No. 59-31588. In this case, Zn vapor is generated by inserting a gas introduction pipe into the molten Zn held at 550 ° C., supplying N 2 gas and bubbling to disperse Zn vapor in N 2 gas serving as a carrier,
Zn vapor is sprayed onto the surface of the Al extruded material through the heat-retaining passage to form a Zn coating layer on the surface of the Al extruded material. The thickness of the Zn coating layer is adjusted by the extrusion rate of the Al extrusion mold material and the gas supply amount.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

耐孔食性を有するAl表面を形成するのに、素材でのZn
被覆処理と、更にZn拡散のために加熱処理を必要として
おり、Al製熱交換器の耐孔食性の向上を考える場合、Zn
被覆材をろう付け加熱することになり、コスト高とな
る。またAl押出型材ではZn蒸気の吹付けも押出材内部で
は容易であるが外部ではZn蒸気が周囲にとんでしまい、
さらに大気中で酸化が進むことから均一なZn層を短時間
で設けることは困難である。さらにブレージングシート
を使用するAl製熱交換器では、ブレージングシート素材
の製造時にZn蒸気の吹付けを行なうことは、その板幅が
広いため困難であり、適用が不可能である。更にZn蒸気
発生方法として、N2ガスをバブリングするため高圧のN2
ガス供給設備と、Zn溶湯保持炉及び配管類が必要とな
る。
Zn in the material is used to form an Al surface with pitting resistance.
When coating treatment and heat treatment for Zn diffusion are required, and considering improvement of pitting corrosion resistance of Al heat exchanger, Zn
Since the coating material is brazed and heated, the cost becomes high. Also, with Al extruded material, it is easy to spray Zn vapor inside the extruded material, but Zn vapor blows outside to the outside,
Furthermore, it is difficult to form a uniform Zn layer in a short time because oxidation proceeds in the atmosphere. Further, in an Al heat exchanger using a brazing sheet, it is difficult to spray Zn vapor at the time of manufacturing a brazing sheet material due to its wide plate width, which is not applicable. Still Zn steam generation method, a high pressure for bubbling N 2 gas N 2
A gas supply facility, a Zn melt holding furnace and piping are required.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこれに鑑み種々検討の結果、フッ化物系の非
腐食性フラックスを使用するろう付け(以下NBろう付け
と略記)において、ろう付けと同時にZn蒸気の被覆処理
とZn拡散処理を行なうために、効率よくZn蒸気を発生さ
せることができるAl部材の表面Zn濃化用Zn蒸気発生方法
を開発したものである。
As a result of various investigations in view of this, the present invention brazes using a non-corrosive fluoride-based flux (hereinafter abbreviated as NB brazing) in order to perform Zn vapor coating treatment and Zn diffusion treatment simultaneously with brazing. In addition, we have developed a Zn vapor generation method for surface Zn concentration of Al members that can efficiently generate Zn vapor.

即ち本発明はN2ガスをキャリヤガスとして通す加熱炉
内にZnを置き、Zn及び炉内雰囲気温度を430℃以上に加
熱してZnを溶融し、Zn溶湯からZn蒸気を発生させる方法
において、加熱炉の内容積をVlとすると、Zn溶湯量を1
〜10g/l、Zn溶湯の表面積を0.05〜2.5cm2/l、N2ガスの
流量を0.05V〜Vl/minとし、加熱炉内の雰囲気を大気圧
付近にて露点を−20℃、酸素濃度を1000ppm以下に保持
してZn溶湯からZn蒸気を発生させることを特徴とするも
のである。
That is, the present invention is a method of placing Zn in a heating furnace that passes N 2 gas as a carrier gas, melting Zn by heating the Zn and furnace atmosphere temperature to 430 ° C. or higher, and generating Zn vapor from the molten Zn. If the internal volume of the heating furnace is Vl, the amount of Zn melt is 1
To 10 g / l, the surface area of 0.05~2.5cm 2 / l of Zn melt, and flow rate 0.05V~Vl / min of N 2 gas, -20 ° C. The dew point of the atmosphere in the heating furnace at about atmospheric pressure, oxygen The feature is that Zn vapor is generated from the molten Zn while maintaining the concentration at 1000 ppm or less.

〔作用〕[Action]

本発明において、Zn及び炉内雰囲気温度を430℃以上
に加熱するのは大気圧のN2雰囲気中でZnを蒸発させるに
は、Znを430℃以上に加熱してZnを溶融状態に保持する
必要があるためである。Znの蒸発量は温度が高いほど増
加するが、NBろう付けと同時にAl部材の表面をZn濃化処
理するにはZn及び炉内雰囲気温度を430〜600℃に保持す
ることが望ましい。
In the present invention, heating the temperature of Zn and the atmosphere in the furnace to 430 ° C. or higher is to evaporate Zn in the N 2 atmosphere at atmospheric pressure, to heat Zn to 430 ° C. or higher and hold Zn in a molten state. This is because it is necessary. The evaporation amount of Zn increases as the temperature increases, but it is desirable to maintain the Zn and furnace atmosphere temperatures at 430 to 600 ° C. in order to perform Zn concentration treatment on the surface of the Al member simultaneously with NB brazing.

次に蒸気発生に使用する加熱炉の内容積をVlとする
と、Zn溶湯量を1〜10g/lとしたのは、Zn溶湯量が1g/l
未満では炉内をZn蒸気で充満させることができず、Zn蒸
気とアルミ材の接触が不十分となり適切なZn拡散が得ら
れなくなり、10g/lを越えるとZn蒸気が飽和すると共
に、Al部材のZn蒸気処理を行なったときに過剰の拡散パ
ターンを示すようになるためである。またZn溶湯の表面
積を0.05〜2.5cm2/lとしたのは、0.05cm2/l未満では炉
内をZn蒸気で充満させることができず、2.5cm2/lを越え
るとZn蒸気の消費がはげしくなり、連続的にZn蒸気を発
生させるためには効率が悪くなる。
Next, assuming that the internal volume of the heating furnace used for steam generation is Vl, the amount of Zn molten metal is set to 1 to 10 g / l because the amount of Zn molten metal is 1 g / l.
If the amount is less than 10%, the inside of the furnace cannot be filled with Zn vapor, the contact between Zn vapor and aluminum material is insufficient, and proper Zn diffusion cannot be obtained.If it exceeds 10 g / l, Zn vapor is saturated and the Al member This is because when Zn vapor treatment is performed, an excessive diffusion pattern comes to be exhibited. Further to that the surface area of the Zn melt and 0.05~2.5cm 2 / l can not be filled the furnace in Zn vapor is less than 0.05 cm 2 / l, the consumption of Zn vapor exceeds 2.5 cm 2 / l However, the efficiency becomes poor for continuous generation of Zn vapor.

更にN2ガス流量を0.05V〜Vl/minとしたのは、0.05V/m
in未満ではZnの蒸発が不十分となり、1Vl/minを越える
とZnの消費が大きくなるためである。NBろう付け時のN2
流量は30〜60m3/hr(連続炉で内容積約2000lのとき500
〜1000l/min)程度まで流しても問題ない。このことは
別の炉でZn蒸気を発生させるだけでなく、NBろう付け炉
内にZn溶湯を置いてZn蒸気を発生させることもできる。
また加熱炉内の雰囲気を大気圧付近にて露点を−20℃以
下、酸素濃度を1000ppm以下としたのは、Zn溶湯表面の
酸化を防止し、効率よくZn蒸気を発生させるためでN2
スには液体N2を気化して用いる。NBろう付けでもN2ガス
が使用されることを考えるとN2ガスの使用が最適であ
る。NBろう付け炉中にZnを置いた場合でもNBろう付けに
必要な雰囲気の条件は露点−30℃以下、酸素濃度1000pp
m以下であるので、Znを酸化させることなく蒸発させる
ことができる。
Furthermore, the N 2 gas flow rate of 0.05 V to Vl / min is 0.05 V / m
This is because if it is less than in, the evaporation of Zn will be insufficient, and if it exceeds 1 Vl / min, the consumption of Zn will increase. N 2 when brazing NB
Flow rate is 30-60 m 3 / hr (500 in continuous furnace with internal volume of about 2000 l
There is no problem even if it flows up to about 1000 l / min). This not only allows Zn vapor to be generated in another furnace, but it is also possible to place Zn molten metal in the NB brazing furnace to generate Zn vapor.
The -20 ° C. The dew point of the atmosphere in the heating furnace at about atmospheric pressure or less, the oxygen concentration of 1000ppm or less, to prevent oxidation of the Zn melt surface, N 2 gas in order to efficiently generate Zn vapor For this purpose, liquid N 2 is vaporized and used. Considering that N 2 gas is also used in NB brazing, the use of N 2 gas is optimal. Even when Zn is placed in the NB brazing furnace, the atmosphere conditions necessary for NB brazing are as follows: dew point -30 ° C or lower, oxygen concentration 1000 pp
Since it is m or less, Zn can be evaporated without being oxidized.

以上のような条件を保持しながら、Zn溶湯からZn蒸気
を発生させることで、Al部材表面への効率よいZn拡散処
理が可能となる。尚Zn溶湯の初期酸化皮膜を除去するた
めに、Zn地金を酸洗浄した後、雰囲気炉中で溶解させる
ことは効果的である。また加熱炉中でZn溶湯表面の皮膜
を機械的に取り除くこともZn蒸気発生率を高めるのに効
果的である。またNBろう付け炉中でZn蒸気を発生させる
場合は、均一Zn拡散を行なうためにZn蒸気を撹拌するこ
とが望ましい。
By generating Zn vapor from the molten Zn while maintaining the above conditions, it is possible to perform efficient Zn diffusion treatment on the surface of the Al member. In order to remove the initial oxide film of the molten Zn, it is effective to wash the Zn base metal with an acid and then dissolve it in an atmosphere furnace. Further, mechanically removing the film on the surface of the molten Zn in the heating furnace is also effective in increasing the Zn vapor generation rate. When Zn vapor is generated in the NB brazing furnace, it is desirable to stir the Zn vapor for uniform Zn diffusion.

〔実施例〕〔Example〕

以下本発明の実施例について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.

実施例1 厚さ1mm,幅50mm,長さ100mmのAl板について、NBろう付
け炉によりろう付けを行なうと同時にAl板の表面にZn濃
化処理を行なった。NBろう付け炉には予熱室と加熱室を
設けたマッフル型、高さ400mm、幅600mm、長さ2000mm、
容積480lの炉を使用し、Al板にはフッ化物系非腐食性フ
ラックスを5%濃度で塗布し、これら10枚まとめて治具
につるし、200℃に加熱した乾燥炉に入れて水分を蒸発
させた。これをNBろう付け炉の550℃に加熱した予熱室
に入れ5分間保持後、600℃に加熱した加熱室に移動
し、15分間保持することにより実体温度で600℃、3分
のろう付けを行なった。加熱後はすばやく予熱室を通し
て大気中に取出し放冷した。
Example 1 An Al plate having a thickness of 1 mm, a width of 50 mm, and a length of 100 mm was brazed in an NB brazing furnace, and at the same time, the surface of the Al plate was subjected to Zn concentration treatment. The NB brazing furnace has a muffle type with a preheating chamber and a heating chamber, height 400 mm, width 600 mm, length 2000 mm,
Using a furnace with a volume of 480 l, apply a non-corrosive fluoride fluoride flux to the Al plate at a concentration of 5%, hang all 10 of them together in a jig, put them in a drying furnace heated to 200 ° C, and evaporate the water content. Let This is put in the preheating chamber heated to 550 ° C of the NB brazing furnace and held for 5 minutes, then moved to the heating chamber heated to 600 ° C and held for 15 minutes to braze at 600 ° C for 3 minutes at the actual temperature. I did. After heating, it was quickly taken out into the atmosphere through the preheating chamber and allowed to cool.

NBろう付け炉には240l/minのN2ガスを加熱室に導入
し、予熱室を通して炉外に放出し、炉内雰囲気を露点−
35℃、酸素濃度を100ppmに保持した。一方Znを高さ200m
m、幅300mm、長さ500mm、容積30lのZn蒸気発生炉内に置
き、N2ガスを流して炉内雰囲気を露点−40〜−30℃、酸
素濃度100〜300ppmとして500℃に加熱溶融し、Zn蒸気を
発生させた。このようにして発生したZn蒸気を550℃に
保温した配管を通してNBろう付け炉の予熱室に導入し、
NBろう付けと同時にAl板の表面にZn濃化処理を施し、Zn
蒸気発生炉のN2流量、Zn溶湯量、Zn溶湯表面積を変化さ
せたときのAl表面のZn拡散挙動(表面濃度、拡散深さ)
をEPMA分析により調べた。その結果を第1表に示す。
In the NB brazing furnace, 240 l / min of N 2 gas was introduced into the heating chamber and discharged outside the furnace through the preheating chamber, and the atmosphere inside the furnace was dewed to −
The oxygen concentration was kept at 100 ppm at 35 ° C. On the other hand, Zn is 200m high
Place in a Zn steam generation furnace with m, width 300 mm, length 500 mm, volume 30 l, N 2 gas is flowed, the furnace atmosphere is dew point −40 to −30 ° C., oxygen concentration is 100 to 300 ppm and heated and melted to 500 ° C. , Zn vapor was generated. The Zn vapor generated in this way was introduced into the preheating chamber of the NB brazing furnace through a pipe kept at 550 ° C,
At the same time as NB brazing, the surface of the Al plate was subjected to Zn concentration treatment,
Zn diffusion behavior of Al surface (surface concentration, diffusion depth) when changing N 2 flow rate, amount of Zn melt, and surface area of Zn melt in steam generator
Was examined by EPMA analysis. The results are shown in Table 1.

尚EPMA分析は10枚のAl板について各5点ずつ測定し、
50点の平均値を求めた。
For EPMA analysis, 5 points were measured for each of 10 Al plates,
The average value of 50 points was calculated.

第1表から明らかなように本発明方法No.1〜11により
Zn蒸気を発生させたものは、表面Zn濃度2〜10%、拡散
深さ100μ程度のZn拡散パターンを示し、耐食性の優れ
たフラックスろう付け品と同等の耐孔食性が得られるこ
とが判る。
As is clear from Table 1, according to the method Nos. 1 to 11 of the present invention.
Those that generated Zn vapor show a Zn diffusion pattern with a surface Zn concentration of 2 to 10% and a diffusion depth of about 100 μ, and it is clear that pitting corrosion resistance equivalent to that of flux brazed products with excellent corrosion resistance can be obtained.

これに対し本発明で規定する条件から外れる比較方法
では耐孔食性の優れるZn拡散パターンが得られないか、
又はZn拡散深さが深く、Znの消費量が多くなる問題があ
る。例えば比較方法No.12,14,16,18では十分なZn蒸気を
発生せず、耐孔食性の優れるZn拡散パターンを示すに至
らなかった。また比較方法No.13,15,17ではZn蒸気の発
生が多く、拡散深さも深くなり、Zn消費量が多いことや
孔食深さが深くなる等の問題がある。
On the other hand, in the comparative method out of the conditions specified in the present invention, it is not possible to obtain a Zn diffusion pattern having excellent pitting corrosion resistance,
Alternatively, there is a problem that the Zn diffusion depth is deep and the consumption amount of Zn increases. For example, Comparative Methods No. 12, 14, 16, and 18 did not generate sufficient Zn vapor and did not show a Zn diffusion pattern with excellent pitting corrosion resistance. Further, in Comparative Methods No. 13, 15, and 17, there are problems that Zn vapor is often generated, the diffusion depth is deep, Zn consumption is large, and pitting depth is deep.

実施例2 実施例1と同様にNBろう付けを行なった。その際予熱
室(高さ400mm、幅600mm、長さ900mm、容積216l)内にZ
nを置いて溶融蒸発せしめ、予熱室でAl板の予熱と共にA
l板の表面にZn濃化処理を施し、実施例1と同様にしてZ
n拡散状況を調べた。その結果第2表に示すように、本
発明方法No.19〜22は何れも良好なZn拡散パターンが得
られた。
Example 2 NB brazing was performed in the same manner as in Example 1. At that time, Z in the preheating chamber (height 400 mm, width 600 mm, length 900 mm, volume 216 l)
Place n to melt and evaporate, and in the preheating chamber, preheat the Al plate and
The surface of the plate was subjected to a Zn concentration treatment, and Z was applied in the same manner as in Example 1.
We investigated the diffusion situation. As a result, as shown in Table 2, all of the method Nos. 19 to 22 of the present invention provided a good Zn diffusion pattern.

実施例3 実施例1と同様にNBろう付けを行なった。その際加熱
室(高さ400mm、幅600mm、長さ1100mm、容積246l)内に
Znを置いて溶融蒸発せしめ、加熱室でAl板のNBろう付け
と同時にAl板の表面にZn濃化処理を施し、実施例1と同
様にしてZn拡散状況を調べた。その結果第3表に示すよ
うに本発明方法No.23〜24は何れも良好なZn拡散パター
ンが得られた。
Example 3 NB brazing was performed in the same manner as in Example 1. At that time, in the heating chamber (height 400 mm, width 600 mm, length 1100 mm, volume 246 l)
Zn was left to melt and evaporate, and the surface of the Al plate was subjected to Zn concentration treatment at the same time as NB brazing of the Al plate in a heating chamber, and the Zn diffusion state was examined in the same manner as in Example 1. As a result, as shown in Table 3, in the method Nos. 23 to 24 of the present invention, good Zn diffusion patterns were obtained.

〔発明の効果〕 このように本発明によればAl部材の表面Zn濃化処理の
ためのZn蒸気の発生を容易にし、フッ化物系の非腐食性
フラックスを使用したNBろう付けにおいて、ろう付けと
同時にZn拡散処理を可能とし、熱交換器の耐孔食性の向
上を低コストで実現する等工業上顕著な効果を奏するも
のである。
(Effect of the invention) As described above, according to the present invention, the generation of Zn vapor for the surface Zn concentration treatment of the Al member is facilitated, and in NB brazing using a fluoride-based non-corrosive flux, brazing At the same time, Zn diffusion treatment is possible, and industrially significant effects such as improvement of pitting corrosion resistance of the heat exchanger at low cost are achieved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】N2ガスをキャリアガスとして通す加熱炉内
にZnを置き、Zn及び炉内雰囲気温度を430℃以上に加熱
してZnを溶融し、Zn溶湯からZn蒸気を発生させる方法に
おいて、加熱炉の内容積をVlとすると、Zn溶湯量を1〜
10g/l、Zn溶湯の表面積を0.05〜2.5cm2/l、N2ガスの流
量を0.05V〜Vl/minとし、加熱炉内の雰囲気を大気圧付
近にて露点を−20℃以下、酸素濃度を1000ppm以下に保
持してZn溶湯からZn蒸気を発生させることを特徴とする
Al部材の表面Zn濃化用Zn蒸気発生方法
1. A method in which Zn is placed in a heating furnace through which N 2 gas is passed as a carrier gas, Zn and the atmosphere in the furnace are heated to 430 ° C. or higher to melt Zn and generate Zn vapor from the molten Zn. , If the inner volume of the heating furnace is Vl,
10 g / l, the surface area of Zn molten metal was 0.05 to 2.5 cm 2 / l, the flow rate of N 2 gas was 0.05 V to Vl / min, and the dew point was -20 ° C or less in the atmosphere of the heating furnace near atmospheric pressure and oxygen. The feature is that Zn vapor is generated from the molten Zn while maintaining the concentration below 1000 ppm.
Zn vapor generation method for surface Zn concentration of Al member
JP62146501A 1986-11-17 1987-06-12 Method for generating Zn vapor for surface Zn concentration of Al member Expired - Lifetime JPH0830259B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP62146501A JPH0830259B2 (en) 1987-06-12 1987-06-12 Method for generating Zn vapor for surface Zn concentration of Al member
KR1019880700838A KR0139548B1 (en) 1986-11-17 1987-11-16 Method pof manufacturing heat exchanger
DE87907531T DE3787644T2 (en) 1986-11-17 1987-11-16 METHOD FOR PRODUCING A HEAT EXCHANGER.
PCT/JP1987/000886 WO1988003851A1 (en) 1986-11-17 1987-11-16 Process for manufacturing heat exchanger
AU82745/87A AU8274587A (en) 1986-11-17 1987-11-16 Process for manufacturing heat exchanger
EP87907531A EP0292565B1 (en) 1986-11-17 1987-11-16 Process for manufacturing heat exchanger
CA000566900A CA1295114C (en) 1987-05-28 1988-05-16 Method of manufacturing a heat-exchanger
US07/357,673 US4911351A (en) 1986-11-17 1989-05-30 Method of manufacturing heat-exchanger
AU70077/91A AU7007791A (en) 1986-11-17 1991-01-30 Method of manufacturing heat-exchanger
AU52131/93A AU669755B2 (en) 1986-11-17 1993-12-03 Method of manufacturing heat-exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62146501A JPH0830259B2 (en) 1987-06-12 1987-06-12 Method for generating Zn vapor for surface Zn concentration of Al member

Publications (2)

Publication Number Publication Date
JPS63310953A JPS63310953A (en) 1988-12-19
JPH0830259B2 true JPH0830259B2 (en) 1996-03-27

Family

ID=15409055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62146501A Expired - Lifetime JPH0830259B2 (en) 1986-11-17 1987-06-12 Method for generating Zn vapor for surface Zn concentration of Al member

Country Status (1)

Country Link
JP (1) JPH0830259B2 (en)

Also Published As

Publication number Publication date
JPS63310953A (en) 1988-12-19

Similar Documents

Publication Publication Date Title
KR0139548B1 (en) Method pof manufacturing heat exchanger
US3852873A (en) Method for manufacturing and brazing various apparatuses and particularly heat exchangers
US4675214A (en) Hot dip aluminum coated chromium alloy steel
JP3266325B2 (en) Heat exchange backing body
CN1102663C (en) Box-type annealing furnace and metal-board annealing method using same, and annealed metal board thereof
JPH08333665A (en) Method for melt-coating chromium-containing steel
JPH0830259B2 (en) Method for generating Zn vapor for surface Zn concentration of Al member
JPH02243749A (en) Coating process with melting of metal
US2215278A (en) Tin coating process
JPS5891130A (en) Cooling method for strip in successive annealing
US4248908A (en) Hot-dip metallic coatings on low carbon alloy steel
GB1049752A (en) Improvements in or relating to the manufacture of heat exchangers
JPH0736950B2 (en) Manufacturing method of aluminum heat exchanger
US20230014843A1 (en) Device and method for heat treatment of steels, including a wet cooling
JP4112670B2 (en) Manufacturing method of steel sheet with excellent surface properties
SU1107971A1 (en) Method of soldering articles
EP0106166A1 (en) Method and apparatus for the continuous annealing of steel strips
JPH0773789B2 (en) Preparation method of heat exchanger with excellent pitting corrosion resistance
JPH0660372B2 (en) Continuous alloy plating device
JP3687132B2 (en) Heat treatment method in continuous furnace for metals containing zinc
JPS62182259A (en) Continuous alloy plating device
JPS59116328A (en) Continuous annealing device of metallic wire rod
JPS605817A (en) Heat treatment of steel material
JPS63114982A (en) Continuous metal plating device for steel sheet
JPH0238918Y2 (en)