JPS63293168A - Formation of thin titanium oxide film - Google Patents

Formation of thin titanium oxide film

Info

Publication number
JPS63293168A
JPS63293168A JP12797287A JP12797287A JPS63293168A JP S63293168 A JPS63293168 A JP S63293168A JP 12797287 A JP12797287 A JP 12797287A JP 12797287 A JP12797287 A JP 12797287A JP S63293168 A JPS63293168 A JP S63293168A
Authority
JP
Japan
Prior art keywords
film
titanium oxide
temperature
thin film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12797287A
Other languages
Japanese (ja)
Other versions
JPH0349983B2 (en
Inventor
Akira Kawakatsu
晃 川勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12797287A priority Critical patent/JPS63293168A/en
Publication of JPS63293168A publication Critical patent/JPS63293168A/en
Publication of JPH0349983B2 publication Critical patent/JPH0349983B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1283Control of temperature, e.g. gradual temperature increase, modulation of temperature

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE:To shorten baking time and to improve the optical characteristics of a formed thin titanium oxide film by heating a substrate having a film of an organotitanium compd. at a specified heating rate to bake the film at a specified temp. CONSTITUTION:A substrate is dipped in a soln. of an organotitanium compd., pulled up and dried to form a film of the organotitanium compd. The substrate having the film is heated at >=300 deg.C/min heating rate and the film is baked at >=600 deg.C to decompose the organotitanium compd. and to form a thin film of titanium oxide. This thin titanium oxide film has superior optical characteristics including refractive index and transmissivity, little unevenness in the characteristics and stable quality.

Description

【発明の詳細な説明】 〔発明の「1的〕 (産業上の利用分野) 本発明は酸化チタン薄膜の形成方法に関し、特に光学用
薄膜の形成に適する。
DETAILED DESCRIPTION OF THE INVENTION [Object 1] (Industrial Application Field) The present invention relates to a method for forming a titanium oxide thin film, and is particularly suitable for forming an optical thin film.

(従来の技術) 従来、酸化チタン薄膜は金属アルコキシドなどからなる
有機チタン化合物溶液に基体を浸漬して引上げ乾燥後炉
内において500℃以上の温度で10分以上焼成して形
成していた。このような酸化チタン薄膜は防眩膜、干渉
膜、フィルタ膜などに用いられるほか、シリカ薄膜と交
互重層させて可視光透過赤外線反射膜など各種の多重干
渉膜に用いられている。
(Prior Art) Conventionally, a titanium oxide thin film has been formed by immersing a substrate in a solution of an organic titanium compound such as a metal alkoxide, pulling it up, drying it, and then baking it in a furnace at a temperature of 500° C. or more for 10 minutes or more. Such titanium oxide thin films are used for anti-glare films, interference films, filter films, etc., and are also used in various multi-interference films such as visible light transmitting infrared reflective films by being alternately layered with silica thin films.

(発明が解決しようとする問題点) 従来の形成方法では焼成工程に多くの時間が必要なばか
りか、得られた酸化チタン薄膜の光学特性たとえば屈折
率、透過率などのばらつきが大きく、品質が安定しにく
い欠点がある。
(Problems to be solved by the invention) In the conventional forming method, not only does the firing process require a lot of time, but also the optical properties of the obtained titanium oxide thin film, such as refractive index and transmittance, vary widely, resulting in poor quality. It has the disadvantage of being difficult to stabilize.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は有機チタン化合物塗膜を有する基体を加熱して
300℃/分以上の速度で昇温させて600℃以上の温
度で処理することによって、焼成時間を短縮しかつ得ら
れた酸化チタン薄膜の光学特性を  。
(Means for Solving the Problems) The present invention heats a substrate having an organic titanium compound coating film and increases the temperature at a rate of 300°C/min or more to achieve a firing time of 600°C or more. and the optical properties of the obtained titanium oxide thin film.

向上するとともにそのばらつきを少なくするものである
This will improve the performance and reduce the variation.

(作 用) 通常、このような酸化チタン薄膜形成用の有機チタン化
合物溶液には、液の成膜性および安定性を向上させるた
めの安定剤やガラス化剤などを添加しである。ところが
、このような添加剤は量としては少ないが、安定なため
、途膜中の溶剤に比べて一般、に分解焼成の温度が高く
、分解し難い。
(Function) Usually, a stabilizer, a vitrification agent, etc. are added to such an organic titanium compound solution for forming a titanium oxide thin film in order to improve the film-forming properties and stability of the solution. However, although such additives are small in quantity, they are stable, and therefore the decomposition and firing temperature is generally higher than that of the solvent in the film, making them difficult to decompose.

このため、徐々に温度を上昇させると、これらの添加剤
が中間段階において未分解のまま膜中に分散して残留し
、さらに温度を上昇してもこれら未分解の添加物の影響
で、焼成膜がスポンジ状に近い状態になり、あるいはこ
れら添加物が分解して生じたカーボンなどの残留により
膜質のばらつきなど、種々の支障が発生する。
Therefore, if the temperature is gradually increased, these additives will remain undecomposed and dispersed in the film in the intermediate stage, and even if the temperature is increased further, the effects of these undecomposed additives will cause the firing to fail. Various problems occur, such as the film becoming almost sponge-like, or variations in film quality due to residual carbon produced by the decomposition of these additives.

このような添加物による悪影響を除去するために、有機
チタン化合物塗膜を有する基体を300 ”07分以上
の昇温速度で急激に加熱することにより、上述の添加剤
をしゅん時に分解あるいは蒸発させて未分解物の残留を
防止し、ち密で光学特性に優れ、しかもばらつきの少な
い酸化チタン薄膜が得られる。
In order to eliminate the negative effects of such additives, the substrate with the organic titanium compound coating is rapidly heated at a temperature increase rate of 300"07 minutes or more to decompose or evaporate the above-mentioned additives. This prevents undecomposed substances from remaining, and provides a titanium oxide thin film that is dense, has excellent optical properties, and has little variation.

°(実施例) 本発明の詳細を実施例によって説明する。まず、次の3
種の有機チタン化合物溶液を調整した。
(Example) The details of the present invention will be explained by referring to an example. First, the following 3
A seed organic titanium compound solution was prepared.

(A)  有機チタン化合物A溶液 テトラインプロポキシチタン(Ti (OiPr)4)
42.6gをエタノール234gに溶解し、アセチルア
セトン30gを加えて反応させ、Ti(OjPr)、の
−0iPr基の一部をアセチルアセトン残基で置換した
有機チタン化合物Aを54.6 g含有するエタノール
溶液を得た。 ここで、iPrはイソプロピル基を表す
、(以下これに同じ。) (B)  有機チタン化合物ポリマB溶液テトライソプ
ロポキシチタン(Ti(OiPr)、)56.8 g 
 をエタノール350gに溶解し、撹拌しながら水3.
2gを徐々に添加して重合させた。ついで、この溶液を
撹拌しながらアセチルアセトン40gを添加し、−0i
Pr基の一部が7セチルアセトン残基で置換された重合
度n=10である有機チタン化合物ポリマBを60.8
 g含有するエタノール溶液を得た。
(A) Organic titanium compound A solution tetrane propoxy titanium (Ti (OiPr)4)
42.6 g of Ti(OjPr) was dissolved in 234 g of ethanol, and 30 g of acetylacetone was added and reacted to obtain an ethanol solution containing 54.6 g of organotitanium compound A in which a part of the -0iPr group of Ti(OjPr) was replaced with an acetylacetone residue. I got it. Here, iPr represents an isopropyl group (the same applies hereinafter) (B) Organic titanium compound polymer B solution tetraisopropoxytitanium (Ti(OiPr)) 56.8 g
was dissolved in 350 g of ethanol, and 3.0 g of water was added with stirring.
2g was gradually added and polymerized. Next, 40 g of acetylacetone was added to this solution while stirring, and -0i
Organotitanium compound polymer B in which a part of the Pr group is substituted with 7 cetyl acetone residues and has a degree of polymerization n = 10 is 60.8
An ethanol solution containing g was obtained.

(C)  酸化チタン薄膜形成用塗布液上記調製した有
機チタン化合物(A)のエタノール溶液30gと上記有
機チタン化合物ポリマBのエタノール溶液400gとを
混合し、要すれば、ガラス質形成材として五酸化りん(
P□0.) 0.4gを添加し、TiO□に換算した有
機チタン化合物Aと有機チタン化合物ポリマBと混合物
演度が3.6重量%になるように両液A、Bの混合比を
調整して酸化チタン薄膜形成用塗布液を得た。
(C) Coating solution for forming a titanium oxide thin film 30 g of the ethanol solution of the organic titanium compound (A) prepared above and 400 g of the ethanol solution of the organic titanium compound polymer B are mixed, and if necessary, pentoxide is added as a vitreous forming material. Rin (
P□0. ) Added 0.4 g of organic titanium compound A and organic titanium compound polymer B converted to TiO□, and adjusted the mixing ratio of both solutions A and B so that the mixture efficiency was 3.6% by weight. A coating solution for forming a titanium thin film was obtained.

このようにして調製した一ヒ記A、BおよびCの3溶液
のそれぞれを用い、これらに石英板を浸漬して一定速度
で引上げ、乾燥後後述する種々の方法で焼成して上記有
機チタン化合物を分解して酸化チタン薄膜に形成した。
Using each of the three solutions A, B, and C prepared in this manner, a quartz plate is immersed in the solution, pulled up at a constant speed, dried, and then fired using various methods described below to form the organic titanium compound. was decomposed to form a titanium oxide thin film.

上述の焼成行程は空気雰囲気中で、種々の昇温速度2種
々の処理湿度で通常の処理時間たとえば約5分間焼成し
て多数の試験品を得た。そうして、このようにして得ら
れた試験品につき光学特性を比較した。
The above-described firing process was carried out in an air atmosphere at various temperature increase rates, at various processing humidities, and for a typical processing time, for example, about 5 minutes, to obtain a large number of test specimens. The optical properties of the test pieces thus obtained were then compared.

第1図は上述した有機チタン化合物A溶液を用いた試験
品の光屈折率を示し、横軸に焼成温度を℃の単位でとり
、縦軸に昇温速度を℃/分の単位でとったもので、 x
印は屈折率n<2.0.Δ印は2.0≦n<2.1.0
印は2.1≦n<2.2. 0印は2.2≦nの試験品
を示す、 この第1図から300℃/分以上の速度で昇
温させ500℃以上の温度で焼成したものはいずれも屈
折率nが2.1以上であることが理解できる。
Figure 1 shows the optical refractive index of a test product using the above-mentioned organic titanium compound A solution, where the horizontal axis shows the firing temperature in °C, and the vertical axis shows the temperature increase rate in °C/min. Something x
The mark indicates a refractive index n<2.0. Δ mark is 2.0≦n<2.1.0
The mark indicates 2.1≦n<2.2. The mark 0 indicates a test product with 2.2≦n. From this figure 1, any product heated at a rate of 300°C/min or higher and fired at a temperature of 500°C or higher has a refractive index n of 2.1 or higher. It is understandable that

第2図は上述した有機チタン化合物A溶液を用いた試験
品の光透過率を示し、横軸に焼成温度を℃の単位でとり
、縦軸に昇温速度を℃/分の単位でとったもので、X印
は透過率Tく85%、Δ印は85%≦T〈90%、Q印
は90%≦Tく95%、◎印は95%≦Tの試験品を示
す。 この第2図から300℃/分以上の速度で昇温さ
せ600℃以上の温度で焼成したものはいずれも透過率
Tが90以上であることが理解できる。
Figure 2 shows the light transmittance of the test product using the above-mentioned organic titanium compound A solution, where the horizontal axis shows the firing temperature in °C, and the vertical axis shows the temperature increase rate in °C/min. The X mark indicates a test product where the transmittance T is 85%, the Δ mark is 85%≦T<90%, the Q mark is 90%≦T95%, and the ◎ mark is a test product with a transmittance of 95%≦T. From FIG. 2, it can be seen that the transmittance T is 90 or more for all of the materials that were heated at a rate of 300° C./min or more and fired at a temperature of 600° C. or more.

第3図は上述した有機チタン化合物ポリマB溶液を用い
た試験品の光屈折率を示し、横軸に焼成温度を℃の単位
でとり、縦軸に昇温速度を℃/分の単位でとったもので
、X印は屈折率n(2,0゜Δ印は2.0≦n<2.1
.Q印は2.1≦n(2,2,O印は2.2≦nの試験
品を示す。この第3図から300℃/分以上の速度で昇
温させ600℃以上の温度で焼成したものはいずれも屈
折率nが2.1以上であることが理解できる。
Figure 3 shows the optical refractive index of a test product using the organic titanium compound polymer B solution described above, with the firing temperature in degrees Celsius on the horizontal axis and the heating rate in degrees Celsius/minute on the vertical axis. The X mark indicates the refractive index n (2,0°; the Δ mark indicates 2.0≦n<2.1
.. Q mark indicates 2.1≦n (2,2, O mark indicates test product with 2.2≦n. From this figure 3, the temperature was increased at a rate of 300°C/min or more and baked at a temperature of 600°C or more. It can be seen that all of these have a refractive index n of 2.1 or more.

第4図は上述した有機チタン化合物ポリマB溶液を用い
た試験品の光透過率を示し、横軸に焼成温度を℃の単位
でとり、縦軸に昇温速度を℃/分の単位でとったもので
、x印は透過率Tく85%。
Figure 4 shows the light transmittance of a test product using the organic titanium compound polymer B solution described above, with the firing temperature in degrees Celsius on the horizontal axis and the temperature increase rate in degrees Celsius/minute on the vertical axis. The x mark indicates a transmittance T of 85%.

Δ印は85%≦T〈90%、0印は90%≦T〈95%
Δ mark indicates 85%≦T<90%, 0 mark indicates 90%≦T<95%
.

O印は95%≦Tの試験品を示す、この第4図から30
0℃/分以上の速度で昇温させ400℃以上の温度で焼
成したものはいずれも透過率Tが90以上であることが
理解できる。
The O mark indicates a test product with 95%≦T.From this figure 4, 30
It can be seen that all the materials that were heated at a rate of 0° C./min or higher and fired at a temperature of 400° C. or higher had a transmittance T of 90 or higher.

第5図は上述した酸化チタン薄膜形成用塗布液を用いた
試験品の光屈折率を示し、横軸に焼成温度を℃の単位で
とり、縦軸に昇温速度を℃/分の単位でとったもので、
x印は屈折率n(2,0,Δ印は2.0≦n<2.1.
0印は2.1≦n<2.2.@印は2.2≦nの試験品
を示す、この第5図がら300’C/分以上の速度で昇
温させ600’C以上(昇温速度5o。
Figure 5 shows the optical refractive index of a test product using the coating solution for forming a titanium oxide thin film described above, with the firing temperature in °C on the horizontal axis and the temperature increase rate in °C/min on the vertical axis. What I took,
The x mark indicates the refractive index n (2,0, and the Δ mark indicates 2.0≦n<2.1.
0 mark means 2.1≦n<2.2. The @ mark indicates a test product with 2.2≦n. In this figure, the temperature was raised at a rate of 300'C/min or more to 600'C or more (heating rate 5o).

℃/分の場合は500℃以上、)の温度で焼成したもの
はいずれも屈折率nが2.1以上あることが理解できる
It can be seen that in the case of 500°C or higher in the case of 500°C per minute, the refractive index n of all those fired at a temperature of 2.1 or higher is 2.1 or higher.

第6図は上述した酸化チタン薄膜形成用塗布液を用いた
試験品の光透過率を示し、横軸に焼成温度を℃の単位で
とり、縦軸に昇温速度℃/分の単位でとったもので、x
印は透過率T〈85%、Δ印は85%≦T〈90%、0
印は90%≦T〈95%、0印は95%≦Tの試験品を
示す、 この第6図がら:SOO℃以上の速度で昇温さ
せ500℃以上(昇温速度が300℃の場合は600℃
以上)の温度で焼成したものはいずれも透過率Tが90
以上であることが理解できる。
Figure 6 shows the light transmittance of a test product using the coating solution for forming a titanium oxide thin film described above, with the firing temperature plotted on the horizontal axis in degrees Celsius and the heating rate in degrees Celsius/min on the vertical axis. x
Mark indicates transmittance T〈85%, Δ mark indicates transmittance T〈85%, 0
The mark indicates a test item with 90%≦T<95%, and the 0 mark indicates a test item with 95%≦T. As shown in Figure 6: Raise the temperature at a rate of SOO℃ or higher to 500℃ or higher (if the heating rate is 300℃) is 600℃
The transmittance T of all those fired at temperatures above) is 90.
The above is understandable.

このように、上述した3種の溶液のいずれを用いても、
小差はあるものの、いずれも急激に加熱して高温で加熱
処理したものが良好な結果が得られ、特性値も優れ、そ
のばらつきも少ながった。
In this way, no matter which of the three solutions mentioned above is used,
Although there were small differences, good results were obtained with rapid heating and heat treatment at high temperatures, and the characteristic values were also excellent, with less variation.

特に、300℃/分以上の速度で昇温させて600’C
以上の温度で焼成したものは特性値およびそのばらつき
において優れ、従来と同様な用途たとえば、単層膜とし
て防眩膜、干渉膜、フィルタ膜など、あるいはシリカ薄
膜と交互重層させてなる干渉フィルタ膜などに用いて著
効がある。
In particular, increase the temperature to 600'C at a rate of 300°C/min or more.
Products fired at temperatures above are excellent in characteristic values and their dispersion, and can be used for the same purposes as conventional ones, such as anti-glare films, interference films, filter films, etc. as a single layer film, or interference filter films formed by alternately layering with silica thin films. It is highly effective when used for such purposes.

なお、上述の焼成工程における熱源は赤外線電球、ガス
バーす、光放射レーザ、キセノンランプなどが好ましい
In addition, the heat source in the above-mentioned baking step is preferably an infrared light bulb, a gas bulb, a light emitting laser, a xenon lamp, or the like.

そうして1本発明において薄膜を形成すべき基体はどの
ようなものでもよい。
Thus, in the present invention, any substrate on which a thin film is to be formed may be used.

〔発明の効果〕〔Effect of the invention〕

このように、本発明の酸化チタン薄膜の形成方法は基体
を有機チタン化合物溶液に浸漬して引上げて乾燥し、そ
ののち焼成して有機チタン化合物を分解して酸化チタン
からなる薄膜に形成する方法において、焼成工程は30
0℃/分以上の速度で昇温させて600℃以上の湿度で
熱処理するので、得られた酸化チタン薄膜は諸特性たと
えば光屈折率、光透過率などに優れそのばらつきも少な
く。
As described above, the method for forming a titanium oxide thin film of the present invention is a method in which a substrate is immersed in an organic titanium compound solution, pulled up and dried, and then fired to decompose the organic titanium compound and form a thin film made of titanium oxide. , the firing process is 30
Since the temperature is raised at a rate of 0° C./min or higher and the heat treatment is performed at a humidity of 600° C. or higher, the obtained titanium oxide thin film has excellent properties such as optical refractive index and optical transmittance, and has little variation.

品質が安定している利点がある。It has the advantage of stable quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の酸化チタン薄膜の形成方
法の第1の実施例の処理条件と光学特性との相関を示す
グラフ、第3図および第4図は第2の実施例の処理条件
と光学特性との相関を示すグラフ、第5図および第6図
は第3の実施例の処理条件と光学特性との相関を示すグ
ラフである。 代理人  弁理士  井 上 −男 ん   ト         xxxxxx第  3 
 図 0  4t>o   BOO/200 mq° ;2=へ−3(’C)
FIGS. 1 and 2 are graphs showing the correlation between the processing conditions and optical properties of the first embodiment of the method for forming a titanium oxide thin film of the present invention, and FIGS. Graphs showing the correlation between processing conditions and optical characteristics. FIGS. 5 and 6 are graphs showing the correlation between processing conditions and optical characteristics in the third embodiment. Agent Patent Attorney Inoue - Man XXXXX No. 3
Figure 0 4t>o BOO/200 mq° ;2=to-3('C)

Claims (1)

【特許請求の範囲】[Claims] 基体を有機チタン化合物溶液に浸漬して引上げて乾燥し
、そののち焼成して上記有機チタン化合物を分解し酸化
チタンからなる薄膜に形成する方法において、上記焼成
工程は上記塗膜を有する基体を加熱して300℃/分以
上の速度で昇温させて600℃以上の温度で熱処理する
ことを特徴とする酸化チタン薄膜の形成方法。
In a method in which a substrate is immersed in an organic titanium compound solution, pulled up and dried, and then fired to decompose the organic titanium compound and form a thin film made of titanium oxide, the firing step involves heating the substrate having the coating film. 1. A method for forming a titanium oxide thin film, which comprises heating at a rate of 300° C./min or more and heat-treating at a temperature of 600° C. or more.
JP12797287A 1987-05-27 1987-05-27 Formation of thin titanium oxide film Granted JPS63293168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12797287A JPS63293168A (en) 1987-05-27 1987-05-27 Formation of thin titanium oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12797287A JPS63293168A (en) 1987-05-27 1987-05-27 Formation of thin titanium oxide film

Publications (2)

Publication Number Publication Date
JPS63293168A true JPS63293168A (en) 1988-11-30
JPH0349983B2 JPH0349983B2 (en) 1991-07-31

Family

ID=14973246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12797287A Granted JPS63293168A (en) 1987-05-27 1987-05-27 Formation of thin titanium oxide film

Country Status (1)

Country Link
JP (1) JPS63293168A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2460877A (en) * 2008-06-13 2009-12-16 Ceres Ip Co Ltd Method of depositing crystalline ceramic films
US9561987B2 (en) 2008-06-13 2017-02-07 Ceres Intellectual Property Company Limited Method for deposition of ceramic films

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2460877A (en) * 2008-06-13 2009-12-16 Ceres Ip Co Ltd Method of depositing crystalline ceramic films
US9561987B2 (en) 2008-06-13 2017-02-07 Ceres Intellectual Property Company Limited Method for deposition of ceramic films

Also Published As

Publication number Publication date
JPH0349983B2 (en) 1991-07-31

Similar Documents

Publication Publication Date Title
US4278632A (en) Method of conforming clear vitreous gal of silica-titania material
JPS59213643A (en) Method of setting magnesium fluoride layer on substrate
US4816049A (en) Process of surface treating laser glass
JPH01132770A (en) Composition for titanium-containing oxide film and formation of said film
JPS63293168A (en) Formation of thin titanium oxide film
US5508062A (en) Method for forming an insoluble coating on a substrate
JPS62265130A (en) Production of silica glass
US3066048A (en) Process of making mixed oxide films
JPH04168277A (en) Thin film forming device and formation of thin film
JPH0371365B2 (en)
JPS60243279A (en) Formation of transparent electrode
JPH04149090A (en) Formation of thin crystalline dielectric film
JP2836138B2 (en) Method for manufacturing glass body
JPH0672722A (en) Production of silica glass
JPH05286725A (en) Production of silica glass
JPH0570122A (en) Production of thin film from transparent aluminum oxide precursor gel
KR100188042B1 (en) An organic and inorganic-composite material for photodevice and preparing method thereof
JPH0466827B2 (en)
JP2632689B2 (en) Method for manufacturing a light bulb having a multilayer optical interference film
JP3024181B2 (en) Method for manufacturing glass body
JPS63156040A (en) Production of amorphous thin film
JPS61194181A (en) Indium formate powder for forming thin layer on substrate, more particularly glass and preparation thereof and method for forming layer from powder of this kind
JPS63307133A (en) Production of silica glass
JPS61261236A (en) Method for forming transparent electrically conductive film
JPS63185837A (en) Production of silica glass