JPS6329236A - Gas detecting optical sensor - Google Patents

Gas detecting optical sensor

Info

Publication number
JPS6329236A
JPS6329236A JP61172613A JP17261386A JPS6329236A JP S6329236 A JPS6329236 A JP S6329236A JP 61172613 A JP61172613 A JP 61172613A JP 17261386 A JP17261386 A JP 17261386A JP S6329236 A JPS6329236 A JP S6329236A
Authority
JP
Japan
Prior art keywords
layer
waveguide
gas
light
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61172613A
Other languages
Japanese (ja)
Inventor
Eiji Sudo
英二 須藤
Koichi Nishizawa
紘一 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP61172613A priority Critical patent/JPS6329236A/en
Publication of JPS6329236A publication Critical patent/JPS6329236A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To improve the detection sensitivity of a photosensor by forming a transmissivity changing optical waveguide part to be provided adjacently to a thin metallic film for dissociating and adsorbing a contact gaseous substrate in such a manner that the refractive index is lower in the outside part thereof in contact with a gas adsorptive layer than in the inside part thereof. CONSTITUTION:A thin film-like single mode optical waveguide 11 is provided on the surface of a transparent dielectric substrate 10. The transmissivity changing optical waveguide part 12 is laminated and formed to a partial region atop the waveguide 11 and further, the gas adsorptive layer 13 is laminated and formed on the waveguide layer 12. The adsorptive layer 13 consists of the thin metallic film for dissocilating and adsorbing gaseous hydrogen and the waveguide layer 12 consists of a material which can change the coefft. of light absorption by reacting with the adsorbed gas. Said layer increases the coefft. of light absorption by bonding to hydrogen. The waveguide layer 12 is constituted of two layers; an upper layer part 12A in contact with the adsorptive layer 13 and a lower layer part 12B. These layers are formed to the have the refractive index lower in the part 12A than in the part 12B. Light of a light source 16 is supplied from an optical fiber 14 for input to one end of the waveguide 11 and a photodetector 17 is connected through an optical fiber for output to the other end. The optical sensor having the improved detection sensitivity is thus obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガス濃度な全光式で検知する本質防爆型の光セ
ンサーに関し、特に水素ガスの検知に消用な光センサー
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an essentially explosion-proof optical sensor that detects gas concentration using an all-light method, and particularly to an optical sensor that is used for detecting hydrogen gas.

〔従来技術〕[Prior art]

全光式の本質防爆型の水素ガス光センサーとして、従来
第を図に示す構造のものが知られている。
As an all-optical, essentially explosion-proof type hydrogen gas optical sensor, one having the structure shown in Figure 1 is conventionally known.

図において/はLiNbO3などの透明誘電体基板、2
はこの基板/の表面に設けた単一モード光導波路、3は
光導波路2上に部分的に形成した透過率変化光導波層、
lは同層3上に設けたガス吸着層であり、光導波路20
両端にそれぞれ単一モードの入力用光ファイバ5および
出力用光ファイバ6が接続される。
In the figure, / is a transparent dielectric substrate such as LiNbO3, 2
3 is a single mode optical waveguide provided on the surface of this substrate; 3 is a variable transmittance optical waveguide layer partially formed on the optical waveguide 2;
l is a gas adsorption layer provided on the same layer 3, and the optical waveguide 20
A single-mode input optical fiber 5 and an output optical fiber 6 are connected to both ends, respectively.

ガス吸着層ψは水素カスを解離吸着する金属薄膜例えば
Pdから成り、透過率変化光導波層3は、上記層グで吸
着された水素ガスと反応してその光吸収係数が変化する
透明誘電体の薄膜例えばWO2から成る。
The gas adsorption layer ψ is made of a metal thin film, for example, Pd, which dissociates and adsorbs hydrogen scum, and the transmittance changing optical waveguide layer 3 is made of a transparent dielectric whose light absorption coefficient changes by reacting with the hydrogen gas adsorbed in the layer. A thin film of, for example, WO2.

上記センサーにおいて、遠隔にある光源から出て入力用
光ファイバ5で伝送されてきた光は導波路−を伝搬する
とともに、伝搬光の一部は透過率変化導波層3中を通り
、出力用光ファイバ乙へ出射する。
In the above sensor, light emitted from a remote light source and transmitted through the input optical fiber 5 propagates through the waveguide, and part of the propagated light passes through the transmittance change waveguide layer 3 and is used for output. Emitted to optical fiber B.

センサー付近に水素ガスが存在すると、ガス吸着層qに
接触した水素ガスが解離吸着され、この吸着されたガス
と反応して導波層3の光吸収係数が水素ガスの濃度に比
例して変化し、これに伴なって導波路コからの出射光量
が変化する。
When hydrogen gas exists near the sensor, the hydrogen gas that has come into contact with the gas adsorption layer q is dissociated and adsorbed, and as a result of reacting with this adsorbed gas, the optical absorption coefficient of the waveguide layer 3 changes in proportion to the concentration of hydrogen gas. However, the amount of light emitted from the waveguide changes accordingly.

したがって導波路2からの出射光量を出力用光ファイバ
乙の他端に接続した光検知器で常時モニタリングしてい
れば、受光量の変化からセンサー付近に存在する水素ガ
スの濃度を検出することができる。
Therefore, if the amount of light emitted from the waveguide 2 is constantly monitored by a photodetector connected to the other end of the output optical fiber B, it is possible to detect the concentration of hydrogen gas near the sensor from changes in the amount of received light. can.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の水素ガスセンターにおける各部分の屈折率は
第S図に示すように、基板/が最も低く、導波路2がこ
れよりも高く、透過率変化導波層3がさらに高屈折率と
いう分布をもっている。
As shown in Figure S, the refractive index of each part in the conventional hydrogen gas center is distributed such that the substrate has the lowest index, the waveguide 2 has a higher refractive index, and the transmittance change waveguide layer 3 has an even higher refractive index. have.

そして6過率変化導波層3が設けられた部分における伝
搬光のパワー分布7は図示の如くその最大パワーが両光
導波部!、3の境界付近に位置し、上下方向に漸減する
分布を成す。そして上方では伝搬光の一部がガス吸着金
属薄膜tlVc引掛ることになり、このため伝搬光の一
部が金属薄膜グで吸収されて、水素ガスの存在しないブ
ランク状態でも光の伝搬効率か悪く、センサーの検出感
度をあまり高くできないという問題があった。
As shown in the figure, the power distribution 7 of the propagating light in the part where the 6-pass rate change waveguide layer 3 is provided has a maximum power in both optical waveguides! , 3, and has a distribution that gradually decreases in the vertical direction. In the upper part, a part of the propagating light will be caught by the gas-adsorbing metal thin film tlVc, and for this reason, a part of the propagating light will be absorbed by the metal thin film, resulting in poor light propagation efficiency even in a blank state without hydrogen gas. However, there was a problem in that the detection sensitivity of the sensor could not be made very high.

〔従来の問題点を解決する手段〕[Means to solve conventional problems]

上記の問題点を解決する本発明のガス検知光センサーは
、接触ガス体を解離吸着する金属薄膜と、該層に隣接し
て設けられ、解離ガスとの反応で光吸収係数が変化する
透過率変化光導波部とを有するガス検知センサーにおい
て、前記透過率変化光導波部のうち、ガス吸着層に接す
る外側部分を内部よりも低屈折率とした。
The gas detection optical sensor of the present invention that solves the above problems consists of a metal thin film that dissociates and adsorbs a contact gas, and a transmittance that is provided adjacent to the metal film and whose light absorption coefficient changes due to reaction with the dissociated gas. In the gas detection sensor having a variable light waveguide, the outer portion of the variable transmittance light waveguide that is in contact with the gas adsorption layer has a lower refractive index than the inner portion.

本発明において、透過率変化光導波部は、光ファイバが
接続され且つガスとの反応で光透過率が変化しない光導
波路に重ねて設けてもよいし、あるいは光ファイバを接
続する導波路自体を、解離ガスとの反応で光吸収係数の
変化する物質で形成して上記透過率変化光導波部として
もよい。
In the present invention, the transmittance changing optical waveguide section may be provided overlapping the optical waveguide to which the optical fiber is connected and whose optical transmittance does not change due to reaction with gas, or alternatively, the transmittance changing optical waveguide section may be provided over the optical waveguide section to which the optical fiber is connected and whose optical transmittance does not change due to reaction with gas, or alternatively, the transmittance changing optical waveguide section may be provided over the optical waveguide section to which the optical fiber is connected and whose optical transmittance does not change due to reaction with gas. The transmittance-changing optical waveguide may be formed of a substance whose light absorption coefficient changes upon reaction with a dissociated gas.

〔作 用〕[For production]

上記構造のセンサーにおいては、透過率変化導波部を伝
搬する単一モード光のパワー分布は高屈折率部域に集中
するため、パワー分布の端部は低屈折率部域内に若干入
り込むが該部域に終端が位置し、金属薄膜へは入り込ま
なくなる。
In the sensor with the above structure, the power distribution of the single mode light propagating through the transmittance change waveguide is concentrated in the high refractive index region, so the end of the power distribution slightly enters the low refractive index region, but it is not The end is located in the area and does not penetrate into the metal thin film.

このため伝搬光はガス吸着金属薄膜での吸収を受けるこ
となく全てが導波部を伝搬し、したがってガスとの反応
による着色を生じないブランク状態での透過光量が増大
し、それだけセンサーの検出感度が高まる。また光導波
部の厚みは従来通りでよいので、単一モード光利用によ
る利点を損うこともない。
For this reason, all of the propagating light propagates through the waveguide without being absorbed by the gas-adsorbing metal thin film, and therefore the amount of transmitted light in a blank state without coloring due to reaction with gas increases, which increases the detection sensitivity of the sensor. increases. Furthermore, since the thickness of the optical waveguide can be the same as before, the advantages of using single mode light will not be lost.

〔実 施 例〕〔Example〕

以下本発明を図面に示した実施例に基づいて詳細に説明
する。
The present invention will be described in detail below based on embodiments shown in the drawings.

第7図において70は透明訪電体、−例としてLiNb
O3から成る基板で、この基板10の表面にT1の熱拡
散等により薄膜状の単一モード光導波路//を設けであ
る。
In FIG. 7, 70 is a transparent current-visitor, for example LiNb.
A thin film-like single mode optical waveguide // is provided on the surface of the substrate 10 by thermal diffusion of T1.

そして光導波路//の上表面の一部領域に、透過率変化
光導波層/2を積層形成し、さらにこの光導波層/2上
にガス吸着層/3が積層形成しである。
A variable transmittance optical waveguide layer /2 is laminated on a partial region of the upper surface of the optical waveguide //, and a gas adsorption layer /3 is further laminated on this optical waveguide layer /2.

ガス吸着層/3は水素ガスを解離吸着するPd等の金属
薄膜から成り、また光導波層/2は上記吸着ガスと反応
してその光吸収係数が変化し得る物質、−例としてWO
3から成る。WO3は水素と結合してタングステンブロ
ンズを生成し、光吸収係数が増大する。
The gas adsorption layer/3 is made of a metal thin film such as Pd that dissociates and adsorbs hydrogen gas, and the optical waveguide layer/2 is made of a material whose optical absorption coefficient can change by reacting with the adsorbed gas, for example WO.
Consists of 3. WO3 combines with hydrogen to form tungsten bronze, increasing the light absorption coefficient.

そして光導波層/2は、ガス吸着層/3と接する上層部
分/、!Aと、これより下方の下層部分/2Bの二層で
構成され、屈折率は下層部分/2B  よりも上層部分
/、2Aの方が低くしである。基板に一体形成した光導
波路//の一方の端部に入力用光ファイバ/ゲを接続し
、他端部に出力用光ファイバ/Sを接続する。入力用光
ファイバ/+の他端はセンサから離れた位置に置かれた
光源/6に接続され、出力用光ファイバ/jの他端は受
光検出器/7に接続される。
The optical waveguide layer /2 is the upper layer portion in contact with the gas adsorption layer /3 /,! It is composed of two layers: A and a lower layer part /2B below this, and the refractive index of the upper layer part /2A is lower than that of the lower layer part /2B. An input optical fiber/ge is connected to one end of the optical waveguide // integrally formed on the substrate, and an output optical fiber/S is connected to the other end. The other end of the input optical fiber /+ is connected to a light source /6 located away from the sensor, and the other end of the output optical fiber /j is connected to a light receiving detector /7.

上記のセンサーにおいて入力用光ファイバ/47を伝送
された後基板導波路//に入射し、この導波路//を伝
搬して透過率変化導波層/2が設けられている領域に至
ると、伝搬光の一部が上記導波層/2中を伝搬する。
In the above sensor, after being transmitted through the input optical fiber /47, it enters the substrate waveguide //, propagates through this waveguide // and reaches the area where the transmittance change waveguide layer /2 is provided. , a part of the propagating light propagates through the waveguide layer/2.

このときの断面内での伝搬光パワー分布/ざは、第2図
に示すように導波層/2のうち高屈折部分7.2Bに大
部分が集中し、パワー分布の端部付近が低屈折率部分/
2Aに入り込む分布となる。
At this time, the power distribution of the propagating light in the cross section is mostly concentrated in the high refraction portion 7.2B of the waveguide layer 2, as shown in Figure 2, and the power distribution is low near the ends. Refractive index part/
The distribution falls into 2A.

つまり従来はガス吸着層を成す金属薄膜/3に入り込ん
でいた伝搬光パワー分布の端部は、透過率変化導波層/
2の低屈折率部分/2A内に位置する形となり、金属薄
膜/3までには至らなくなる。
In other words, the edge of the propagating light power distribution, which conventionally entered the metal thin film /3 forming the gas adsorption layer, is
It is located within the low refractive index portion /2A of 2, and does not reach the metal thin film /3.

そして上記の部分/2Aはガスとの反応の無い状態では
透明であるから、従来のようにガスとの反応の無い状態
でも伝搬光の一部が金属薄膜に吸収されることもなく、
高い伝搬効率が得られる。
And since the above part /2A is transparent when there is no reaction with gas, a part of the propagating light is not absorbed by the metal thin film even when there is no reaction with gas as in the conventional case.
High propagation efficiency can be obtained.

従って、従来と同一の使用条件のもとて受光光量が増大
し、それだけセンサーの検出感度が向上する。
Therefore, the amount of received light increases under the same usage conditions as before, and the detection sensitivity of the sensor improves accordingly.

上述した実施例では、センサーの光導波領域を、基板に
一体形成した透過率の変化しない光導波路l/と、ガス
との反応によって光吸収係数の変化する導波層/2との
積層構造としたが、第3図のように単一構造の導波路と
することもできる。
In the embodiment described above, the optical waveguide region of the sensor has a laminated structure of an optical waveguide l/2 whose transmittance does not change, which is integrally formed on the substrate, and a waveguide layer /2 whose light absorption coefficient changes due to reaction with a gas. However, it is also possible to use a waveguide with a single structure as shown in FIG.

すなわち、第3図の例ではガラス板等の透明誘電体基板
10上に、解離ガスとの反応で光吸収係数が変化する物
質から成る導波路/2をリッジ型に形成するとともに、
この導波路/2の外表面側の一定厚み部分/、2Aを低
屈折率、内部/2Bを高屈折率とし、導波路/、2の露
出表面をガス解離吸着金属薄膜/3で被覆した構造とし
て導波路/、2の両端にそれぞれ入力用光ファイバ及び
出力用光ファイバを接続する。
That is, in the example shown in FIG. 3, a ridge-shaped waveguide 2 made of a substance whose light absorption coefficient changes upon reaction with a dissociated gas is formed on a transparent dielectric substrate 10 such as a glass plate, and
A structure in which the constant thickness part /, 2A on the outer surface side of this waveguide / 2 has a low refractive index, the inside / 2B has a high refractive index, and the exposed surface of the waveguide / 2 is covered with a gas dissociation and adsorption metal thin film / 3. An input optical fiber and an output optical fiber are connected to both ends of the waveguides 2 and 2, respectively.

次に本発明の具体的数値例を示す。Next, specific numerical examples of the present invention will be shown.

〔具 体 例〕〔Concrete example〕

基板10としてI、1Nbo3を用い、酸素雰囲気中で
7000°C1/2時間の熱処理によりT1をLiNb
O3基板中に拡散させて基板と一体の光導波路//を形
成した。
Using I, 1Nbo3 as the substrate 10, T1 was changed to LiNb by heat treatment at 7000°C for 1/2 hour in an oxygen atmosphere.
It was diffused into the O3 substrate to form an optical waveguide // integrated with the substrate.

この導波路//上に、透過率変化導波層/2のうち高屈
折率部分/2Bとして多結晶のWo、3をo、ttsμ
mの厚さに真空蒸着した。Wo3は純度99.99%の
ペレットを用い、アルミナコーティングされたW線ルツ
ボな用いて抵抗加熱蒸着した。
Polycrystalline Wo, 3 is placed on this waveguide as a high refractive index portion /2B of the transmittance change waveguide layer /2.
It was vacuum deposited to a thickness of m. For Wo3, pellets with a purity of 99.99% were used and resistance heating vapor deposition was performed using an alumina-coated W wire crucible.

蒸着条件は酸素圧力!;×10−4 Torr 、イオ
ン化  q用高周波電力200W、イオン加速電圧−5
oov。
The vapor deposition condition is oxygen pressure! ;×10-4 Torr, high frequency power for ionization q 200W, ion acceleration voltage -5
oov.

基板温度300″Cであり、無色透明の屈折率が2.2
2の多結晶WO3膜が得られた。
The substrate temperature is 300″C, and the refractive index of colorless and transparent material is 2.2.
A polycrystalline WO3 film of No. 2 was obtained.

この膜の上に低屈折率部分/、2Aとして屈折率2、/
の非晶質のWo3をO,OSμmの厚さに真空蒸着した
On top of this film is a low refractive index part /, 2A with a refractive index of 2, /
Amorphous Wo3 was vacuum-deposited to a thickness of O,OSμm.

蒸着条件は基板温度を常温とした以外は前述の多結晶W
O3膜形成時と同じにした。さらに上記の非晶質WO3
膜/2A上に、ガス吸着層/3としてPdを700Aの
厚さに電子線加熱蒸着法で付着させた。
The deposition conditions were the same as the polycrystalline W described above except that the substrate temperature was room temperature.
It was the same as when forming the O3 film. Furthermore, the above amorphous WO3
On film/2A, Pd was deposited as gas adsorption layer/3 to a thickness of 700A by electron beam heating evaporation.

これに入力用光ファイバ/lと出力用光ファイバ15を
結合効率が最大になるように接続した。センサ部を検出
すべき雰囲気中KP置し、入力用光ファイバ/lの一端
から波長へ3μm の光源光を入力し、出力用光ファイ
バ/Sの他端に光検出器を配置して出力光量を測定した
The input optical fiber /1 and the output optical fiber 15 were connected to this so that the coupling efficiency was maximized. Place the sensor unit in the atmosphere to be detected, input a source light with a wavelength of 3 μm from one end of the input optical fiber /L, and place a photodetector at the other end of the output optical fiber /S to measure the output light amount. was measured.

実験の結果、10〜2000ppmの水素ガス濃度範囲
を±2%の精度で測定可能であることが確められた。
As a result of experiments, it was confirmed that it was possible to measure a hydrogen gas concentration range of 10 to 2000 ppm with an accuracy of ±2%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図は本発
明のセンサにおける屈折率分布及び伝搬光パワー分布を
示す図、第3図は本発明の他の実施例を示す断面図、第
q図は従来の水素ガス検知光センサーを示す断面図、第
S図は従来品の屈折率分布及び伝搬光パワー分布を示す
図である。 10・・ 基 板 //・・光導波路 /2・・ 透過率変化光導波層 /2A低屈折率部分 
/2B−・・高屈折率部分/3  ガス吸着層 /<Z
 、 /3  光ファイバ/6・・光 源 /7 受光
器 /ざ・伝搬光パワー分布
FIG. 1 is a cross-sectional view showing one embodiment of the present invention, FIG. 2 is a diagram showing the refractive index distribution and propagation light power distribution in the sensor of the present invention, and FIG. 3 is a cross-sectional view showing another embodiment of the present invention. Figure q is a sectional view showing a conventional hydrogen gas detection optical sensor, and Figure S is a diagram showing the refractive index distribution and propagation light power distribution of the conventional product. 10... Substrate //... Optical waveguide /2... Transmittance change optical waveguide layer /2A low refractive index part
/2B-...High refractive index part/3 Gas adsorption layer /<Z
, /3 Optical fiber /6...Light source /7 Light receiver/Propagating light power distribution

Claims (1)

【特許請求の範囲】[Claims] 接触ガス体を解離吸着する金属薄膜と、該膜に隣接して
設けられ、吸着ガスとの反応で光吸収係数が変化する透
過率変化光導波部とを有するガス検知センサーにおいて
、前記透過率変化光導波部のうち、ガス吸着層に接する
外側部分を内部よりも低屈折率としたことを特徴とする
ガス検知光センサー。
A gas detection sensor comprising a metal thin film that dissociates and adsorbs a contact gas, and a transmittance-changing optical waveguide section that is provided adjacent to the film and whose light absorption coefficient changes due to reaction with the adsorbed gas. A gas detection optical sensor characterized in that the outer part of the optical waveguide in contact with the gas adsorption layer has a lower refractive index than the inner part.
JP61172613A 1986-07-22 1986-07-22 Gas detecting optical sensor Pending JPS6329236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61172613A JPS6329236A (en) 1986-07-22 1986-07-22 Gas detecting optical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61172613A JPS6329236A (en) 1986-07-22 1986-07-22 Gas detecting optical sensor

Publications (1)

Publication Number Publication Date
JPS6329236A true JPS6329236A (en) 1988-02-06

Family

ID=15945121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61172613A Pending JPS6329236A (en) 1986-07-22 1986-07-22 Gas detecting optical sensor

Country Status (1)

Country Link
JP (1) JPS6329236A (en)

Similar Documents

Publication Publication Date Title
US4661320A (en) Gas sensor
TWI461683B (en) Attenuated total reflection probe and spectrometer therewith
US6535658B1 (en) Hydrogen sensor apparatus and method of fabrication
US4569570A (en) Optical sensor having atomically localized luminescence centers
US5446534A (en) Broad band waveguide spectrometer
US5436167A (en) Fiber optics gas sensor
WO1999009392A2 (en) Near normal incidence optical assaying method and system having wavelength and angle sensitivity
KR20080103992A (en) Total reflection attenuation optical probe and aqueous solution spectrometric device
JPS62170840A (en) Optical sensor for detecting hydrogen
CN114813638A (en) Carbon dioxide sensing structure and system based on optical fiber end face integrated super surface
JP3655904B2 (en) Light reflection type sensor and structure thereof
JPH0223826B2 (en)
JPS60209149A (en) Hydrogen detector
JPS6329236A (en) Gas detecting optical sensor
CN109323661A (en) Based on the highly sensitive angle displacement sensor of light beam space Gu Si-Hansen displacement
JPH05196569A (en) Hydrogen sensor
JPH07128231A (en) Infrared gas sensor
JPS61201143A (en) Gas sensor
JPS61207950A (en) Optical sensor for detecting hydrogen
JPH0481738B2 (en)
Tiefenthaler et al. Integrated optical humidity and gas sensors
JPS61201141A (en) Hydrogen detecting optical sensor
WO2006109408A1 (en) Total-reflection attenuation optical probe and far-ultraviolet spectrophotometer
KR20160056218A (en) Surface Plasmonic Sensor Using Surface Plasmonic Sensor Chip
JPS646841A (en) Detecting device