JPS62170840A - Optical sensor for detecting hydrogen - Google Patents

Optical sensor for detecting hydrogen

Info

Publication number
JPS62170840A
JPS62170840A JP61011093A JP1109386A JPS62170840A JP S62170840 A JPS62170840 A JP S62170840A JP 61011093 A JP61011093 A JP 61011093A JP 1109386 A JP1109386 A JP 1109386A JP S62170840 A JPS62170840 A JP S62170840A
Authority
JP
Japan
Prior art keywords
hydrogen
film
waveguide
hydrogen gas
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61011093A
Other languages
Japanese (ja)
Other versions
JPH0513458B2 (en
Inventor
Eiji Sudo
英二 須藤
Koichi Nishizawa
紘一 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61011093A priority Critical patent/JPS62170840A/en
Publication of JPS62170840A publication Critical patent/JPS62170840A/en
Publication of JPH0513458B2 publication Critical patent/JPH0513458B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To maintain hydrogen detecting performance stably for a long period of time by coating the entire surface of an adsorptive layer with a selective permeable membrane which allows the permeation of gaseous hydrogen and does not allow the permeation of. CONSTITUTION:LiNbO3 is used as a substrate 10 and Ti is thermally diffused therein to form an optical waveguide 11 in the substrate 10. A thin WO3 film is formed by vacuum deposition to about 1mum thickness as an absorptive layer 12 on the exposed surface of the waveguide 11. Pd is stuck by a vapor deposition method using electron ray heating to about 100Angstrom thickness as the hydrogen adsorptive layer 13 on the WO3 film. An SiO2 film is stuck by the vapor deposition method using electron ray heating as the hydrogen selective permeable membrane 14 on the hydrogen adsorptive layer 13. Semiconductor laser light of 1.3Xm wavelength is made incident on the waveguide 11 of such sensor element through an optical fiber connected to said waveguide and the quantity of the output light is measured by a detector 17, by which the concn. of 10-2,000ppm gaseous hydrogen is measured with + or -5% accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水素ガス濃度を全光式で検知する本質防雪型の
光センサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an essentially snow-proof type optical sensor that detects hydrogen gas concentration using an all-light method.

〔従来技術の説明〕[Description of prior art]

従来この種の全光式水素検知光センサとして第1図に示
す構造のものがある。
A conventional all-optical hydrogen detection optical sensor of this type has a structure shown in FIG.

図において誘電体基板lに光導波路2が形成してあり、
この光導波路コの露出上面に水素と反応して光吸収係数
が変化する物質からなる光吸収層3が設けられ、さらに
この光吸収層3の上部に水素ガスを解離吸着する金属膜
から成る吸着層lが積層しである。そして光導波路−の
両端にはそれぞれ入力用光ファイバlおよび出力用光フ
ァイバ5Bが接続される。
In the figure, an optical waveguide 2 is formed on a dielectric substrate l,
A light absorption layer 3 made of a substance whose light absorption coefficient changes when reacting with hydrogen is provided on the exposed upper surface of this optical waveguide, and an adsorption layer 3 made of a metal film that dissociates and adsorbs hydrogen gas is further provided on the top of this light absorption layer 3. Layer l is laminated. An input optical fiber 1 and an output optical fiber 5B are connected to both ends of the optical waveguide.

□接触により光@酸層3の光吸収係数が増大すると上記
エバネソセント光が吸収を受けて減衰し、出力用光ファ
イバ、tBへの出射光景が減少する。
□ When the light absorption coefficient of the light@acid layer 3 increases due to contact, the evanescent light is absorbed and attenuated, and the output sight to the output optical fiber, tB, decreases.

したがって出力用光7アイバ、ltBからの出射光−量
の変化を測定すれば水素ガス濃度を知ることが、−C5
門る。
Therefore, by measuring the change in the amount of light emitted from the output light 7 eyeball and ltB, it is possible to know the hydrogen gas concentration.
Gate.

〔、発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

異上記従来の構造では、水素ガス吸着層tの表面外気と
常時接触しており、このため水素ガス以外の種々の物質
との反応を受けやすく、特に水蒸気と反応することによ
って吸着層lおよび光吸収層3の水素ガスに対する反応
性が早期に劣化するという問題があった。
In the conventional structure described above, the surface of the hydrogen gas adsorption layer t is in constant contact with the outside air, and therefore is susceptible to reactions with various substances other than hydrogen gas, and in particular reacts with water vapor, causing the adsorption layer 1 and light There was a problem in that the reactivity of the absorption layer 3 to hydrogen gas deteriorated early.

〔問題点を解決するための手段〕[Means for solving problems]

吸着N’lの表面全体を、水素ガスを透過し且つ少なく
とも水蒸気に対し不透過性を有する選択透過被膜で被覆
した。
The entire surface of the adsorbed N'l was coated with a selectively permeable coating that was permeable to hydrogen gas and impermeable to at least water vapor.

〔作 用〕[For production]

水素ガスは選択透過膜を透過し、従来と同様に水素ガス
吸着層で解離吸着し、解離水素と反応した光吸収層の光
gIk収係微係数化して光導波路からの出射光の光量が
変化する。
Hydrogen gas passes through the selectively permeable membrane, is dissociated and adsorbed in the hydrogen gas adsorption layer as in the past, and the light gIk of the light absorption layer that reacts with the dissociated hydrogen becomes a differential coefficient, and the amount of light emitted from the optical waveguide changes. do.

一方、水蒸気は選択透過膜によって侵入が阻止され、吸
着層および光吸収層の露出表面及び側縁が保護され三眞
るので長期にわたり安定したに素′;′・検知性能が維
持される。
On the other hand, water vapor is prevented from entering by the selectively permeable membrane, and the exposed surfaces and side edges of the adsorption layer and light absorption layer are protected and protected, so that stable nitrogen detection performance is maintained over a long period of time.

〔実 施 例〕 以下本発明を図面に示した実施例に基づいて詳細に説明
する。
[Embodiments] The present invention will be described in detail below based on embodiments shown in the drawings.

第1図ないし第2図において、10は基板、/lは光導
波路であり、導波路//は例えばLiNbO3基板中へ
のTiの熱拡散あるいはガラス基板中へのイオン交換拡
散等の手段で形成される。
In Figures 1 and 2, 10 is a substrate, /l is an optical waveguide, and the waveguide // is formed by, for example, thermal diffusion of Ti into a LiNbO3 substrate or ion exchange diffusion into a glass substrate. be done.

そして光導波路l/の全長のうち両端近傍を残して導波
路//の露出表面を覆うように、基板上に光吸収層/、
2が積層形成してあり、さらにこの光吸収層/2上に吸
着層/3が積層しである。
Then, a light absorption layer /,
2 are laminated, and an adsorption layer/3 is further laminated on the light absorption layer/2.

吸着層/3は、水素ガスを吸着解離して電子、プロトン
を発生させる金属薄膜から成り、光吸収層/2は上記の
電子、プロトンを受けて光吸収係数が変化する誘電体の
薄膜で構成されている。
The adsorption layer/3 consists of a metal thin film that adsorbs and dissociates hydrogen gas to generate electrons and protons, and the light absorption layer/2 consists of a dielectric thin film whose light absorption coefficient changes in response to the electrons and protons mentioned above. has been done.

上記の吸着層/3の材質としてはパラジウム(Pd)あ
るいは白金(Pt)が好適である。
Palladium (Pd) or platinum (Pt) is suitable as the material for the adsorption layer/3.

また光吸収層/2を形成する物質としてはWO3が好適
であり、その他一般にエレクトロクロミツクヲ示す無機
材料、例エバM003+V2O5,TiO2゜Ir(O
H)n、Rh203XH20などが使用可能である。
In addition, WO3 is suitable as a material for forming the light absorption layer/2, and other inorganic materials that generally exhibit electrochromic properties, such as EVA M003+V2O5, TiO2゜Ir(O
H)n, Rh203XH20, etc. can be used.

また光吸収層12は有機材料で構成してもよく、例エハ
ヘブエルビオロゲン、シア/フェニールビ:オロゲン、
コバルトピリジル錯体、ポリマー化テ゛トラチオフルバ
レン(TTF)、ルテシウムシフタロシアニンなどが使
用できる。そして吸着層13の少なくとも水蒸気透過を
阻止し得るようなミクロな孔径をもった耐候性に優れた
材料の薄膜、例えば5102膜で形成されている。
Further, the light absorption layer 12 may be composed of an organic material, such as Ehaheb Elviologen, Shea/Phenylviologen,
Cobalt pyridyl complexes, polymerized tetrathiofulvalene (TTF), lutetium siphthalocyanine, and the like can be used. The adsorption layer 13 is made of a thin film made of a material with excellent weather resistance, such as a 5102 film, having micropores that are capable of blocking at least water vapor transmission.

一例として電子線加熱蒸着法を用い、高純度のSiOペ
レットを蒸着源とし、酸素圧力/X1O−4Torr、
イオン化用高周波電力50W、イオン加速電圧−5oo
vの条件で厚み約500オングストロームの5i02膜
を蒸着することにより上記機能をもった被膜/lが得ら
れる。5i02以外にゼオライト、アルミナ等も被膜/
IIとして使用することができる0 なお被膜/グは吸着層/3、光吸収層/2の形成領域の
みに限定して設けてもよいが、図示例のように光導波路
//の全長にわたり形成しておけば導波路/lの保護に
もなるので都合がよい。
As an example, an electron beam heating evaporation method is used, high purity SiO pellets are used as the evaporation source, oxygen pressure/X1O-4Torr,
High frequency power for ionization 50W, ion acceleration voltage -5oo
By depositing a 5i02 film with a thickness of about 500 angstroms under the conditions of v, a film/l having the above function can be obtained. In addition to 5i02, zeolite, alumina, etc. are also coated/
The film /g may be formed only in the area where the adsorption layer /3 and the light absorption layer /2 are formed, but it may be formed over the entire length of the optical waveguide // as shown in the example. This is convenient because it also protects the waveguide /l.

上記の場合は、両層/2 、13外の領域の被膜部分/
iは前述のような水素選択透過性を必要としを平滑化し
ておくことが伝搬損失を低減する上で望ましい。
In the above case, both layers/2, the coating part in the area outside 13/
i requires selective hydrogen permeability as described above, and it is desirable to smooth it in order to reduce propagation loss.

上記のように構成されたセンサ素子20の光導波路//
の一端に入力用光ファイバ/jAを接続し、箇□所にあ
る半導体レーザ等の光源装置/乙に入力用光ファイバ1
5Aの他端を接続するとともに、出力用光ファイバ/j
Bの他端を光検出器/7に接続する。光源装置/乙から
出た光は光ファイバ/S゛A中を伝送され後センサ素子
20の光導波路//に入射し、導波路//を伝搬する。
Optical waveguide of sensor element 20 configured as described above//
Connect the input optical fiber /jA to one end of the input optical fiber 1, and connect the input optical fiber 1 to the light source device such as a semiconductor laser located at
Connect the other end of 5A and connect the output optical fiber/j
Connect the other end of B to photodetector/7. The light emitted from the light source device/B is transmitted through the optical fiber/S'A, enters the optical waveguide // of the sensor element 20, and propagates through the waveguide //.

伝搬光の一部はエバネタセント光として光吸収層/2の
部分に浸み出している。このエバネタセント光の浸み出
し量は、光吸収層/2の屈折率と導波路//の屈折率の
大きさに依存し、約20%まで大きくすることができる
。センサ素子20の設N箇所に水素ガスが存在すると、
水素ガスは保護被膜/IIを透過して吸着層/3例えば
Pd薄膜に接触して解離吸着され、この解離された水素
が光吸収層/2と反応して該吸収層7.2の光吸収係数
が変化する。
A part of the propagated light leaks into the light absorption layer/2 as evanescent light. The amount of this evanescent light seeping out depends on the refractive index of the light absorption layer /2 and the refractive index of the waveguide //, and can be increased to about 20%. When hydrogen gas is present at the N location of the sensor element 20,
Hydrogen gas passes through the protective coating /II, contacts the adsorption layer /3, for example, a Pd thin film, and is dissociated and adsorbed, and this dissociated hydrogen reacts with the light absorption layer /2 to absorb light in the absorption layer /2. The coefficient changes.

例えば光吸収層/2がWO3の場合はタングステンブロ
ンズを生成し着色する。
For example, when the light absorption layer/2 is made of WO3, tungsten bronze is produced and colored.

これにより光導波路//を伝搬している導波光のエバネ
タセント光がWO3層中で吸収を受けて減衰し、光検出
器/7における受光量が減少する。
As a result, the evanescent light of the guided light propagating through the optical waveguide // is absorbed and attenuated in the WO3 layer, and the amount of light received by the photodetector /7 is reduced.

そしてこの受光量は水素ガス濃度に依存するので、受光
量の変化量を測定することにより水素ガス濃度を検知す
ることができる。
Since the amount of received light depends on the hydrogen gas concentration, the hydrogen gas concentration can be detected by measuring the amount of change in the amount of received light.

人力用光ファイバ/jA及び出力用光ファイバ75B、
=を接続するかわりに、光導波路//の一方の端面゛・
11 にアルミニウム蒸着膜等の反射体/ざを密着して設け、
他方の導波路端に入出力兼用の光ファイバ二□ 15を接続したものであり、他の構造は前述実施例と同
様である。
Optical fiber for human power/jA and optical fiber for output 75B,
Instead of connecting =, one end face of the optical waveguide //
11, a reflector such as an aluminum vapor-deposited film is provided in close contact with the
An optical fiber 2□15 for both input and output is connected to the other end of the waveguide, and the other structure is the same as that of the previous embodiment.

本例構造は、導波路//の往復両行程で光吸収層/2に
よるエバネンセント光吸収減衰を受けるので、前述実施
例構造に比べ素子をより小型化でき、また同一大きさの
素子で検知感度がより向上するという利点がある。
The structure of this example undergoes evanescent light absorption attenuation by the light absorption layer 2 during both the round trip of the waveguide //, so the element can be made smaller compared to the structure of the previous example, and the detection sensitivity can be increased with the same size element. This has the advantage of further improving.

次に本発明の具体的数値例について説明する。Next, specific numerical examples of the present invention will be explained.

基板10としてLiNbO3を用い、T1を熱拡散させ
て基板lO中に光導波路//を形成し、この光導波路/
lの露出面上に光吸収層7.2としてWO3薄膜を7μ
mの厚さに真空蒸着した。
Using LiNbO3 as the substrate 10, T1 is thermally diffused to form an optical waveguide // in the substrate lO.
A 7μ thin film of WO3 is placed as a light absorption layer 7.2 on the exposed surface of the
It was vacuum deposited to a thickness of m.

WO3は純度99.99%のペレットを用い、アルミナ
でコートされたW線ルツボを用いて抵抗加熱蒸着した。
WO3 was deposited using resistance heating using pellets with a purity of 99.99% using a W-wire crucible coated with alumina.

蒸着条件は、酸素圧力/X1O−4TOrr 、イオン
化用高周波電力200W、イオン加速電圧=soov熱
蒸着法で付着させた。
The deposition conditions were oxygen pressure/X1O-4 TOrr, ionization high frequency power of 200 W, and ion acceleration voltage=soov thermal evaporation method.

次にこの水素吸着層/3上に水素選択透過被膜/lとし
て5102膜を電子線加熱蒸着法で付着させた。蒸着源
として純度99.99%の5j−0ベレツトを用い、酸
素圧力/X1O−4TOrr 、イオン化用高周波電力
50W、イオン加速電圧−5oovの条件下で膜厚SO
Oオングストロームの8102膜/ゲが得られた。
Next, on this hydrogen adsorption layer/3, a 5102 film was deposited as a hydrogen selective permeation film/l by an electron beam heating vapor deposition method. Using a 99.99% pure 5J-0 beret as a deposition source, the film thickness was determined under the conditions of oxygen pressure/X1O-4 TOrr, ionization high frequency power of 50 W, and ion acceleration voltage of -5oov.
A film of 8102 O angstroms/ge was obtained.

上記のようにして作成したセンサ素子の導波路//に接
続した光ファイバを妬して波長へ3μmの半導体レーザ
光を入射させ、出力側の光ファイバ端に接続した光検出
器で出力光量を測定したところ、70〜.!ooopp
mの水素ガス濃度範囲を約±S%の精度で測定すること
ができた。
Semiconductor laser light with a wavelength of 3 μm is incident on the optical fiber connected to the waveguide // of the sensor element created as described above, and the output light amount is measured by the photodetector connected to the end of the optical fiber on the output side. When measured, it was 70~. ! ooopp
It was possible to measure a hydrogen gas concentration range of m with an accuracy of approximately ±S%.

また上記センサ素子を温度SO°C1湿度90%の条件
下に6ケ月間放置した後に水素ガス濃度測定を行なった
ところ、検知特性の低下はほとんど認められなかった。
Further, when the hydrogen gas concentration was measured after the sensor element was left for 6 months at a temperature of SO DEG C. and a humidity of 90%, almost no deterioration in the detection characteristics was observed.

これに対し、保護被膜/IIの無い従来型のセンサ素子
に上記環境テストを施した後水素ガス濃度を測定したと
ころ、検知特性に大幅な低下が認められた。
On the other hand, when the conventional sensor element without the protective film/II was subjected to the above environmental test and the hydrogen gas concentration was measured, a significant decrease in the detection characteristics was observed.

発明の効果〕 本発明によれば、水素選択透過性の被膜で水素ガス吸着
層を保論被覆しているので、被検知物である水素ガスは
従来と同様に自由にセンサの吸着層と接触すると同時に
、吸着層及び光吸収層の反応に悪影響を及ぼす他の成分
、特に水蒸気の透過が阻止され、したがって長期的に亘
り安定した水素検知性能を維持することができる。
[Effects of the Invention] According to the present invention, since the hydrogen gas adsorption layer is coated with a hydrogen selectively permeable film, hydrogen gas, which is the object to be detected, can freely contact the adsorption layer of the sensor as before. At the same time, the permeation of other components, particularly water vapor, which adversely affect the reaction of the adsorption layer and the light absorption layer is prevented, and therefore stable hydrogen detection performance can be maintained over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す側断面図、第2図は同
平面図、第3図は本発明の他の実施例を示す側断面図、
第1図は従来の光センサを示す側断面図である。 10・・・・・基 板 // ・・光導波路/、!・・
・・・・光吸収層 /3・・水素吸着層/lI・・・・
・水素選択透過性保護被膜/!;、/!;A、、/3;
B・・・・・・光7アイバ/乙・・・・光源装置 /7
・・・・光検出器/r・・・・反射体 特許出願人 工業技術院長 等々力 達第1図 ′m2図
FIG. 1 is a side sectional view showing one embodiment of the present invention, FIG. 2 is a plan view thereof, and FIG. 3 is a side sectional view showing another embodiment of the present invention.
FIG. 1 is a side sectional view showing a conventional optical sensor. 10...Substrate //...Optical waveguide/,!・・・
...Light absorption layer /3...Hydrogen adsorption layer /lI...
・Hydrogen selectively permeable protective film/! ;,/! ;A,,/3;
B...Hikari 7 Aiba/Otsu...Light source device/7
...Photodetector/r...Reflector Patent applicant Todoroki Director, Agency of Industrial Science and Technology Figure 1'm2

Claims (2)

【特許請求の範囲】[Claims] (1)光導波路に接して水素との反応により光吸収係数
が変化する誘電体膜を設けるとともに該膜上に水素ガス
を解離吸着する金属膜を設け、前記導波路出射光の光量
変化で水素を検知するようにした水素検知光センサにお
いて、前記金属膜表面を、水素ガスを透過し且つ少なく
とも水蒸気に対し不透過性を有する選択透過被膜で保護
被覆したことを特徴とする水素検知光センサ。
(1) Provide a dielectric film in contact with the optical waveguide whose light absorption coefficient changes due to reaction with hydrogen, and provide a metal film on the film that dissociates and adsorbs hydrogen gas, so that hydrogen gas can be absorbed by changing the amount of light emitted from the waveguide. A hydrogen detection optical sensor configured to detect hydrogen, characterized in that the surface of the metal film is protectively coated with a selectively permeable coating that is permeable to hydrogen gas and impermeable to at least water vapor.
(2)前記選択透過被膜はSiO_2の蒸着膜である特
許請求の範囲第1項記載の水素検知光センサ。
(2) The hydrogen detection optical sensor according to claim 1, wherein the selective transmission film is a vapor deposited film of SiO_2.
JP61011093A 1986-01-23 1986-01-23 Optical sensor for detecting hydrogen Granted JPS62170840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61011093A JPS62170840A (en) 1986-01-23 1986-01-23 Optical sensor for detecting hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61011093A JPS62170840A (en) 1986-01-23 1986-01-23 Optical sensor for detecting hydrogen

Publications (2)

Publication Number Publication Date
JPS62170840A true JPS62170840A (en) 1987-07-27
JPH0513458B2 JPH0513458B2 (en) 1993-02-22

Family

ID=11768379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61011093A Granted JPS62170840A (en) 1986-01-23 1986-01-23 Optical sensor for detecting hydrogen

Country Status (1)

Country Link
JP (1) JPS62170840A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62251637A (en) * 1986-04-24 1987-11-02 Hochiki Corp Hydrogen sensor
JPH06235695A (en) * 1992-08-21 1994-08-23 Boehringer Mannheim Gmbh Analysis element for liquid sample analysis
JPH06242008A (en) * 1993-02-10 1994-09-02 Draegerwerk Ag Device for colorimetric detection of gaseous component and/or vapor component of gas mixture
WO1995030889A1 (en) * 1994-05-09 1995-11-16 Unisearch Limited Method and device for optoelectronic chemical sensing
JP2007248424A (en) * 2006-03-20 2007-09-27 Atsumi Tec:Kk Hydrogen sensor
JP2009244262A (en) * 2008-03-28 2009-10-22 General Electric Co <Ge> Sensing system with optical fiber gas sensor
KR100923104B1 (en) 2008-09-19 2009-10-27 전남대학교산학협력단 Optical fiber gas sensor using ultrasonic wave
WO2010032979A3 (en) * 2008-09-19 2010-07-01 전남대학교산학협력단 Optical fiber sensor and optical fiber gas sensor which use ultrasonic waves

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62251637A (en) * 1986-04-24 1987-11-02 Hochiki Corp Hydrogen sensor
JPH06235695A (en) * 1992-08-21 1994-08-23 Boehringer Mannheim Gmbh Analysis element for liquid sample analysis
JPH06242008A (en) * 1993-02-10 1994-09-02 Draegerwerk Ag Device for colorimetric detection of gaseous component and/or vapor component of gas mixture
WO1995030889A1 (en) * 1994-05-09 1995-11-16 Unisearch Limited Method and device for optoelectronic chemical sensing
JP2007248424A (en) * 2006-03-20 2007-09-27 Atsumi Tec:Kk Hydrogen sensor
WO2007108276A1 (en) * 2006-03-20 2007-09-27 Kabushiki Kaisha Atsumitec Hydrogen sensor
JP2009244262A (en) * 2008-03-28 2009-10-22 General Electric Co <Ge> Sensing system with optical fiber gas sensor
KR100923104B1 (en) 2008-09-19 2009-10-27 전남대학교산학협력단 Optical fiber gas sensor using ultrasonic wave
WO2010032979A3 (en) * 2008-09-19 2010-07-01 전남대학교산학협력단 Optical fiber sensor and optical fiber gas sensor which use ultrasonic waves

Also Published As

Publication number Publication date
JPH0513458B2 (en) 1993-02-22

Similar Documents

Publication Publication Date Title
US6535658B1 (en) Hydrogen sensor apparatus and method of fabrication
EP0737308B1 (en) Optical sensor for detection of chemical species
US6100991A (en) Near normal incidence optical assaying method and system having wavelength and angle sensitivity
Klein et al. Integrated-optic ammonia sensor
US5436167A (en) Fiber optics gas sensor
EP0598341A1 (en) Optical sensor for detecting chemical species
Malins et al. Personal ammonia sensor for industrial environments
JPH07280643A (en) Ultraviolet sensor
JPS62170840A (en) Optical sensor for detecting hydrogen
JPS6239744A (en) Optical type humidity detector
JPH0223826B2 (en)
JPH05196569A (en) Hydrogen sensor
Ansari et al. Humidity sensor using planar optical waveguides with claddings of various oxide materials
Benson et al. Low-cost fiber optic hydrogen gas detector using guided-wave surface-plasmon resonance in chemochromic thin films
JPS61201143A (en) Gas sensor
JPS60209149A (en) Hydrogen detector
JPH07128231A (en) Infrared gas sensor
JPS62170838A (en) Optical sensor for reflection type hydrogen detection
JPH1096699A (en) Gas detection element and gas-measuring apparatus
JPH0210375B2 (en)
Sato et al. Infrared hollow waveguides for capillary flow cells
CN113740300A (en) On-chip optical acetone gas sensor and preparation process and application thereof
JPS6329236A (en) Gas detecting optical sensor
Nishizawa et al. High sensitivity waveguide-type hydrogen sensor
Klein et al. Integrated-optic ammonia sensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term