JPS63291464A - Switching device - Google Patents

Switching device

Info

Publication number
JPS63291464A
JPS63291464A JP62127530A JP12753087A JPS63291464A JP S63291464 A JPS63291464 A JP S63291464A JP 62127530 A JP62127530 A JP 62127530A JP 12753087 A JP12753087 A JP 12753087A JP S63291464 A JPS63291464 A JP S63291464A
Authority
JP
Japan
Prior art keywords
superconductor
temperature
gate
switching device
semiconductor gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62127530A
Other languages
Japanese (ja)
Inventor
Toyoki Takemoto
竹本 豊樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62127530A priority Critical patent/JPS63291464A/en
Publication of JPS63291464A publication Critical patent/JPS63291464A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To provide a switching device adapted for a memory cell which can be easily manufactured with a large capacity by forming a cooling semiconductor gate through an insulator on a superconductor on which electrodes are disposed at both ends, reducing the temperature of the face of the gate at a superconductor side to vary the temperature of the superconductor, thereby altering the conductivity of the superconductor. CONSTITUTION:When a word line 1 becomes a potential VDD, a potential difference of VDD is applied to a connecting material of both the ends of a semiconductor gate 4, and the lower surface of the gate 4 absorbs heat. Thus, the lower surface is cooled, and a high temperature superconductor 6 is cooled through an insulator film 5. When the temperature of the superconductor 6 falls from a T2 to a T1, its resistance is abruptly reduced from a very large resistance R to a resistance '0'. The temperature of the superconductor 6 drops from a critical temperature T0 to the temperature T1 lower than the T0 by this property, and the potentials of a bit line 2 and a capacity 3 are electrically conducted. Then, when the line 1 is set to a ground potential, the heat absorbing action of the lower surface of the gate 4 is stopped, the superconductor 6 becomes higher than the critical temperature, its resistance rises, and the line 2 and the capacity are insulated. This operation is repeated to operate as a storage element.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超電導材料を使用して高密度のメモリーあるい
は論理素子等に適したスイッチング装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a switching device using superconducting materials and suitable for high-density memory or logic devices.

従第脅術 従来の高密度のメモリー素子は主に半導体装置を使用し
ている。すなわち、ダイナミックRAMにおいては、1
つのメモリセルは1つのMOS)ランジスタと1つの容
量から成っている。
Conventional high-density memory devices mainly use semiconductor devices. That is, in dynamic RAM, 1
One memory cell consists of one MOS transistor and one capacitor.

発明が解決しようとする問題点 MOSトランジスタのソースとドレイン間の距離すなわ
ちチャネル長は、ショートチャネル効果。
Problems to be Solved by the Invention The distance between the source and drain of a MOS transistor, that is, the channel length, is a short channel effect.

フローチャネル効果により、現在0.3μm 程度が限
界になっておシ、それ以外は、バンチスル効果によ5o
n、offのスイッチング特性を実現するのは限界であ
る。
Due to the flow channel effect, the current limit is about 0.3 μm, and for other areas, the limit is 50 μm due to the bunching effect.
There is a limit to realizing the switching characteristics of n and off.

また、通常の半導体集積回路におけるMOS)ランジス
タにおいてはゲート部に段差等が存在し、高密度化が防
げられていた。
Further, in a MOS transistor in a normal semiconductor integrated circuit, a step or the like exists in the gate portion, which prevents high density.

本発明はこれらの問題全解決し、大容量で製造も答易な
メモリー素子又は論理回路素子等に適したスイッチング
素子を提供することを目的とすム問題点を解決するため
の手段 本発明は超電導体と冷却用半導体ゲートを用いるもので
、両端に電極の配置された超電導体上に絶縁物を介し冷
却用半導体ゲー)1形成し、ゲートに電流を流すことK
よりゲートの超電導体側の面を低温化して超電導体の温
度を変化させ、超電導体の導電度を変化させるスイッチ
ング装置である。
The present invention aims to solve all of these problems and to provide a switching element suitable for memory elements, logic circuit elements, etc., which has a large capacity and is easy to manufacture. This method uses a superconductor and a cooling semiconductor gate, and involves forming a cooling semiconductor gate (1) on the superconductor with electrodes arranged at both ends via an insulator, and passing a current through the gate.
This is a switching device that lowers the temperature of the superconductor side of the gate to change the temperature of the superconductor, thereby changing the conductivity of the superconductor.

そして、本発明は、超電導体の一端の電極が電荷蓄積容
量に接続され、同他端の電極がビットラインに接続され
、半導体ゲートがワードラインに接続された記憶素子を
形成するものである。
The present invention forms a memory element in which an electrode at one end of the superconductor is connected to a charge storage capacitor, an electrode at the other end is connected to a bit line, and a semiconductor gate is connected to a word line.

作  用 本発明によれば、半導体ゲートの低温化洗よシ超電導体
全臨界温度以下とし常温電導から超電導に変化させ、超
電導体は大きい抵抗状態から急激に抵抗が下がシ抵抗0
となシ、非常に簡略なスイッチング装置を実現すること
が可能となる。
According to the present invention, the semiconductor gate is cleaned at a low temperature, the superconductor's total critical temperature is changed from normal temperature conductivity to superconductivity, and the superconductor changes from a high resistance state to a resistance state where the resistance suddenly decreases to 0 resistance.
In turn, it becomes possible to realize a very simple switching device.

実施例 第1図に従って本発明の一実施例のスイッチング素子を
示す。第1図はダイナミックランダムアクセスメモリ(
DRAM)である。第1図において、1はDRAMにお
けるワードラインで電圧信号としてvDDからOv迄の
信号変化をする。電圧が00時本素子は信号の書き込み
を行なう0′はピットラインで、信号の書き込みの際、
信号”1”に対応した電圧が印加される。3は電荷を蓄
積する容量である。4は半導体ゲートで薄膜状に形成さ
れたものであシ、電圧印加された時に下面が冷却される
ものである。5は絶縁被膜でS i02 。
Embodiment FIG. 1 shows a switching element according to an embodiment of the present invention. Figure 1 shows dynamic random access memory (
DRAM). In FIG. 1, 1 is a word line in a DRAM and changes as a voltage signal from vDD to Ov. When the voltage is 00, this element writes a signal. 0' is the pit line, and when writing a signal,
A voltage corresponding to the signal "1" is applied. 3 is a capacitor for storing charge. Reference numeral 4 is a semiconductor gate formed in the form of a thin film, the lower surface of which is cooled when a voltage is applied. 5 is an insulating film S i02 .

S i s N 4等の膜でも良いが、熱伝導性の良い
絶縁膜が望ましい。膜厚は絶縁性と熱伝導性を考慮して
10 nm〜200nmが望ましい。6は高温超電導性
材料で薄膜状に形成されているもので、BaYCuO系
などのセラミック材料は70に〜100にの高い臨界温
度が得られており狭い温度範囲で抵抗の急激に変化する
材料であシ、本発明には特に望ましい。なお、本発明に
用いる超電導体は我々の超電導材料を用いることができ
る。7はワードラインから引き込まれた配線で、半導体
ゲート部4の片側に接続されている。8は半導体ゲート
部4の他端につながった配線であシ、配線8の一方は接
地電位につながっている。9は容量3の一方の端につな
がった配線で、接地電位につながっている。
Although a film such as SiSN4 may be used, an insulating film with good thermal conductivity is preferable. The film thickness is preferably 10 nm to 200 nm in consideration of insulation and thermal conductivity. 6 is a high-temperature superconducting material formed in the form of a thin film. Ceramic materials such as BaYCuO have a high critical temperature of 70 to 100 °C, and are materials whose resistance changes rapidly in a narrow temperature range. Reeds are particularly desirable for the present invention. Note that our superconducting material can be used as the superconductor used in the present invention. Reference numeral 7 denotes a wiring drawn from the word line and connected to one side of the semiconductor gate section 4. Reference numeral 8 denotes a wiring connected to the other end of the semiconductor gate section 4, and one side of the wiring 8 is connected to the ground potential. A wiring 9 is connected to one end of the capacitor 3, and is connected to the ground potential.

第2図は半導体ゲート部を構成する積層薄膜部分を示す
もので、10は金属たとえばAI!金属を代表する配線
7と半導体ゲート4をつなぐ接続材である。11はN型
半導体で例えばZn2Te5(へ)。
FIG. 2 shows a laminated thin film portion constituting the semiconductor gate section, and 10 is a metal such as AI! It is a connecting material that connects the wiring 7, which is typically made of metal, and the semiconductor gate 4. 11 is an N-type semiconductor, for example, Zn2Te5.

5i(N)などが使われる。12はP型半導体で、Zn
2Te5(P)、 S 1CP)が使われ11.12で
半導体ゲート4が構成される。なお、薄膜状ゲート4と
してはBt 2 T e a又は他の半導体を用いても
よい。
5i(N) etc. are used. 12 is a P-type semiconductor, Zn
2Te5(P), S1CP) is used and the semiconductor gate 4 is constructed with 11.12. Note that Bt 2 Te a or other semiconductors may be used as the thin film gate 4 .

13は接続材1oと同じ金属を使用する。これら10〜
13の層は、前記絶縁被膜5の上に積層される。第2図
においてこの積層構造を形成することにより、ペルチェ
−効果により、接続材10゜13間すなわち半導体ゲー
ト4に電流を流すことでP型半導体12の端は吸熱を、
12の他端は発熱を起す。吸熱される下面は薄い絶縁膜
5を通して高温超電導体6を冷やすこととなる。
13 uses the same metal as the connecting material 1o. These 10~
Thirteen layers are laminated on top of the insulating coating 5. By forming this laminated structure in FIG. 2, the end of the P-type semiconductor 12 absorbs heat due to the Peltier effect by passing a current between the connecting members 10 and 13, that is, through the semiconductor gate 4.
The other end of 12 generates heat. The lower surface that absorbs heat cools the high temperature superconductor 6 through the thin insulating film 5.

第3図に、実際の使用状態における集積化構造断面図を
示すもので、第1図のメモリーが形成される。図におい
て、N型半導体11の端部にW(りングステン)1oが
付着されておシ、その綜は配線7と一体化して形成され
る。一方P型半導体12の端部はWの接続材13に接続
されており、その線は配線8と一体化して形成される。
FIG. 3 shows a sectional view of the integrated structure in actual use, in which the memory shown in FIG. 1 is formed. In the figure, W (ringsten) 1o is attached to the end of an N-type semiconductor 11, and its heel is formed integrally with the wiring 7. On the other hand, the end of the P-type semiconductor 12 is connected to a W connecting member 13, and its line is formed integrally with the wiring 8.

一方高温超電導体6の端部は、W配線14に接続されて
おシ、この配線の下部には数100入前後の薄い酸化被
膜16が形成されており、この酸化膜はW16で形成さ
れ接地電位につながっている配線との間にはさまれ、容
量を形成している。以上のデバイス構造は、全てガラス
基板17の上に蒸着法、CVD法などの手段で形成でき
るとともに、薄膜の多層構造で実現でき、パターン形成
も少ないマスクでよく多数のメモリー素子を一体化した
段差の少ない比較的単純な集積回路構造を得ることが可
能となる。このように、ガラス基板上に超電導体と半導
体ゲーtf用いたメモリ集積回路を形成することが可能
となる。そして、容量部、スイッチ部はたとえば1μm
以下さらに0.6μm以下とすることも可能で極めて大
荏量、高密度の素子とすることが可能となる。
On the other hand, the end of the high-temperature superconductor 6 is connected to the W wiring 14, and a thin oxide film 16 of around several hundred layers is formed at the bottom of this wiring, and this oxide film is made of W16 and is grounded. It is sandwiched between the wiring connected to the potential and forms a capacitor. All of the above device structures can be formed on the glass substrate 17 by means such as vapor deposition or CVD, and can also be realized with a thin film multilayer structure, requiring only a small amount of pattern formation and a step-like structure that integrates a large number of memory elements. This makes it possible to obtain a relatively simple integrated circuit structure with less noise. In this way, it is possible to form a memory integrated circuit using a superconductor and a semiconductor gate tf on a glass substrate. The capacitor and switch parts are, for example, 1 μm thick.
It is also possible to further reduce the thickness to 0.6 μm or less, making it possible to provide an extremely large amount of fibers and a high density device.

第1.2.3図に示したメモリー素子の動作を説明する
。ワードライン1がVDD 電位になった時、半導体ゲ
ート40両端の接続材にはvDDの電位差が加わること
となり、従って半導体ゲート4の下面で吸熱する。これ
により下面は冷却され、この温度は、絶縁物膜5を介し
て高温超電導体6が冷やされる。高温超電導体6は第4
図に示すように、T からT、に温度が下がった時、非
常に大きい抵抗Rから抵抗OKと急激に抵抗が下がる。
The operation of the memory device shown in FIG. 1.2.3 will be explained. When the word line 1 reaches the VDD potential, a potential difference of vDD is applied to the connecting material at both ends of the semiconductor gate 40, and therefore heat is absorbed at the lower surface of the semiconductor gate 4. This cools the lower surface, and the high temperature superconductor 6 is cooled down via the insulating film 5. High temperature superconductor 6 is the fourth
As shown in the figure, when the temperature drops from T to T, the resistance suddenly drops from a very large resistance R to OK.

この場合当初の温度はT2近傍に設定しである。In this case, the initial temperature is set near T2.

この性質により、高温超電導体6の温度は臨界温[To
からそれよシも低一温度T、に下がり、ビットライン2
と容量3の電位は′成気的に導通し、従って容量3には
ビットライン2の信号が転送されることとなる。次にワ
ードライン1を接地電位にすると、半導体ゲート4の下
面の吸熱作用は止まり、高温超電導体6は臨界温度以上
になってその抵抗は上昇し、従ってビットライン2と容
量は絶縁される。これにより容量3の一端に電荷が蓄積
されたこととなる。その後この蓄積された電荷を読み出
すためには、ワードライン1をVDD Kし、半導体ゲ
ート4に電圧を印加すれば、高温超電導体6は冷却され
、抵抗は下がシ、容量3に蓄積された電荷はビットライ
ン2を通じて読み出せることとなる。
Due to this property, the temperature of the high temperature superconductor 6 is the critical temperature [To
Then the temperature drops to a low temperature T, and bit line 2
The potential of the capacitor 3 becomes electrically conductive, so that the signal on the bit line 2 is transferred to the capacitor 3. Next, when the word line 1 is brought to the ground potential, the heat absorption effect on the lower surface of the semiconductor gate 4 stops, and the high temperature superconductor 6 reaches a critical temperature or higher and its resistance increases, so that the bit line 2 and the capacitance are insulated. This means that charge is accumulated at one end of the capacitor 3. After that, in order to read out this accumulated charge, the word line 1 is set to VDD K and a voltage is applied to the semiconductor gate 4, the high temperature superconductor 6 is cooled, the resistance is lowered, and the charge is accumulated in the capacitor 3. The charge can then be read out via bit line 2.

この動作を繰り返すことにより、記憶素子としての動作
を行なえることとなる。第4図においての具体的温度は
使用する高温超電導体の材料によって変シ、14Aとし
てYo、4Ba0.6Cu03の場合T。
By repeating this operation, it is possible to operate as a memory element. The specific temperature in FIG. 4 varies depending on the material of the high temperature superconductor used; 14A is Yo, and 4Ba0.6Cu03 is T.

が80°に、T2が95°に程度が得られる。is obtained at 80° and T2 at 95°.

本発明の他の応用として通常のゲートすなわちインバー
タとしての装置を第5図、第6図に示す。
Another application of the present invention is shown in FIGS. 5 and 6 as a conventional gate or inverter.

第5図で4,5.6は前記半導体ゲート、絶縁物。In FIG. 5, 4, 5.6 are the semiconductor gates and insulators.

高温超電導体で、動作原理は先に述べた通シである。2
oは入力端子で電圧vDDから0迄変化する入力信号v
iユ が印加される。21は出力電圧が得られる出力端
子、16は抵抗体で一端は出力voutに、他端は電源
vDDにつながっている。4゜6.6で構成された素子
において半導体ゲート4の一端は入力電圧vioにつな
がり、他端は接地電位につながっている。高温超電導体
6の一端は出力電圧V。utに他端は接地電位につなが
っている。
It is a high-temperature superconductor, and its operating principle is the same as described above. 2
o is the input terminal and the input signal v changes from voltage vDD to 0.
iyu is applied. 21 is an output terminal from which an output voltage can be obtained, and 16 is a resistor whose one end is connected to the output vout and the other end to the power supply vDD. In the element configured at 4°6.6, one end of the semiconductor gate 4 is connected to the input voltage vio, and the other end is connected to the ground potential. One end of the high temperature superconductor 6 has an output voltage V. The other end of ut is connected to ground potential.

この素子の動作特性を第6図に示す。第6図は■inに
対するV。ut特性であシ、入力電圧vinに対し出力
V。U、が反転し、インバータ特性を示も発明の効果 本発明は次に示すような大きな利点を有する。
The operating characteristics of this device are shown in FIG. Figure 6 shows ■V for in. ut characteristic, output V for input voltage vin. Effects of the Invention The present invention has the following great advantages.

■ シリコン単結晶基板を使う従来の半導体MO8型素
子に比し、通常のガラス基板等の絶縁基板を使うことが
出来、非常に安価に出来る。
■ Compared to the conventional semiconductor MO8 type device which uses a silicon single crystal substrate, it can use an insulating substrate such as a normal glass substrate and can be made at a very low cost.

■ 従来超LSIMOSメモリーはチャネル長が0.3
μm程度になるとショートチャネル効果、キャリアのオ
ーバシュート、浅い拡散、薄い酸化被膜によ)限界が見
えているが、本発明では寸法の限界はなく、むしろ熱効
率の点からは、狭い素子の方が価値があシ、ビット容量
として100Mピット程度になるとその利点が大きい。
■ Conventional VLSIMOS memory has a channel length of 0.3
However, in the present invention, there is no size limit, and in fact, from the point of view of thermal efficiency, narrower elements are better. The value is low, and the advantage is great when the bit capacity is about 100M pits.

設計寸法として0.5μm以下のものに適用可能で超高
密度、大容量化が可能となる。
It can be applied to designs with design dimensions of 0.5 μm or less, making it possible to achieve ultra-high density and large capacity.

特に通常の小面積のMOS)ランジスタでは段差がはげ
しくマスク工程も20枚以上になるのが普通であるが、
本発明による素子は構造も簡単であり、1oマスク以下
で素子を作ることが出来る。
In particular, in the case of ordinary small-area MOS) transistors, the steps are severe and the mask process usually requires 20 or more masks.
The device according to the present invention has a simple structure and can be manufactured using a mask of 10 or less.

■ 本発明における素子の配線はたとえばガラス等の絶
縁基板の上に配線することにより極端に浮遊容−1t−
下げることが出来、そのため例えばメモリー菓子の場合
は配線容量値も下げることが可能であり、従って小面積
で形成出来るだけでなく、超LS Iメモリーで使用さ
れる予定のトレンチ容量などの段差が大きく、リーク電
流の発生しやすい工程並び((構造などを採用する必要
がない。
■ The wiring of the element in the present invention is extremely effective by wiring on an insulating substrate such as glass.
Therefore, for example, in the case of memory confectionery, it is possible to lower the wiring capacitance value, and therefore not only can it be formed in a small area, but also the step difference in trench capacitance, which is planned to be used in VLSI memory, can be reduced. , there is no need to adopt a process arrangement (structure, etc.) that is likely to cause leakage current.

以上のように、本発明は、製造が容易な超高密度なスイ
ッチング菓子の実現に大きく寄与するものである。
As described above, the present invention greatly contributes to the realization of ultra-high-density switching confectionery that is easy to manufacture.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のメモリー素子を示した構成
説明図、第2図は第1図の半導体ゲート部を示した断面
図、第3図は第1図のメモリー素子部の構造断面図、第
4図は高温類″[E導体素子の熱特性図、第5図は本発
明の他の実施例のインバータ素子の構成説明図、第6図
は第6図のインバータ特性図である。 1・・・・・・ワードライン、2・・・・・・ビットラ
イン、3・・・・・・容量部、4・・・・・・半導体ゲ
ート、6・・・・・・絶縁被膜、6・・・・・・超電導
体、11・・・・・・N型半導体、12・・・・・・P
型半導体。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第4図
FIG. 1 is a configuration explanatory diagram showing a memory element according to an embodiment of the present invention, FIG. 2 is a sectional view showing the semiconductor gate portion of FIG. 1, and FIG. 3 is a structure of the memory element portion of FIG. 1. 4 is a diagram showing the thermal characteristics of a high-temperature conductor element, FIG. 5 is a diagram illustrating the configuration of an inverter element according to another embodiment of the present invention, and FIG. 1... Word line, 2... Bit line, 3... Capacitive section, 4... Semiconductor gate, 6... Insulation. Film, 6...Superconductor, 11...N-type semiconductor, 12...P
type semiconductor. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 4

Claims (6)

【特許請求の範囲】[Claims] (1)両端に電極の配置された超電導体上に絶縁物を介
して冷却用半導体ゲートを形成し、前記ゲートに電流を
流すことにより前記ゲートの前記超電導体側の面を低温
化して前記超電導体の温度を変化させ、前記超電導体の
導電度を変化させることを特徴とするスイッチング装置
(1) A semiconductor gate for cooling is formed on a superconductor with electrodes arranged at both ends via an insulator, and by passing a current through the gate, the temperature of the surface of the gate on the superconductor side is lowered, and the superconductor is heated. A switching device characterized in that the temperature of the superconductor is changed to change the conductivity of the superconductor.
(2)低温化により、超電導体を臨界温度以下とし常温
電導から超電導に変化させることを特徴とする特許請求
の範囲第1項記載のスイッチング装置。
(2) The switching device according to claim 1, characterized in that the temperature of the superconductor is lowered to below a critical temperature to change from room temperature conductivity to superconductivity.
(3)半導体ゲートがペルチェ効果により低温化するも
のであることを特徴とする特許請求の範囲第1項記載の
スイッチング装置。
(3) The switching device according to claim 1, wherein the semiconductor gate has a temperature reduced by the Peltier effect.
(4)超電導体の一端の電極が電荷蓄積容量に接続され
、同他端の電極がビットラインに接続され、半導体ゲー
トがワードラインに接続され、前記ワードラインにより
前記ゲートの低温化を制御し、前記容量への電荷の蓄積
および前記容量からの電荷の読み出しを行う記憶素子を
形成してなることを特徴とする特許請求の範囲第1項記
載のスイッチング装置。
(4) An electrode at one end of the superconductor is connected to a charge storage capacitor, an electrode at the other end is connected to a bit line, a semiconductor gate is connected to a word line, and the word line controls the temperature reduction of the gate. 2. The switching device according to claim 1, further comprising a memory element that stores charge in said capacitor and reads charge from said capacitor.
(5)同一基板上に、絶縁物、超電導体の薄膜、半導体
ゲート、容量が一体に集積化されていることを特徴とす
る特許請求の範囲第4項記載のスイッチング装置。
(5) The switching device according to claim 4, wherein an insulator, a superconductor thin film, a semiconductor gate, and a capacitor are integrated on the same substrate.
(6)超電導体と抵抗の直列接続体を電源に接続し、半
導体ゲートに入力信号を印加し、前記超電導体と抵抗の
接続点から出力信号を得るインバータを形成してなるこ
とを特徴とする特許請求の範囲第1項記載のスイッチン
グ装置。
(6) An inverter is formed by connecting a series connection body of a superconductor and a resistor to a power source, applying an input signal to a semiconductor gate, and obtaining an output signal from a connection point between the superconductor and the resistor. A switching device according to claim 1.
JP62127530A 1987-05-25 1987-05-25 Switching device Pending JPS63291464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62127530A JPS63291464A (en) 1987-05-25 1987-05-25 Switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62127530A JPS63291464A (en) 1987-05-25 1987-05-25 Switching device

Publications (1)

Publication Number Publication Date
JPS63291464A true JPS63291464A (en) 1988-11-29

Family

ID=14962298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62127530A Pending JPS63291464A (en) 1987-05-25 1987-05-25 Switching device

Country Status (1)

Country Link
JP (1) JPS63291464A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442195A (en) * 1991-01-11 1995-08-15 Hitachi, Ltd. Superconducting device including plural superconducting electrodes formed on a normal conductor
JP2007180406A (en) * 2005-12-28 2007-07-12 Toshiba Corp Non-volatile switching element, its manufacturing method and integrated circuit having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442195A (en) * 1991-01-11 1995-08-15 Hitachi, Ltd. Superconducting device including plural superconducting electrodes formed on a normal conductor
JP2007180406A (en) * 2005-12-28 2007-07-12 Toshiba Corp Non-volatile switching element, its manufacturing method and integrated circuit having the same

Similar Documents

Publication Publication Date Title
US4849801A (en) Semiconductor memory device having increased capacitance for the storing nodes of the memory cells
JPS60192359A (en) Semiconductor memory
TW454352B (en) Electrostatically operated tunneling transistor
US3665423A (en) Memory matrix using mis semiconductor element
US4929989A (en) MOS type semiconductor device potential stabilizing circuit with series MOS capacitors
US4604639A (en) Semiconductor memory device
JPS6014462A (en) Semiconductor memory element
US3500137A (en) Cryogenic semiconductor devices
JPS63291464A (en) Switching device
KR930006275B1 (en) Multi-layer type resistor for semiconductor device
JPS5864048A (en) Semiconductor integrated circuit device
JPS63291463A (en) Switching device
US3204116A (en) Solid state superconductor switching device wherein extraction of normal carriers controls superconductivity of said device
Romanenko et al. A numerical analysis of the storage times of dynamic random-access memory cells incorporating ultrathin dielectrics
JPH02260559A (en) Semiconductor integrated circuit device
JPS5978561A (en) Semiconductor memory device
JPS6221072Y2 (en)
KR0144944B1 (en) Static Random Access Memory Devices
JP2727773B2 (en) Method of manufacturing Josephson integrated circuit
JPS61140171A (en) Semiconductor memory device
JPH0319267A (en) Semiconductor integrated circuit device
JPH0666480B2 (en) Josephson junction device
JP3619144B2 (en) 1-transistor 1-capacitor dynamic random access memory
JPS582082A (en) Josephson junction device
JP2599500B2 (en) Superconducting element and fabrication method