JPS63291389A - Single-turn induction heating coil - Google Patents

Single-turn induction heating coil

Info

Publication number
JPS63291389A
JPS63291389A JP12580387A JP12580387A JPS63291389A JP S63291389 A JPS63291389 A JP S63291389A JP 12580387 A JP12580387 A JP 12580387A JP 12580387 A JP12580387 A JP 12580387A JP S63291389 A JPS63291389 A JP S63291389A
Authority
JP
Japan
Prior art keywords
coil
magnetic field
induction heating
heating coil
gap area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12580387A
Other languages
Japanese (ja)
Inventor
Yasuhiro Ikeda
泰弘 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP12580387A priority Critical patent/JPS63291389A/en
Priority to DE8888108274T priority patent/DE3873173T2/en
Priority to EP88108274A priority patent/EP0292920B1/en
Publication of JPS63291389A publication Critical patent/JPS63291389A/en
Priority to US07/456,203 priority patent/US4942279A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To prevent the magnetic field leakage in a gap area, the deterioration of the electromagnetic coupling, and the disturbance of the magnetic field by a feeder tube by providing conductive arc plates in the gap area on the coil peripheral end face so that the gap area can be practically shielded. CONSTITUTION:A pair of symmetrical conductive arc plates 24A, 24B are welded on the bottom side periphery of a coil 20 facing a monocrystal growth zone, and the side of a gap area 23 facing the monocrystal growth zone is practically shielded. The plates 24A, 24B are inclined toward the outer diameter side so as to approach the monocrystal growth zone side. As a result, the electromagnetic coupling between the coil 20 and the monocrystal growth zone is increased, and the crystal growth effect is improved. A feed tube 11 is electromagnetically shielded with the plates 24A, 24B, thus the magnetic field disturbance at the portion can be prevented. The magnetic field leakage in the gap area, the deterioration of the electromagnetic coupling, and the magnetic field disturbance can be thereby prevented.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、浮遊帯域溶融法(以下FZ法という)に用い
る単巻誘導加熱コイルに係り、特に給電管等のコイルに
付設させる各種部材の配置空間を確保する為に、コイル
周方向の両端面間を所定間隔離間して周回させた単巻誘
導加熱コイルに関する。
Detailed Description of the Invention "Field of Industrial Application" The present invention relates to a single-turn induction heating coil used in the floating zone melting method (hereinafter referred to as the FZ method), and in particular to various members attached to the coil such as a feed pipe. This invention relates to a single-turn induction heating coil that is wound around with a predetermined distance between both end faces in the circumferential direction of the coil in order to secure a space for arrangement.

「従来の技術」 従来よりFZ法を利用して半導体単結晶の製造、半導体
多結晶の精製、化合物半導体の製造等を行う装置は公知
であり、この種の装置は、例えば半導体単結晶製造装置
において、上軸に棒状原料多結晶を、下軸に直径の小さ
い単結晶の種を保持し、前記原料多結晶周囲に囲繞した
高周波誘導加熱コイルにより多結晶の一端を溶融し前記
種結晶に融着して種付けした後、種絞りにより無転移化
しつつ前記コイルと多結晶を相対的に回転且つ軸線方向
に相対移動させながら前記半導体棒を帯域溶融させなが
ら棒状半導体単結晶を製造するよう構成している。
"Prior Art" Equipment for manufacturing semiconductor single crystals, refining semiconductor polycrystals, manufacturing compound semiconductors, etc. using the FZ method has been known. In this method, a rod-shaped raw material polycrystal is held on the upper shaft and a single crystal seed with a small diameter is held on the lower shaft, and one end of the polycrystal is melted by a high-frequency induction heating coil surrounding the raw material polycrystal and fused to the seed crystal. After seeding, the coil and the polycrystal are relatively rotated and relatively moved in the axial direction while the semiconductor rod is made to be dislocated by seed squeezing, and the semiconductor rod is zone-melted to produce a rod-shaped semiconductor single crystal. ing.

従ってこの種の装置においては、原料多結晶を挟小域に
おいて短時間に芯まで溶融させる必要から、半導体棒の
帯域溶融域に集中して磁界を付加し得る事が必要であり
、一方帯域溶融後の半導体を不純物のバラツキ等がなく
安定して単結晶に成長させるには前記浮遊帯域と接する
単結晶成長域の始端側を緩やかに放熱させる必要があり
、、かかる要請を満足する為に、従来より単巻偏平の加
熱コイルを用いつつその内径、外径、断面形状等を種々
選択して前記帯域の加熱と単結晶の成長をバランスよく
行うよう構成している。
Therefore, in this type of equipment, it is necessary to melt the polycrystalline raw material down to the core in a short time in a small region, so it is necessary to be able to apply a magnetic field concentrated in the zone melting zone of the semiconductor rod. In order to stably grow the subsequent semiconductor into a single crystal without variations in impurities, it is necessary to gently dissipate heat from the starting end of the single crystal growth region in contact with the floating zone.In order to satisfy this requirement, Conventionally, a single-turn flat heating coil is used, and its inner diameter, outer diameter, cross-sectional shape, etc. are variously selected to achieve a well-balanced heating of the zone and growth of the single crystal.

しかしながら製造単結晶の大口径化が進むに連れ、前記
帯域の溶融はより狭域部分に集中して加熱させる必要が
あり、又単結晶の成長は窓側と周縁側の温度変化を避け
る為により一層緩やかにバランスよく放熱を行う必要が
あり、このような二律背反的な加熱作用を単一の加熱コ
イルで満足させる事はもはや困難になってきた。
However, as the diameter of manufactured single crystals increases, the melting of the zone needs to be concentrated in a narrower area, and the growth of single crystals has become more difficult in order to avoid temperature changes between the window side and the peripheral side. It is necessary to dissipate heat slowly and in a well-balanced manner, and it has become difficult to satisfy such antinomic heating effects with a single heating coil.

そこで本発明者は同時出願における特許願(1)におい
て、例えば第5図及び第6図で示すように、浮遊帯域3
の周囲に囲繞した溶融を行なう第1の単巻加熱コイル1
0(以下内側コイルという)の外周囲に、第2の加熱コ
イル20(以下外側コイルという)を設け、内側コイル
10により浮遊帯域3を溶融しつつ外側コイル20によ
り単結晶始端側周縁側4aを加熱しながら、単結晶4芯
側と外周側間の温度変化を極力抑制し、安定した単結晶
成長を行うように構成した技術を提案している。
Therefore, in the patent application (1) filed concurrently, the present inventor proposed that, for example, as shown in FIGS. 5 and 6, the floating zone 3
A first single-turn heating coil 1 that performs melting surrounding the
0 (hereinafter referred to as the inner coil), a second heating coil 20 (hereinafter referred to as the outer coil) is provided, and while the floating zone 3 is melted by the inner coil 10, the peripheral edge side 4a on the starting end side of the single crystal is We are proposing a technology that suppresses temperature changes between the four cores of the single crystal and the outer circumferential side as much as possible while heating, thereby achieving stable single crystal growth.

「発明が解決しようとする問題点」 しかしながら、前記技術においては、狭小の帯域を加熱
する必要性等より前記内側コイル10と外側コイル20
を実質的にほぼ同一水平面上に配置しなければならない
が、このような構成を採ると、第6図に示すように内側
コイルIO外壁より延設する内側給電管11が障害とな
って外側コイル20の周方向両端面間の空隙を接近させ
る事が出来ず、この為該空隙部分23に磁界漏れが発生
し且つ電磁的結合度も弱まる。而も該空隙部分23に存
在する内側給電管11に磁界の乱れが生じ易い。
"Problems to be Solved by the Invention" However, in the above technology, the inner coil 10 and the outer coil 2
However, if such a configuration is adopted, the inner power supply pipe 11 extending from the outer wall of the inner coil IO becomes an obstacle, as shown in FIG. The gap between both end faces in the circumferential direction of 20 cannot be brought close to each other, so that magnetic field leakage occurs in the gap portion 23 and the degree of electromagnetic coupling is also weakened. Moreover, disturbance of the magnetic field is likely to occur in the inner feed tube 11 existing in the gap portion 23.

このような欠点は、複数のコイルを用いた加熱機構のみ
ならず、例えば第7図に示すように管状単巻コイル50
の外周囲の頂部50a周径方向にリング状の鍔部51を
設けた技術(特開昭58−82492号)が開示されて
いるが、かかる従来技術においては、前記リング状鍔部
51をコイル外周頂部50aに連接した為に、該コイル
50の両端より外方に延在する給電管52が障害となっ
て、やはり前記鍔部51両端面51aを近接させる事が
出来ず、前記と同様な問題が発生し、該コイル50を用
いて原料多結晶の帯域溶融を行った場合、製造された単
結晶のマクロ的及びミクロ的抵抗分布にバラツキが生じ
、高品質の単結晶が製造し得ない。
Such a drawback exists not only in a heating mechanism using a plurality of coils, but also in a heating mechanism using a tubular single-turn coil 50 as shown in FIG.
A technique has been disclosed (Japanese Patent Laid-Open No. 58-82492) in which a ring-shaped flange 51 is provided in the circumferential direction of the top 50a of the outer periphery. Since it is connected to the outer circumferential top portion 50a, the feeder tube 52 extending outward from both ends of the coil 50 becomes an obstacle, and the both end surfaces 51a of the flange portion 51 cannot be brought close to each other. If a problem occurs and the coil 50 is used to perform zone melting of the raw material polycrystal, variations will occur in the macro and micro resistance distribution of the produced single crystal, making it impossible to produce a high quality single crystal. .

本発明は、かかる欠点を解消する為に、給電管等のコイ
ルに付設させる各種部材の配置空間を確保する為に、コ
イル周方向の両端面間を所定間隔離間して周回させた場
合においても、該離間区域に磁界漏れや電磁的結合度の
低下更には前記給電管の存在により磁界の乱れが生じる
事のない単巻誘導加熱コイルを提供する事を目的とする
In order to eliminate such drawbacks, the present invention provides a space for arranging various members attached to the coil, such as a feed tube, even when the coil is circulated with a predetermined distance between both end faces in the circumferential direction. It is an object of the present invention to provide a single-turn induction heating coil that does not cause magnetic field leakage in the separated area, decrease in the degree of electromagnetic coupling, or cause disturbance of the magnetic field due to the presence of the feed tube.

「問題点を解決する為の手段」 本発明はかかる技術的課題を達成する為に、第1図乃至
第4図に示すように、 ■少なくとも被加熱区域と対面するコイル周面20a側
に一又は複数の導電性弧状板24A、24Bを固着した
点、 ■前記弧状板24A、24Bにより、コイル20周方向
の両端面2Qb間の離間区域23を実質的に連間可能に
構成した点 を必須構成要件とする単巻誘導加熱コイルを提案する。
"Means for Solving the Problems" In order to achieve the above technical problems, the present invention, as shown in FIGS. 1 to 4, provides the following: or a plurality of conductive arc-shaped plates 24A, 24B are fixed; (2) The arc-shaped plates 24A, 24B are configured to substantially connect the separated area 23 between both end surfaces 2Qb in the circumferential direction of the coil 20; We propose a single-turn induction heating coil as a component.

この場合前記弧状板24A、24Bは、前記コイル20
周面とほぼ同一か僅かに小の曲車幅をもって形成するの
がよく、又前記弧状板24A、24Bにより実質的に連
間するとは、一対の導電性弧状板24A、24Bをコイ
ル両端側より離間区域23側に延在させ、離間区域23
中央位置でスリット空隙25を介してその周方向両端面
20bを対峙させてもよく(第1図参照)、−の導電性
弧状板をコイル一端側より離間区域23側に延在させ、
該離間区域23全域をほぼ隠蔽するように構成してもよ
い。又前記スリット空隙25、言い変えれば弧状板24
A、24Bがスリット空隙25を介して周方向に対峙す
る両端26形状は半径方向に延在する如く形成してもよ
く(第1図参照)、又、周径方向に傾けて形成する事も
可能である。
In this case, the arcuate plates 24A and 24B are connected to the coil 20.
It is preferable to form the curved wheel with a width that is approximately the same as or slightly smaller than the circumferential surface, and being substantially connected by the arcuate plates 24A and 24B means that the pair of conductive arcuate plates 24A and 24B are connected from both ends of the coil. Extending to the separation area 23 side, the separation area 23
Both end surfaces 20b in the circumferential direction may be opposed to each other at the center position via the slit gap 25 (see FIG. 1), and a negative conductive arc plate is extended from one end of the coil to the separation area 23 side,
It may be configured so that the entire area of the separation area 23 is substantially hidden. In addition, the slit gap 25, in other words, the arcuate plate 24
The shapes of both ends 26 where A and 24B face each other in the circumferential direction via the slit gap 25 may be formed to extend in the radial direction (see Fig. 1), or may be formed to be inclined in the circumferential direction. It is possible.

尚、前記弧状板24A、24Bはコイル内径側より外径
側に向け、被加熱区域側に近接する方向に傾斜させる事
により熱効率及び電磁的結合度の面で好ましい結果が得
られる。
By slanting the arcuate plates 24A and 24B from the inner diameter side of the coil toward the outer diameter side and toward the heated area side, favorable results can be obtained in terms of thermal efficiency and electromagnetic coupling.

「作用」 かかる技術手段によれば、給電管11等の各種部材の配
置空間を確保する為に、コイル20周方向の両端面2O
b間を所定間隔離間して周回させた場合においても、前
記弧状板24A、24Bにより離間区域23の被加熱区
域4と対面する側を実質的に連間する事が出来る為に、
前記離間区域23に発生する磁界漏れ′¥!、磁的結合
度の低下及び給電管11に起因する磁界の乱れを防止出
来、これにより被加熱区域側4への悪影響を最少に押え
る事が出来る。
"Operation" According to this technical means, in order to secure the arrangement space for various members such as the feed tube 11, both end faces 2O in the circumferential direction of the coil 20 are
Even when the heating area 23 is circulated with a predetermined distance between the areas 24a and 24b, the arcuate plates 24A and 24B make it possible to substantially connect the side of the spaced area 23 facing the heated area 4.
Magnetic field leakage generated in the separation area 23'! , it is possible to prevent a decrease in the degree of magnetic coupling and disturbance of the magnetic field caused by the feed tube 11, and thereby to minimize the adverse effects on the heated area side 4.

又本技術手段によれば、前記弧状板24A、24Bの板
厚や傾斜角度を自在に決定出来る為に、該弧状板24A
、24Bの板厚を厚くしたり、又被加熱区域4側に接近
させて配置する事により被加熱区域4(単結晶成長域)
間の電磁的結合度が向上し、これによりコイル20イン
ピーダンスが減少する為に外径側にも誘導電流が流れ易
くなり電気的特性が向上する。
Further, according to the present technical means, since the plate thickness and inclination angle of the arcuate plates 24A and 24B can be freely determined, the arcuate plates 24A and 24B can be freely determined.
, 24B, or by arranging them close to the heated area 4 side, the heated area 4 (single crystal growth area)
The degree of electromagnetic coupling between the coils 20 and 20 is improved, which reduces the impedance of the coil 20, making it easier for induced current to flow also on the outer diameter side, improving electrical characteristics.

更に従来の単巻誘導加熱コイルにおいては、コイルの内
外径比率のみで、電流比率を決定していたが本技術手段
においては、連間板24A及び24Bの厚さや長さを適
宜調節する事により、部分的に電磁界を強化し、例えば
内側コイル10を偏芯した場合に、単結晶始端側周縁部
4aの円周上の電磁界の不均一化を相殺することが出来
、コイル1o及び20の設計自由度を増す事が出来る。
Furthermore, in conventional single-turn induction heating coils, the current ratio was determined only by the ratio of the inner and outer diameters of the coil, but with the present technical means, the current ratio can be determined by appropriately adjusting the thickness and length of the connecting plates 24A and 24B. , when the electromagnetic field is partially strengthened and, for example, the inner coil 10 is eccentric, it is possible to cancel out the non-uniformity of the electromagnetic field on the circumference of the single crystal start end side peripheral part 4a, and the coils 1o and 20 The degree of freedom in design can be increased.

「実施例」 以下、図面を参照して本発明の好適な実施例を例示的に
詳しく説明する。ただしこの実施例に記載されている構
成部品の寸法、材質、形状、その相対配置などは特に特
定的な記載がない限りは、この発明の範囲?それのみに
限定する趣旨ではなく、単なる説明例に過ぎない。
"Embodiments" Hereinafter, preferred embodiments of the present invention will be described in detail by way of example with reference to the drawings. However, the dimensions, materials, shapes, relative positions, etc. of the components described in this embodiment are within the scope of this invention unless otherwise specified. This is not intended to be limiting, and is merely an illustrative example.

第1図乃至第4図は本発明の実施例に係る半導体単結晶
製造装置に使用される、複数の加熱コイルからなる加熱
機構を示し、第1図は底面図、第2図は平面図、第3図
は第1図のA−A’線断面図。
1 to 4 show a heating mechanism consisting of a plurality of heating coils used in a semiconductor single crystal manufacturing apparatus according to an embodiment of the present invention, FIG. 1 is a bottom view, FIG. 2 is a top view, FIG. 3 is a sectional view taken along the line AA' in FIG. 1.

第4図は製造状態における半導体棒との位置関係を示す
第1図のB−B’線断面図である。
FIG. 4 is a sectional view taken along the line BB' in FIG. 1 showing the positional relationship with the semiconductor rod in the manufacturing state.

本加熱機構は、原料多結晶2の帯域溶融を行う第1の単
巻偏平加熱コイル(以下内側コイル1Gという)と、該
内側コイル10と同心状に且つほぼ同一平面上に沿って
その外周囲を囲繞する如く周回して配置された第2の単
巻偏平加熱コイル(以下外側コイル20という)とを有
し、これらのコイル10.20はいずれも外壁面より平
行に外方に延設する各2木の給電管11.21を介して
支持体41に一体的に連結され、前記両コイル10.2
0間の間隔保持を行っている。
This heating mechanism includes a first single-turn flat heating coil (hereinafter referred to as the inner coil 1G) that performs zone melting of the raw material polycrystalline 2, and a first single-turn flat heating coil (hereinafter referred to as the inner coil 1G) that is concentric with the inner coil 10 and extends along its outer periphery along substantially the same plane. A second single-turn flat heating coil (hereinafter referred to as the outer coil 20) is arranged so as to surround the outer wall, and each of these coils 10 and 20 extends outward parallel to the outer wall surface. The coils 10.2 are integrally connected to the support body 41 via two feeder tubes 11.21.
The interval between 0 is maintained.

次にこれらの各種部材の構成について説明する。Next, the configurations of these various members will be explained.

前記支持体41は前記コイルto、20及び給電管11
.21と同様な銅、銀又はこれらを含む導体で形成され
、前記給電管11.21を固着した反対側の壁面に、前
記給電管11.21と連通ずる開口(図示せず)を設け
、該開口に冷却液導入管42(第2図参照)を連接し、
該導入管に導入された冷却液が前記支持体41により分
岐されて各給電管11.21側に導出させるよう構成す
るとともに、前記導入管の基端側に高周波電源40を接
続し、該高周波電源40より、冷却液導入管−支持体4
1−給電管11.21を介して前記内側及び外側コイル
20に、夫々同一周波数の高周波電流を流すように構成
している。
The support body 41 supports the coil to, 20 and the feed tube 11.
.. 21, an opening (not shown) communicating with the power supply pipe 11.21 is provided on the opposite wall surface to which the power supply pipe 11.21 is fixed. A coolant introduction pipe 42 (see Fig. 2) is connected to the opening,
The cooling liquid introduced into the introduction pipe is branched by the support 41 and led out to each power supply pipe 11.21 side, and a high frequency power source 40 is connected to the proximal end side of the introduction pipe to From the power supply 40, the cooling liquid introduction pipe-support body 4
1 - High frequency currents having the same frequency are passed through the inner and outer coils 20 through the feed pipes 11.21, respectively.

さて、前記内側コイル10は、半径方向に沿うスリット
空隙12を介してリング状に形成した断面略撲状の中空
偏平体から形成され、該スリット空隙12を介して対峙
している両端部外周壁土に夫々給電管(以下内側給電管
という) 11を連接し、該内側給電管11を半径方向
に沿って外側コイル2o外周近傍まで延伸させるととも
にその先側をへの字状に拡開させた後その終端を支持体
41に取付ける。
Now, the inner coil 10 is formed from a hollow flat body formed into a ring shape with a substantially square cross section through a slit gap 12 along the radial direction, and the outer peripheral walls of both ends facing each other with the slit gap 12 interposed therebetween. After connecting a feed tube 11 (hereinafter referred to as an inner feed tube) to each of the inner feed tubes 11 and extending the inner feed tube 11 along the radial direction to the vicinity of the outer periphery of the outer coil 2o, the tip side thereof is expanded into a U-shape. Its terminal end is attached to the support 41.

そして前記内側コイルlOの形状について第4図に基す
いて説明するに、該コイル内径10aは原料多結晶2直
径より小に設定するとともに、下面側の水平状態を維持
して内径側に向け断面先細状に形成しつつその内部の空
洞部13内に給電管11より導入された冷却液が循環可
能に構成する。
The shape of the inner coil 1O will be explained based on FIG. 4.The coil inner diameter 10a is set smaller than the diameter of the raw material polycrystal 2, and the lower surface side is maintained in a horizontal state, and the cross section is directed toward the inner diameter side. While being formed into a tapered shape, the cooling liquid introduced from the power supply pipe 11 into the cavity 13 inside thereof can be circulated.

又該内側コイル10は、リング状の鍔部15をコイル外
周面上縁側に水平に囲繞連接してみかけ状の外周径を大
にするとともに、外周面下縁端を面取りし、後記外側コ
イル20内径の小径化を可能にする。尚前記リング状の
鍔部15の周方向両端面20bは、内側コイル10のス
リット空隙12の延長線上の位置まで近接させて、スリ
ット空隙15aを介して対峙させるように構成し、これ
により、外方に延在する給電管11の電磁連間を行うと
ともに、該スリット空隙15a部分の不均一磁界の発生
を防止している。
The inner coil 10 has a ring-shaped flange 15 connected horizontally to the upper edge of the outer circumferential surface of the coil to increase the apparent outer circumferential diameter, and the lower edge of the outer circumferential surface is chamfered to form the outer coil 20 described later. Enables smaller inner diameter. Both end surfaces 20b in the circumferential direction of the ring-shaped flange 15 are arranged so as to be close to each other on the extension line of the slit gap 12 of the inner coil 10 and to face each other with the slit gap 15a interposed therebetween. In addition to providing electromagnetic linkage of the feeder tube 11 extending in the opposite direction, generation of a non-uniform magnetic field in the slit gap 15a is prevented.

この結果前記内側コイルlOは内径側に向け断面先細状
に而も前記鍔部15により周面方向に幅広に形成する事
が出来る為に偏平化し、これによりコイル10内径側の
加熱せんとする浮遊帯域3への磁界集中性と、該帯域3
における単位時間当たりの溶融速度が増し、原料多結晶
2を大口径化した場合においても浮遊帯域3の溶融を安
定且つすみやかに行う事が出来る。
As a result, the inner coil 10 has a tapered cross section toward the inner diameter side, and can be formed to have a wider width in the circumferential direction due to the flange 15, so that the inner coil 10 is flattened. Magnetic field concentration in band 3 and band 3
The melting speed per unit time increases, and even when the diameter of the raw material polycrystal 2 is increased, the floating zone 3 can be melted stably and quickly.

一方外側コイル20は、内側コイル底側周面を囲繞する
如く周回させた、断面便状のリング体で形成され、その
周方向両端部を内側給電管11周面に近接して配置する
。そして前記コイル両端部の外壁面上には、前記内側給
電管11との外側に沿って平行にへの字状に延伸させた
外側給電管21を設け、そのその終端を前記支持体41
に嵌設する。
On the other hand, the outer coil 20 is formed of a ring having a stool-like cross section and is wound around the bottom circumferential surface of the inner coil, and both circumferential ends thereof are disposed close to the circumferential surface of the inner feed tube 11 . On the outer wall surface of both ends of the coil, an outer power supply pipe 21 is provided which extends parallel to the outer side of the inner power supply pipe 11 in a V-shape, and its terminal end is connected to the support 41.
to be fitted.

そして該外側コイル20は第4図に示すように、その内
径を浮遊帯域3と隣接する単結晶成長域4の始端側周縁
側4a外径と同一か僅かに大に設定するとともに、内径
側に向け断面先細状に形成しつつ下面側を内側コイル1
0下面と同一水平面上に位置せしめ、その外周側に冷却
液導入用の貫通孔22を穿孔周回させ、該貫通孔22内
に給電管21より導入された冷却液が循環可能に形成す
る。
As shown in FIG. 4, the outer coil 20 has an inner diameter set to be the same as or slightly larger than the outer diameter of the peripheral edge 4a on the starting end side of the single crystal growth region 4 adjacent to the floating zone 3. The inner coil 1 is formed with a tapered cross section while the lower surface side is
0, and a through hole 22 for introducing a cooling liquid is formed around the outer circumferential side thereof so that the cooling liquid introduced from the power supply pipe 21 can circulate in the through hole 22.

又前記外側コイル20の周方向両端面20b間に、内側
コイル10外壁より延設する内側給電管11が存在する
為に、周方向両端面20b間の離間区域23を接近させ
る事が出来ず、当然に該離間区域23より磁界漏れや内
側給電管11の存在に起因する磁界の乱れ等が発生する
Furthermore, since the inner feed tube 11 extending from the outer wall of the inner coil 10 is present between the circumferential end surfaces 20b of the outer coil 20, the separation areas 23 between the circumferential end surfaces 20b cannot be brought close to each other. Naturally, magnetic field leakage from the separation area 23 and disturbance of the magnetic field due to the presence of the inner feed tube 11 occur.

そこで本実施例においては第1図に示すように単結晶成
長域4と対面するコイル底側周面上に、対称形状の一対
の弧状板24A、24Bを溶着し、前記離間区域23の
単結晶成長域4と対面する側を実質的に隠蔽している。
Therefore, in this embodiment, as shown in FIG. The side facing Growth Area 4 is substantially hidden.

次に前記弧状板24A、24Bの構成について詳細に説
明するに、該弧状板24A、24Bは、コイルと同材質
の銅又は銀製の板状部材を用いてコイル周面とほぼ同一
か僅かに小の曲車幅を有する如く、略半弓形状をもって
形成され、そしてその内縁26何と弦部27をコイル底
側周面20aに溶着した後、単結晶成長域4側に接近す
る如く外径側に向け下向きに傾斜させるとともに、該弧
状板24A、24Bの周方向両端面2Ob間を極力近接
させて、内側給電管11と単結晶成長域4間を実質的に
連間可能に構成する。
Next, the structure of the arcuate plates 24A, 24B will be explained in detail. The arcuate plates 24A, 24B are made of copper or silver plate members made of the same material as the coil, and are made of copper or silver plate members that are approximately the same as or slightly smaller than the circumferential surface of the coil. After welding the inner edge 26 and chord part 27 to the bottom circumferential surface 20a of the coil, weld the inner edge 26 and chord part 27 to the outer diameter side so as to approach the single crystal growth region 4 side. The arcuate plates 24A and 24B are tilted downward, and both end surfaces 2Ob of the arcuate plates 24A and 24B in the circumferential direction are brought close to each other as much as possible, so that the inner feed tube 11 and the single crystal growth region 4 can be substantially connected to each other.

この結果、前記外側コイル20の内縁側を単結晶成長域
4の始端側周縁側4aに対峙させて配置し得るとともに
、前記弧状板24A 、24B言い換えればコイル20
の一部が単結晶始端側周縁部に近ずくことになる為に、
単結晶成長域4間の電磁的結合がよくなり、結晶成長効
果を良好にするとともに単結晶成長域4始端側における
溶解面4bを浅くする事が出来、マクロ及びミクロの抵
抗分布を向上させる事が出来る。
As a result, the inner edge side of the outer coil 20 can be arranged facing the starting end side peripheral edge side 4a of the single crystal growth region 4, and the arcuate plates 24A, 24B, in other words, the coil 20
Because a part of it approaches the peripheral edge of the single crystal starting edge,
The electromagnetic coupling between the single crystal growth regions 4 is improved, the crystal growth effect is improved, and the melting surface 4b on the starting end side of the single crystal growth region 4 can be made shallower, thereby improving the macro and micro resistance distribution. I can do it.

更に本実施例によれば前記給電管11の単結晶成長域4
側における電磁的連間を行う事が出来る為に、その部分
における磁界漏れを防止出来、単結晶成長域4側の加熱
温度の局部的変化に起因する結晶に対する不均一さを防
止する事が出来る。
Furthermore, according to this embodiment, the single crystal growth region 4 of the power supply tube 11
Since electromagnetic connection can be performed on the side, it is possible to prevent magnetic field leakage in that part, and it is possible to prevent non-uniformity in the crystal caused by local changes in the heating temperature on the side of the single crystal growth area 4. .

又前記弧状板24A、24Bはコイル離間区域23を隠
蔽する蓋としても機能する為に、第6図に示すガス流の
巻き込み対流5が前記離間区域23を通過して直接多結
晶周縁部2a  に衝突するのを防止出来、多結晶の均
一加熱作用の向上とともに、多結晶周縁部2aより未溶
融部分がつらら状に垂下するいわゆる「重比」6現象を
防止出来る。
Furthermore, since the arcuate plates 24A and 24B also function as a cover for concealing the coil separation area 23, the entraining convection 5 of the gas flow shown in FIG. Collision can be prevented, the uniform heating effect of the polycrystals can be improved, and the so-called "gravity ratio" phenomenon in which unmelted parts hang down in an icicle shape from the polycrystal peripheral edge 2a can be prevented.

「発明の効果」 以上記載の如く本発明によれば、コイル周方向の両端面
間を所定間隔離間して周回させた場合においても、該離
間区域に磁界漏れや電磁的結合度の低下更には前記給電
管の存在により磁界の乱れが生じる事のない単巻誘導加
熱コイルを得る事が出来るとともに、特に、内側コイル
と外側コイルをほぼ同一平面上に配置した場合における
種々の問題点を解決し得る単巻誘導加熱コイルを提供す
る事が出来る。
"Effects of the Invention" As described above, according to the present invention, even when the coil is circulated with a predetermined spacing between both end faces in the circumferential direction, magnetic field leakage occurs in the spaced area, the degree of electromagnetic coupling decreases, and It is possible to obtain a single-turn induction heating coil that does not cause disturbance of the magnetic field due to the presence of the feed tube, and also solves various problems especially when the inner coil and outer coil are arranged on almost the same plane. It is possible to provide a single-turn induction heating coil.

等の種々の著効を有す。It has various effects such as

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は本発明の実施例に係る半導体単結晶
製造装置に使用される、複数の加熱コイルからなる加熱
機構を示し、第1図は底面図、第2図は平面図、第3図
は第1図のA−A’線断面図、第4図は製造状態におけ
る半導体棒との位鐙関係を示す第1図のB−B’線断面
図である。 第5図(A)、(B)及び第6図は本発明が解決すべき
問題点を開示した加熱機構を示し、第5図(A)は平面
図、第5図(B)は底面図、第6図は縦断面説明図であ
る。第7図は従来技術に係る加熱コイルを示す平面図で
ある。 第1図 第3図 第4vA 歯 第5図 (A) CB) 第 6 図 第7図
1 to 4 show a heating mechanism consisting of a plurality of heating coils used in a semiconductor single crystal manufacturing apparatus according to an embodiment of the present invention, FIG. 1 is a bottom view, FIG. 2 is a top view, 3 is a sectional view taken along the line AA' in FIG. 1, and FIG. 4 is a sectional view taken along the line BB' in FIG. 1, showing the relationship between the stirrup and the semiconductor rod in the manufacturing state. 5(A), 5(B), and 6 show the heating mechanism disclosing the problem to be solved by the present invention, FIG. 5(A) is a plan view, and FIG. 5(B) is a bottom view. , FIG. 6 is an explanatory longitudinal cross-sectional view. FIG. 7 is a plan view showing a heating coil according to the prior art. Figure 1 Figure 3 Figure 4vA Teeth Figure 5 (A) CB) Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 1)コイル周方向の両端面間を所定間隔離間して周回さ
せた、浮遊帯域溶融法に用いる単巻誘導加熱コイルにお
いて、少なくとも被加熱区域と対面するコイル周面側に
、一又は複数の導電性弧状板を固着し、該弧状板により
前記離間区域を実質的に遮閉可能に構成した事を特徴と
する単巻誘導加熱コイル 2)前記弧状板がコイル内径側より外径側に向け所定角
度傾斜している特許請求の範囲第1項記載の単巻誘導加
熱コイル 3)前記弧状板が、前記コイル周面とほぼ同一か僅かに
小の曲率幅をもって形成されている特許請求の範囲第1
項又は第2項記載の単巻誘導加熱コイル
[Claims] 1) In a single-turn induction heating coil used for the floating zone melting method, which is circulated with a predetermined distance between both end faces in the circumferential direction of the coil, at least on the side of the coil circumferential face facing the heated area. 2) A single-turn induction heating coil characterized in that one or more conductive arc-shaped plates are fixedly attached, and the arc-shaped plates are configured to substantially block the separated area. 3) The single-turn induction heating coil according to claim 1 is inclined at a predetermined angle toward the outer diameter side. Claim 1
Single-turn induction heating coil according to item 2 or item 2
JP12580387A 1987-05-25 1987-05-25 Single-turn induction heating coil Pending JPS63291389A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP12580387A JPS63291389A (en) 1987-05-25 1987-05-25 Single-turn induction heating coil
DE8888108274T DE3873173T2 (en) 1987-05-25 1988-05-24 DEVICE FOR HF INDUCTION HEATING.
EP88108274A EP0292920B1 (en) 1987-05-25 1988-05-24 Rf induction heating apparatus
US07/456,203 US4942279A (en) 1987-05-25 1989-12-20 RF induction heating apparatus for floating-zone melting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12580387A JPS63291389A (en) 1987-05-25 1987-05-25 Single-turn induction heating coil

Publications (1)

Publication Number Publication Date
JPS63291389A true JPS63291389A (en) 1988-11-29

Family

ID=14919291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12580387A Pending JPS63291389A (en) 1987-05-25 1987-05-25 Single-turn induction heating coil

Country Status (1)

Country Link
JP (1) JPS63291389A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645275A (en) * 1979-09-18 1981-04-24 Nippon Sharyo Seizo Kaisha Ltd Automatic tracing welding method of corrugation or the like

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645275A (en) * 1979-09-18 1981-04-24 Nippon Sharyo Seizo Kaisha Ltd Automatic tracing welding method of corrugation or the like

Similar Documents

Publication Publication Date Title
EP0292920B1 (en) Rf induction heating apparatus
TWI281695B (en) Semiconductor single crystal manufacturing equipment and graphite crucible
JP2754163B2 (en) High frequency induction heating coil
EP0725168B1 (en) High-frequency induction heater and method of producing semiconductor single crystal using the same
JP2874722B2 (en) Method and apparatus for growing silicon single crystal
JPS63291389A (en) Single-turn induction heating coil
CN115369474B (en) Induction heating winding, single crystal manufacturing apparatus using the same, and single crystal manufacturing method
US4833287A (en) Single-turn induction heating coil for floating-zone melting process
JPS63291888A (en) Production device for semiconductor single crystal
JPH0534316B2 (en)
JP2759604B2 (en) Induction heating coil
JP4889553B2 (en) Single crystal pulling device
JP2778431B2 (en) Induction heating coil
JP5365617B2 (en) Semiconductor single crystal manufacturing apparatus and semiconductor single crystal manufacturing method
JPH07157388A (en) Apparatus for growing semiconductor single crystal
JP7447784B2 (en) Induction heating coil and single crystal manufacturing equipment using the same
JP2836438B2 (en) Induction heating coil
JPS63291388A (en) Single-turn induction heating coil used for floating zone melting method
JP2914077B2 (en) High frequency induction heating coil
JPH109769A (en) Induction heater
JPH02283692A (en) Coil for growing of single crystal
KR20010113724A (en) Apparatus Growing Single Crystals
JPH0270025A (en) Manufacturing apparatus for high purity copper
JPS6362480B2 (en)
JPH11292683A (en) Induction heating coil for single crystal growing