JPS63290952A - Oxygen concentration detector - Google Patents

Oxygen concentration detector

Info

Publication number
JPS63290952A
JPS63290952A JP62125776A JP12577687A JPS63290952A JP S63290952 A JPS63290952 A JP S63290952A JP 62125776 A JP62125776 A JP 62125776A JP 12577687 A JP12577687 A JP 12577687A JP S63290952 A JPS63290952 A JP S63290952A
Authority
JP
Japan
Prior art keywords
heater element
heater
oxygen concentration
concentration detector
stabilized zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62125776A
Other languages
Japanese (ja)
Other versions
JPH0781982B2 (en
Inventor
Sadayasu Ueno
上野 定寧
Kanemasa Sakatsu
佐勝 金正
Toyoichi Ueda
豊一 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Resonac Corp
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP62125776A priority Critical patent/JPH0781982B2/en
Publication of JPS63290952A publication Critical patent/JPS63290952A/en
Publication of JPH0781982B2 publication Critical patent/JPH0781982B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To eliminate the need for a correction operation to match the shrinkage rate on calcination of a frame body and detecting element and a heater element by calcining said frame body and element and the heater element as separate bodies. CONSTITUTION:A heater insertion recess 7 is formed to the frame body 3 constituted by laminating and integrating sheets formed of yttria-stabilized zirconia and the heater element 8 formed as the separate body is inserted and fixed into this recess 7. The heater element 8 is, therefore, housed into the recess 7 in the state of having no press welded parts joined to the yttria-stabilized zirconia material. Generation of crack and exfoliation by a difference in the coefft. of expansion between the yttria-stabilized zirconia material and the heater element 8 is thereby obviated and the need for the correction operation to match the shrinkage rate of calcination of the yttria-stabilized zirconia material and the heater element is eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸素濃度検出器、特に燃焼ガス中の酸素濃度を
検出して車両の空燃比を制御するに最適な酸素濃度検出
器に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an oxygen concentration detector, and particularly to an oxygen concentration detector that is optimal for detecting the oxygen concentration in combustion gas and controlling the air-fuel ratio of a vehicle. be.

〔従来の技術〕[Conventional technology]

安定化ジルコニアのような固体電解質を使用して、固体
電解質シートの両面に標準電極と検出電極とをそれぞれ
形成し、これらの電極をそれぞれ圧力の異なる酸素と接
触させることにより、酸素イオンを移動させて酸素濃度
を検出する酸素濃度検出器が使用されている。
Using a solid electrolyte such as stabilized zirconia, a standard electrode and a detection electrode are formed on both sides of the solid electrolyte sheet, and oxygen ions are transferred by bringing these electrodes into contact with oxygen at different pressures. An oxygen concentration detector is used to detect oxygen concentration.

例えば「ニス・ニー・イーJ  (SAE)、N085
0378 (1985)p53〜59に、この種の積層
形酸素濃度検出器に関する記載が認められる。
For example, “Nis Ni E J (SAE), N085
0378 (1985) pages 53 to 59, there is a description regarding this type of stacked oxygen concentration detector.

ここに記載されている積層形酸素濃度検出器は、Y2O
3をドープして低温域まで正方晶系を安定に保持させた
安定化ジルコニアシートの両面に、白金の標準電極と検
出電極とがそれぞれ形成された検出素子を具備している
。また、アルミナシートに白金で発熱体と導出電極部が
形成され、これらの発熱体及び導出電極部上にアルミナ
シートが積層されたヒータ素子を具備している。
The stacked oxygen concentration detector described here uses Y2O
A detection element is provided in which a platinum standard electrode and a detection electrode are respectively formed on both sides of a stabilized zirconia sheet doped with C.3 to maintain a tetragonal system stably up to a low temperature range. Further, a heating element and a lead-out electrode part are formed of platinum on an alumina sheet, and a heater element is provided in which the alumina sheet is laminated on the heat-generating element and lead-out electrode part.

前記せる文献に記載されている積層形酸素濃度検出器に
おいては、イツトリア安定化ジルコニアシートを積層し
て枠体が形成され、大気導入口部分において前述せる検
出素子とヒータ素子とが、直接接合されて積層焼成され
た構造となっている。
In the laminated oxygen concentration detector described in the above-mentioned document, the frame is formed by laminating yttria-stabilized zirconia sheets, and the above-mentioned detection element and heater element are directly joined at the air inlet. It has a laminated and fired structure.

このような構造の酸素濃度検出器において、検出素子の
イツトリア安定化ジルコニア材は、Y2O3の添加量に
よって電気抵抗率が変化するために、所定の検出出力電
流値を得るようにY2O3の添加量が選択されている。
In an oxygen concentration detector having such a structure, the electric resistivity of the ittria-stabilized zirconia material of the detection element changes depending on the amount of Y2O3 added, so the amount of Y2O3 added is adjusted to obtain a predetermined detection output current value. Selected.

一方で、イツトリア安定化ジルコニア材の膨張係数は、
Y2O,の添加量により変化することが知られており、
例えば添加量5mol %と6 mol %とではl0
XIO−7/ ’ Cの膨張係数差が生じる場合がある
。また、イツトリア安定化ジルコニア材においては、特
にY、!03の低添加量域では400°C〜soo’c
の範囲に相転位が分布して存在し、特定の温度で異常に
膨張係数が大きくなる領域がある。
On the other hand, the expansion coefficient of the Ittria stabilized zirconia material is
It is known that it changes depending on the amount of Y2O added.
For example, if the addition amount is 5 mol % and 6 mol %, 10
A difference in expansion coefficient of XIO-7/'C may occur. In addition, Y,! 400°C to soo'c in the low addition amount range of 03
Phase dislocations exist in a distributed manner within the range of , and there is a region where the expansion coefficient becomes abnormally large at a specific temperature.

他方でヒータ素子のアルミナ材は、半導体の集積回路用
として広く使用されているために、規格の特性の制限を
受けて膨張係数も80X10−7/ ’Cのものが一般
に使用されている。また、アルミナ材にはイツトリア安
定化ジルコニア材のような相転位は存在せず、常温から
1000°Cまでは膨張係数はほぼ単調増加特性を示し
ている。
On the other hand, since the alumina material of the heater element is widely used for semiconductor integrated circuits, a material with an expansion coefficient of 80.times.10@-7/'C is generally used due to the limitations of the characteristics of the standard. Further, the alumina material does not have a phase transition unlike the yttria-stabilized zirconia material, and the expansion coefficient exhibits a substantially monotonically increasing characteristic from room temperature to 1000°C.

さらに、枠体及び検出素子を形成するための安定化ジル
コニアグリンシート及びヒータ素子を形成するためのア
ルミナグリンシートの作成に際しては、キヤステング性
を向上させるためにそれぞれ異なる溶剤、バインダ、可
塑材及び分散剤が、それぞれに対応した比率で混入され
る。
Furthermore, when creating the stabilized zirconia green sheet for forming the frame and the detection element, and the alumina green sheet for forming the heater element, different solvents, binders, plasticizers and dispersions are used to improve castability. The agents are mixed in their respective proportions.

このために、安定化ジルコニアグリンシート及びアルミ
ナグリンシートでは前述せる溶剤等の種類及び比率で、
その収縮率が変化している。
For this purpose, stabilized zirconia green sheets and alumina green sheets are prepared by using the types and ratios of solvents mentioned above.
Its shrinkage rate is changing.

前記の文献に記載されている酸素濃度検出器においては
、アルミナ材の膨張係数を考慮してジルコニア材のY2
O3の添加量を設定し、さらにアルミナ材及びジルコニ
ア材に混入する溶剤、バインダ、可塑剤及び分散剤の種
類と比率を考慮し且つ恒温槽内での修正操作を行なって
、アルミナ材とジルコニア材の膨張係数差と収縮率差に
基づく、検出素子とヒータ素子との圧着焼成時の割れや
剥離を防止することが必要である。
In the oxygen concentration detector described in the above-mentioned literature, the Y2 of the zirconia material is
After setting the amount of O3 added, and considering the types and ratios of solvents, binders, plasticizers, and dispersants mixed in the alumina and zirconia materials, and performing correction operations in a constant temperature bath, the alumina and zirconia materials were prepared. It is necessary to prevent cracking or peeling between the sensing element and the heater element during pressure bonding and firing due to the difference in expansion coefficient and contraction rate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述せるように、イツトリア安定化ジルコニア材では、
Y2O3の低添加量域で400  °C〜800 。
As mentioned above, ittria-stabilized zirconia material has
400 °C to 800 °C in the low addition amount range of Y2O3.

Cの温度範囲に相転位が存在し、膨張係数が大きくなる
ので、常温から1000’Cまで膨張係数が単調増加す
るアルミナ材と膨張係数差を合わせることは極めて難し
い。
Since a phase transition exists in the temperature range of C and the expansion coefficient increases, it is extremely difficult to match the difference in expansion coefficient with alumina material whose expansion coefficient increases monotonically from room temperature to 1000'C.

また、イツトリア安定化ジルコニア材とアルミナ材との
収縮率を、両者の接合圧着直前に一致させるための恒温
槽内での修正操作も簡単ではない。
Furthermore, it is not easy to perform a correction operation in a thermostatic chamber to match the shrinkage rates of the yttria-stabilized zirconia material and the alumina material immediately before they are bonded and crimped.

この場合、例えば15%の設定収縮率を得ようとし、ア
ルミナ材の収縮率が15%、イツトリア安定化ジルコニ
ア材の収縮率が18%であるとすれば、ジルコニア材に
ついては予め恒温槽で所定の温度と時間を設定して、最
終収縮率15%を実現する必要がある。
In this case, for example, if you are trying to obtain a set shrinkage rate of 15%, and the shrinkage rate of the alumina material is 15% and the shrinkage rate of the ittria-stabilized zirconia material is 18%, then the zirconia material is preset in a constant temperature bath. It is necessary to set the temperature and time to achieve a final shrinkage rate of 15%.

しかし、この修正操作は恒温槽内の温度分布及び積層時
までの室内環境条件の影響を受けるために、ばらつきが
生じ易くこのばらつきが焼成時の割れや剥離の原因とな
ることがある。
However, since this correction operation is affected by the temperature distribution in the thermostatic oven and the indoor environmental conditions up to the time of lamination, variations are likely to occur, and these variations may cause cracking or peeling during firing.

また、前記せる文献に記載されている酸素濃度検出器で
は、枠体を形成するイツトリア安定化ジルコニアシート
、検出素子及びヒータ素子が、積層方向に対称でないた
めに、熱変形歪みが生してそりが起りこれが原因で割れ
や剥離につながるおそれもある。
In addition, in the oxygen concentration detector described in the above-mentioned document, the ittria-stabilized zirconia sheet forming the frame, the detection element, and the heater element are not symmetrical in the stacking direction, resulting in thermal deformation distortion and warpage. This can lead to cracking and peeling.

さらに、検出素子には触媒作用を活かすために白金電極
を使用しているが、イツトリア安定化ジルコニアシート
に1〜3μmの厚みに着膜形成される白金電極は、不活
性ガス或は酸化雰囲気で1500°Cで焼成可能である
。然るに、ヒータ素子でアルミナにタングステンで発熱
体と導出電極部を印刷しても、その焼成は還元ガス雰囲
気で1600°Cで行なわねばならない。このような焼
成温度と焼成雰囲気の差のために、ヒータ素子にも白金
で発熱体と導出電極部を形成しなくてはならない。
Furthermore, a platinum electrode is used in the detection element to take advantage of the catalytic action, and the platinum electrode, which is formed as a film with a thickness of 1 to 3 μm on the yttria-stabilized zirconia sheet, can be used in an inert gas or oxidizing atmosphere. Can be fired at 1500°C. However, even if the heating element and lead-out electrode part are printed with tungsten on alumina for the heater element, the firing must be carried out at 1600° C. in a reducing gas atmosphere. Because of such a difference in firing temperature and firing atmosphere, the heating element and the lead-out electrode portion of the heater element must also be formed of platinum.

この場合、導出電極部は抵抗値を下げるために幅広に形
成する必要があり、ヒータ素子部分の製造費用が全体の
60%をも占めるという難点もある。
In this case, the lead-out electrode portion must be formed wide in order to lower the resistance value, and there is also the drawback that the manufacturing cost of the heater element portion accounts for as much as 60% of the total manufacturing cost.

本発明は前述せるようなこの種の酸素濃度検出器の現状
に鑑みてなされたものであり、その目的はイツトリア安
定化ジルコニア材部分とヒータ素子部分との接合圧着個
所をなくして、画材の膨張係数の差による割れや剥離の
発生を防止し、検出素子とヒータ素子を別体に焼成形成
することにより、両者の焼成収縮率を合わせる修正操作
をなくし且つヒータ素子の発熱体及び導出電極部に例え
ばタングステンを使用して製造費用を低減させることも
可能な酸素濃度検出器を提供することにある。
The present invention was made in view of the current state of this type of oxygen concentration detector as described above, and its purpose is to eliminate the bonding point between the ittria-stabilized zirconia material part and the heater element part, thereby preventing the expansion of the art material. By preventing the occurrence of cracks and peeling due to differences in coefficients, and by firing and forming the detection element and heater element separately, it is possible to eliminate the need for correction operations to match the firing shrinkage rates of both, and to prevent the heating element and lead-out electrode part of the heater element from forming. It is an object of the present invention to provide an oxygen concentration sensor that can be manufactured using tungsten, for example, to reduce manufacturing costs.

〔問題点を解決するための手段〕[Means for solving problems]

前述せる目的を達成するために、本発明では固体電解質
シートの両面に標準電極と検出電極がそれぞれ形成され
た検出素子とヒータ素子とが枠体に組込まれ、被検出ガ
ス中の酸素濃度を前記固体電解質シート内のイオンの移
動により検出する酸素濃度検出器において、前記枠体は
複数のシートが積層一体化されて形成され、前記シート
及び固体電解質シートはイツトリア安定化ジルコニアで
形成され、前記枠体にヒータ挿入凹部が形成され、該ヒ
ータ挿入凹部に別体形成されたヒータ素子が挿入固定さ
れた構成となっている。
In order to achieve the above-mentioned object, in the present invention, a detection element and a heater element, each having a standard electrode and a detection electrode formed on both sides of a solid electrolyte sheet, are incorporated into a frame, and the oxygen concentration in the gas to be detected is determined as described above. In an oxygen concentration detector that detects by the movement of ions within a solid electrolyte sheet, the frame body is formed by laminating and integrating a plurality of sheets, the sheet and the solid electrolyte sheet are formed of ittria-stabilized zirconia, and the frame body is formed by laminating and integrating a plurality of sheets; A heater insertion recess is formed in the body, and a separately formed heater element is inserted and fixed into the heater insertion recess.

〔作用〕[Effect]

本発明ではイツトリア安定化ジルコニアで形成されたシ
ートが積層一体化されて構成される枠体に、ヒータ挿入
凹部が形成され、このヒータ挿入凹部に別体形成された
ヒータ素子が挿入固定されている。このために、ヒータ
素子はイツトリア安定化ジルコニア材との接合圧着部分
がない状態で、ヒータ挿入凹部に収容される。
In the present invention, a heater insertion recess is formed in a frame formed by laminating and integrating sheets made of ittria-stabilized zirconia, and a separately formed heater element is inserted and fixed into this heater insertion recess. . For this reason, the heater element is accommodated in the heater insertion recess without the bonding and crimping portion with the ittria-stabilized zirconia material.

従って、イツトリア安定化ジルコニア材とヒータ素子材
間の膨張係数差による、割れや剥離の発生がなく、イツ
トリア安定化ジルコニア材とヒータ素子材の焼成収縮率
を合わせる修正操作も不要となる。
Therefore, there is no occurrence of cracking or peeling due to the difference in expansion coefficient between the ittria-stabilized zirconia material and the heater element material, and there is no need for a correction operation to match the firing shrinkage rates of the ittria-stabilized zirconia material and the heater element material.

また、ヒータ素子の発熱体及び導出電極部を、例えばタ
ングステンで形成することが可能となる。
Furthermore, the heating element and the lead-out electrode portion of the heater element can be made of, for example, tungsten.

〔実施例〕〔Example〕

以下本発明の実施例を、その製造方法に基づいて第1図
乃至第5図を用いて詳細に説明する。
Embodiments of the present invention will be described in detail below based on the manufacturing method thereof with reference to FIGS. 1 to 5.

ここで、第1図は本発明の実施例の要部の構成を示す断
面図、第2図は第1図のに−に断面図、第3図は本発明
の実施例における枠体と検出素子部分の構成を示す分解
斜視図、第4図は本発明の実施例におけるヒータ素子部
分の構成を示す分解斜視図、第5図は本発明の実施例の
構成を示す断面図である。
Here, FIG. 1 is a cross-sectional view showing the configuration of the main part of the embodiment of the present invention, FIG. 2 is a cross-sectional view taken along the line of FIG. 1, and FIG. 3 is a frame body and detection FIG. 4 is an exploded perspective view showing the structure of the heater element portion in an embodiment of the present invention, and FIG. 5 is a sectional view showing the structure of the embodiment of the present invention.

本発明の実施例において、枠体を形成し或は検出素子を
形成する第3図A乃至Gに示ずような形状のグリンシー
トを得るために、厚さ0.25mm幅511のグリンシ
ート原板が、以下のようにして形成される。
In the embodiment of the present invention, in order to obtain a green sheet having a shape as shown in FIGS. 3A to 3G, which forms a frame or a detection element, a green sheet original plate having a thickness of 0.25 mm and a width of 511 is used. is formed as follows.

このために、イツトリア(Y203) 5 mo1%を
含有するジルコニア(ZrOz)に、溶剤、バインダ、
可塑剤及び分散剤を混合して混練機によりスラリを作成
し、このスラリをキヤステング装置にかけて、厚さ0.
25w幅5fl長さがほぼ50mmのグリンシート原板
を作成する。
For this purpose, a solvent, a binder,
A plasticizer and a dispersant are mixed to create a slurry using a kneading machine, and this slurry is passed through a casting device to a thickness of 0.
A green sheet original plate having a width of 25w and a length of 5fl and a length of approximately 50mm is prepared.

第3図に示すグリンシートA、E及びGは、前述せるよ
うにして得られたグリンシート原板がそのままの形状で
使用される。また、グリンシートBには一端側から長方
形状の大気導入口4が形成され、グリンシートDには一
端側からスリット状の被検出ガス導入口5とこの被検出
ガス導入口5に連続して、長方形状のセンシングホール
6が形成される。
Green sheets A, E, and G shown in FIG. 3 are green sheet original plates obtained as described above and used in their original shapes. In addition, a rectangular atmosphere inlet 4 is formed from one end of the green sheet B, and a slit-shaped gas inlet 5 to be detected is formed in the green sheet D continuously from the one end. , a rectangular sensing hole 6 is formed.

さらに、グリンシートFには一端側から長方形状のヒー
タ挿入凹部7が形成される。
Furthermore, a rectangular heater insertion recess 7 is formed in the green sheet F from one end side.

グリンシー+−Cの表面には例えば3μmの厚みに、所
定形状の白金の標準電極2aが印刷の手段で形成され、
裏面には同一厚みで所定形状の白金の検出電極2bが印
刷の手段で形成され、室温下で2時間乾燥されて検出素
子1が得られる。
A platinum standard electrode 2a having a predetermined shape is formed on the surface of the Grinshi+-C to a thickness of, for example, 3 μm by printing,
On the back surface, a platinum detection electrode 2b having the same thickness and a predetermined shape is formed by printing, and is dried at room temperature for 2 hours to obtain the detection element 1.

次に、第3図に示すように各グリンシートと検出素子1
とを多層に積層し加圧一体化する。
Next, as shown in FIG. 3, each green sheet and the detection element 1 are
are laminated in multiple layers and integrated under pressure.

この場合、互いに隣接する層間の積層は70°Cにおい
て2kg / cfflの加圧を5分間行なう。さらに
全層を積層した状態で、80°Cにおいて10kg/ 
cAの加圧を15分間行ない、外形の整形プレスを行な
う。
In this case, the lamination between mutually adjacent layers is carried out under a pressure of 2 kg/cffl for 5 minutes at 70 °C. Furthermore, when all the layers are laminated, the weight is 10 kg/at 80°C.
Apply pressure cA for 15 minutes and press to shape the external shape.

この状態で脱脂処理のために、16C/分の昇温速度で
昇温し、温度140°Cに30分保持し、さらに1°C
/分の昇温速度で昇温し、温度300 。
In this state, for degreasing treatment, the temperature was raised at a rate of 16C/min, maintained at 140°C for 30 minutes, and further heated at 1°C.
The temperature was raised at a heating rate of 300°C/min.

Cに達したら自然冷却させる。When it reaches C, let it cool naturally.

このようにして脱脂処理を行なった後に、大気中で15
0°C/時間の昇温速度で1500°Cまで昇温し、温
度1.500 ’ Cで1時間保持後に自然冷却させて
焼結処理を行なう。
After degreasing in this way, 15
The temperature is increased to 1500°C at a temperature increase rate of 0°C/hour, and the temperature is maintained at 1.500'C for 1 hour, followed by natural cooling to perform a sintering treatment.

前述のような焼結処理を行なうことにより、イツトリア
がドープされているジルコニアは、低温まで安定な正方
晶系の安定化ジルコニアとなり、酸素の空格子点が生し
て酸素イオンの移動が可能な状態となる。
By performing the above-mentioned sintering process, ittria-doped zirconia becomes tetragonal stabilized zirconia that is stable down to low temperatures, and oxygen vacancies are created, allowing the movement of oxygen ions. state.

次に、不活性ガス雰囲気中で900°Cの温度下におい
て、Niリード線13.14を銀ローを介して第1図に
示すように、標準電極2a及び検出電極2bに固定し接
合部はガラス15で包埋すると共に枠体3に固定する。
Next, at a temperature of 900°C in an inert gas atmosphere, the Ni lead wires 13 and 14 are fixed to the standard electrode 2a and the detection electrode 2b through silver solders as shown in FIG. It is embedded in glass 15 and fixed to the frame 3.

なお、前述せる製造工程において、グリンシー)A、B
、E、F及びGの長さは、グリンシートC及びDの長さ
よりも短かくなるように加工されていて、枠体3への組
付は状態において検出素子1の端部は大気導入口4より
僅かに突出して配設された状態となっている。
In addition, in the manufacturing process mentioned above, Green Sea) A, B
, E, F, and G are processed to be shorter than the lengths of green sheets C and D, and when assembled to the frame 3, the end of the detection element 1 is connected to the atmosphere inlet. It is arranged so as to protrude slightly from 4.

前述せるヒータ挿入凹部7に挿入固定されるヒータ素子
は、次のようにして製造される。
The heater element inserted and fixed into the heater insertion recess 7 described above is manufactured as follows.

99%のアルミナ(A/2203)の粉末に、溶剤、バ
インダ、可塑剤及び分散剤を混合して混練機によりスラ
リを作成し、このスラリをキヤステング装置にかけて、
厚さが0.125龍幅31のグリンシート原板を作成す
る。
99% alumina (A/2203) powder is mixed with a solvent, a binder, a plasticizer, and a dispersant to create a slurry using a kneader, and this slurry is applied to a casting machine.
A green sheet original plate having a thickness of 0.125 and a dragon width of 31 is prepared.

このグリンシート原板から、長さがほぼ4711のグリ
ンシート20とこのグリンシート20よりもやや短かい
グリンシート21を形成する。
From this green sheet original plate, a green sheet 20 having a length of approximately 4711 mm and a green sheet 21 slightly shorter than this green sheet 20 are formed.

前述せるグリンシート20に対して、タンゲステンベー
ストの印刷により発熱体9と導出電極部9aとを着膜形
成して、室温下で10時間乾燥する。この乾燥処理後に
グリンシート21を積層し、温度80°Cで2 kg 
/ caの圧力で10分間圧着する。
The heating element 9 and the lead-out electrode portion 9a are formed on the green sheet 20 described above by printing a tungsten base, and then dried at room temperature for 10 hours. After this drying process, Grin Sheet 21 was laminated and 2 kg was layered at a temperature of 80°C.
Crimp for 10 minutes at a pressure of /ca.

その後に外形の整形プレスを行ない、脱脂処理のために
、1°C/分の昇温速度で昇温し、温度140°Cに3
0分保持し、さらに1°C/分の昇温速度で昇温し、温
度300°Cに達したら自然冷却させる。
After that, the external shape is pressed, and for degreasing treatment, the temperature is raised at a rate of 1°C/min, and the temperature is raised to 140°C for 3
The temperature was held for 0 minutes, and the temperature was further increased at a temperature increase rate of 1°C/minute, and when the temperature reached 300°C, it was allowed to cool naturally.

このようにして脱脂処理を行なった後に、水素ガスまた
は、水素ガスと窒素ガスの混合ガス中で、150°C/
時間の昇温速度で1600°Cまで昇温し、温度160
0’Cで1時間保持後に自然冷却させて焼結処理を行な
う。
After performing the degreasing treatment in this way, the
The temperature was raised to 1600°C at a heating rate of 160°C.
After being held at 0'C for 1 hour, it is naturally cooled and sintered.

次に、不活性ガスまたは還元ガス中で、Niリード線1
1.12を電極引出部9bに銀ローを介して、第4図に
示すように固定し、接合部はガラスによりオーバコート
処理する。
Next, in an inert gas or reducing gas, the Ni lead wire 1
1.12 is fixed to the electrode lead-out portion 9b via silver solder as shown in FIG. 4, and the bonded portion is overcoated with glass.

このようにして、第4図に示すようにグリンシ−ト20
及び21が積層一体化されたヒータ素子8が形成される
。このヒータ素子8が、前述せる枠体3に形成されてい
るヒータ挿入凹部7に挿入固定されている。
In this way, as shown in FIG.
and 21 are integrally laminated to form a heater element 8. This heater element 8 is inserted and fixed into the heater insertion recess 7 formed in the frame 3 described above.

実施例においては、第1図及び第2図に示すように、ヒ
ータ素子8の周面にアルミナ絶縁粉10を配してヒータ
素子8をヒータ挿入凹部7に挿入し、ヒータ素子8と挿
入凹部7間にはアルミナ絶縁粉10が充填された状態と
されている。このアルミナ絶縁粉10は突固めないで、
ヒータ素子8とヒータ挿入凹部7間に均一に充填され、
ヒータ挿入四部7の開口部分には膨張係数80X10−
7/ 0Cの硼硅酸ガラスが充填され、大気中で1.1
00 ’Cの温度で1時間溶融封止処理が行なわれてい
る。
In the embodiment, as shown in FIGS. 1 and 2, alumina insulating powder 10 is arranged on the circumferential surface of the heater element 8, and the heater element 8 is inserted into the heater insertion recess 7, so that the heater element 8 and the insertion recess are Alumina insulating powder 10 is filled between the spaces 7. Do not compact this alumina insulating powder 10,
The space between the heater element 8 and the heater insertion recess 7 is filled uniformly,
The opening of the heater insertion section 7 has an expansion coefficient of 80X10-
7/0C borosilicate glass filled, 1.1 in air
The melt sealing process is carried out at a temperature of 00'C for 1 hour.

本発明の実施例においては、全体が第5図に示すように
金属筒17に粉体18とガラス19を介して固定され、
さらに保護筒を有する栓体22に固定され、リード線の
中継部にパツキン23がかふされ、外筒24によって栓
体22に固定された状態で使用される。
In the embodiment of the present invention, the whole is fixed to a metal tube 17 via a powder 18 and a glass 19, as shown in FIG.
Furthermore, it is fixed to a plug body 22 having a protective tube, a packing 23 is covered at the relay part of the lead wire, and it is used while being fixed to the plug body 22 by an outer tube 24.

以上のような構成の本発明の実施例の動作を、次に説明
する。
The operation of the embodiment of the present invention having the above configuration will be described next.

枠体3のヒータ挿入凹部7に収容されているヒータ素子
8に通電が行なわれると、発熱体9が発熱し枠体3の温
度が上昇し、検出素子1の温度も上昇する。
When the heater element 8 accommodated in the heater insertion recess 7 of the frame body 3 is energized, the heating element 9 generates heat, the temperature of the frame body 3 rises, and the temperature of the detection element 1 also rises.

この検出素子1はイツトリア安定化ジルコニアの固体電
解質シートの温度がほぼ600°Cを越えると、固体電
解質シートが酸素イオン導電体として作動する。
In this detection element 1, when the temperature of the solid electrolyte sheet of yttria-stabilized zirconia exceeds approximately 600°C, the solid electrolyte sheet operates as an oxygen ion conductor.

然して、第5図の外筒24に形成された開口25から、
ガラス19に埋込まれている通管25aを通って大気導
入口4から大気が標準電極2aと接触する。一方、被検
出ガス導入口5からセンシングホール6内に導入される
排気ガスなどの被検出ガスが、検出電極2bと接触する
Therefore, from the opening 25 formed in the outer cylinder 24 in FIG.
Atmospheric air passes through a conduit 25a embedded in the glass 19 and comes into contact with the standard electrode 2a from the air inlet 4. On the other hand, a gas to be detected, such as exhaust gas, introduced into the sensing hole 6 from the gas inlet 5 to be detected comes into contact with the detection electrode 2b.

このために、標準電極2aと検出電極2bでの酸素の圧
力差に基づいて、検出素子1の固体電解質シートに酸素
イオンの移動が生じ、被検出ガス中の酸素濃度を測定す
ることが出来る。
For this reason, oxygen ions move to the solid electrolyte sheet of the detection element 1 based on the oxygen pressure difference between the standard electrode 2a and the detection electrode 2b, making it possible to measure the oxygen concentration in the gas to be detected.

b ヒータ素子8と挿入凹部7間に充填されているアルミナ
絶縁粉10は、ヒータ素子8の熱を枠体3に速やかに伝
達する熱伝導体として作用すると共に、ヒータ素子8の
通電で生じる漏洩電流を防止する絶縁体としての機能も
有する。
b The alumina insulating powder 10 filled between the heater element 8 and the insertion recess 7 acts as a thermal conductor that quickly transfers the heat of the heater element 8 to the frame 3, and also prevents leakage caused by energization of the heater element 8. It also functions as an insulator to prevent electric current.

即ち、温度が上昇するとイツトリア安定化ジルコニアの
電気抵抗が低下yるので、ヒータ素子8からの漏洩電流
が検出素子1に流れ込むことが、アルミナ絶縁粉10に
よって防止される。
That is, as the temperature rises, the electrical resistance of the ittria-stabilized zirconia decreases, so the alumina insulating powder 10 prevents leakage current from the heater element 8 from flowing into the detection element 1.

このために、アルミナ絶縁粉10の存在によって、ヒー
タ素子8からの漏洩電流が検出素子1に流れ込んで検出
出力の精度が低下することがなくなる。
Therefore, the presence of the alumina insulating powder 10 prevents leakage current from the heater element 8 from flowing into the detection element 1 and reducing the accuracy of the detection output.

また、ヒータ素子8が加熱によって変位しても、その周
面に充填されているアルミナ絶縁粉10が移動すること
により、ヒータ素子8の変位が吸収されるので、アルミ
ナ絶縁粉10は緩衝材としての機能を発揮して、ヒータ
素子8の割れが防止される。
Furthermore, even if the heater element 8 is displaced due to heating, the displacement of the heater element 8 is absorbed by the movement of the alumina insulating powder 10 filled on its peripheral surface, so the alumina insulating powder 10 acts as a buffer material. As a result, cracking of the heater element 8 is prevented.

前述せるように、イツトリア安定化ジルコニアで形成さ
れる枠体3及び検出素子1と、アルミナで形成されるヒ
ータ素子8とは、それぞれ別体で焼成されるので両者の
焼成収縮率を合わせる修正操作が不要であり、製品の歩
留まり低下の問題は解決される。さらに、構造上イツト
リア安定化ジルコニア材とアルミナ材との直接接合圧着
部分がないので、両者の膨張係数の差による割れや剥離
の発生が防止される。
As mentioned above, the frame body 3 and detection element 1 made of ittria-stabilized zirconia and the heater element 8 made of alumina are fired separately, so a correction operation is required to match the firing shrinkage rates of both. is not necessary, and the problem of reduced product yield is solved. Furthermore, since there is no direct bonding and pressure-bonding part between the yttoria-stabilized zirconia material and the alumina material due to the structure, cracking or peeling due to the difference in expansion coefficients between the two is prevented.

また、枠体3及び検出素子1とヒータ素子8が別体で焼
成形成されるので、ヒータ素子8の発熱体9と導出電極
部9aに白金を用いずに、例えばタングステンのような
安価な金属が使用出来るため、全体の製造費用をほぼ6
0%低減することが可能である。
Furthermore, since the frame body 3, the detection element 1, and the heater element 8 are formed by firing separately, platinum is not used for the heating element 9 of the heater element 8 and the lead-out electrode part 9a, and instead, a cheap metal such as tungsten can be used. can be used, reducing the overall manufacturing cost to approximately 6.
It is possible to reduce it by 0%.

さらに、実施例では全体の形状がシートの積層方向で対
称形であるために、加熱時の熱応力によるそりが殆んど
なく、熱衝撃に対しての耐久性が向上する。
Further, in the example, since the overall shape is symmetrical in the stacking direction of the sheets, there is almost no warpage due to thermal stress during heating, and durability against thermal shock is improved.

実施例においては、ヒータ素子が発熱体の形成されたア
ルミナ基板上にアルミナシートが積層された構成のもの
を説明したが、ヒータ素子は実施例のものに限らず、発
熱体をポリイミドなどの有機系フィルムで挟持してアル
ミナ絶縁粉と共にヒータ挿入凹部内に挿入後に有機系フ
ィルムを焼却した構成のものとすることが出来る。或は
、発熱体に有機物或は無機物をコーティングしたものを
、アルミナ絶縁粉と共にヒータ挿入凹部内に挿入収容し
た構成のものとすることも出来る。
In the example, a heater element is explained in which an alumina sheet is laminated on an alumina substrate on which a heating element is formed, but the heater element is not limited to that in the example. It is possible to have a structure in which the organic film is sandwiched between organic films and inserted into the heater insertion recess together with the alumina insulating powder, and then the organic film is incinerated. Alternatively, a heating element coated with an organic or inorganic substance may be inserted and housed in the heater insertion recess together with alumina insulating powder.

〔発明の効果〕〔Effect of the invention〕

本発明によると、枠体及び検出素子とヒータ素子とが別
体で焼成されるために、両者の焼成収縮率を合わせる修
正操作が不要であり、工数が削減されると共に収縮率の
ばらつきによる製品の歩留まり低下をなくすることが出
来る。また、検出素子とヒータ素子とが別体で焼成され
るので、ヒータ素子の発熱体に白金を用いる必要がなく
、製造費用が大幅に低減する。
According to the present invention, since the frame, the detection element, and the heater element are fired separately, there is no need for a correction operation to match the firing shrinkage rates of both, which reduces the number of man-hours and prevents the production of products due to variations in shrinkage rates. It is possible to eliminate the decrease in yield. Furthermore, since the detection element and the heater element are fired separately, there is no need to use platinum for the heating element of the heater element, and manufacturing costs are significantly reduced.

さらに本発明によると、構造上イツトリア安定化ジルコ
ニア材とヒータ素子との直接接合部分がないために、両
者の膨張係数差による割れや剥離での不良品の発生が防
止され、シートの積層方向で対称な形状とすることで、
加熱によるそりが減少して熱衝撃に対する耐久性も増大
する。
Furthermore, according to the present invention, since there is no direct bonding part between the yttria-stabilized zirconia material and the heater element due to the structure, the generation of defective products due to cracking or peeling due to the difference in expansion coefficient between the two is prevented, and the stacking direction of the sheets is By making it a symmetrical shape,
Warpage due to heating is reduced and durability against thermal shock is also increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の要部の構成を示す断面図、第
2図は第1図のに−に断面図、第3図は本発明の実施例
における枠体と検出素子部分の構成を示す分解斜視図、
第4図は本発明の実施例におけるヒータ素子部分の構成
を示す分解斜視図、第5図は本発明の実施例の構成を示
す断面図である。 1−−−−−−一検出素子、2a−−−−−−一標準電
極、2b−一一一一一一検出電極、3−一一一−−枠体
、4−=−−−−大気導入口、5−−被検出ガス導入口
、6−−−−−−センシングホール、7−−−−−−−
ヒータ挿入凹部、8−−−−−−ヒータ素子、9−−発
熱体、9 a−−−一導出電極部、9 b−一−−−電
極引出部、10−−−−−アルミナ絶縁粉、11 、 
12−−−−−−Niリード線、13 、 14−−−
−−−− N iリード線、15−一一一一一−ガラス
、17−−−−−−金属筒、18−−−−−一粉体、1
9−−−−−一−ガラス、20−−−−−−グリンシー
ト、21−−−−−−−グ第3図 第4図
FIG. 1 is a cross-sectional view showing the configuration of the main parts of an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along the line shown in FIG. 1, and FIG. An exploded perspective view showing the configuration;
FIG. 4 is an exploded perspective view showing the structure of a heater element portion in an embodiment of the invention, and FIG. 5 is a sectional view showing the structure of the embodiment of the invention. 1--------1 detection element, 2a------1 standard electrode, 2b-111111 detection electrode, 3-111--frame body, 4-=----- Atmospheric inlet, 5--detected gas inlet, 6--sensing hole, 7--
Heater insertion recess, 8--Heater element, 9--Heating element, 9 a--1 lead-out electrode section, 9 b--1 electrode lead-out section, 10-----Alumina insulating powder ,11,
12------Ni lead wire, 13, 14---
-----Ni lead wire, 15-11-11-glass, 17-----metal tube, 18-----1 powder, 1
9-------1-Glass, 20-------Grin sheet, 21-------G Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1、固体電解質シートの両面に標準電極と検出電極がそ
れぞれ形成された検出素子とヒータ素子とが枠体に組込
まれ、被検出ガス中の酸素濃度を前記固体電解質シート
内のイオンの移動により検出する酸素濃度検出器におい
て、前記枠体は複数のシートが積層一体化されて形成さ
れ、前記シート及び固体電解質シートはイツトリア安定
化ジルコニアで形成され、前記枠体にヒータ挿入凹部が
形成され、該ヒータ挿入凹部に別体形成されたヒータ素
子が挿入固定されてなることを特徴とする酸素濃度検出
器。 2、枠体が複数のシートの積層方向において対称形であ
ることを特徴とする特許請求の範囲第1項記載の酸素濃
度検出器。 3、ヒータ素子が発熱体の形成されたアルミナ基板上に
、アルミナシートが積層された構成であることを特徴と
する特許請求の範囲第1項記載の酸素濃度検出器。 4、ヒータ素子は発熱体を挟持した有機系フィルムが、
ヒータ挿入凹部内において焼却されてなることを特徴と
する特許請求の範囲第1項記載の酸素濃度検出器。 5、ヒータ素子の挿入固定が、ヒータ素子とヒータ挿入
凹部間に無機物粉体が充填されて行なわれてなることを
特徴とする特許請求の範囲第1項乃至第4項のいずれか
に記載の酸素濃度検出器。 6、ヒータ素子が挿入されたヒータ挿入凹部が、ガラス
で溶融封止された構成であることを特徴とする特許請求
の範囲第1項乃至第5項のいずれかに記載の酸素濃度検
出器。
[Claims] 1. A detection element and a heater element each having a standard electrode and a detection electrode formed on both sides of a solid electrolyte sheet are incorporated into a frame, and the oxygen concentration in the gas to be detected is determined within the solid electrolyte sheet. In the oxygen concentration detector that detects by the movement of ions, the frame body is formed by laminating a plurality of sheets into one, the sheet and the solid electrolyte sheet are made of ittria-stabilized zirconia, and a heater is inserted into the frame body. An oxygen concentration detector characterized in that a recess is formed, and a separately formed heater element is inserted and fixed into the heater insertion recess. 2. The oxygen concentration detector according to claim 1, wherein the frame is symmetrical in the stacking direction of the plurality of sheets. 3. The oxygen concentration detector according to claim 1, wherein the heater element has a structure in which an alumina sheet is laminated on an alumina substrate on which a heating element is formed. 4. The heater element consists of an organic film sandwiching a heating element.
The oxygen concentration detector according to claim 1, wherein the oxygen concentration detector is incinerated in the heater insertion recess. 5. The heater element is inserted and fixed by filling inorganic powder between the heater element and the heater insertion recess, as claimed in any one of claims 1 to 4. Oxygen concentration detector. 6. The oxygen concentration detector according to any one of claims 1 to 5, wherein the heater insertion recess into which the heater element is inserted is melt-sealed with glass.
JP62125776A 1987-05-25 1987-05-25 Oxygen concentration detector Expired - Lifetime JPH0781982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62125776A JPH0781982B2 (en) 1987-05-25 1987-05-25 Oxygen concentration detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62125776A JPH0781982B2 (en) 1987-05-25 1987-05-25 Oxygen concentration detector

Publications (2)

Publication Number Publication Date
JPS63290952A true JPS63290952A (en) 1988-11-28
JPH0781982B2 JPH0781982B2 (en) 1995-09-06

Family

ID=14918556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62125776A Expired - Lifetime JPH0781982B2 (en) 1987-05-25 1987-05-25 Oxygen concentration detector

Country Status (1)

Country Link
JP (1) JPH0781982B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04151550A (en) * 1990-10-15 1992-05-25 Kyocera Corp Oxygen sensor having heater
JP2002071629A (en) * 2000-08-31 2002-03-12 Ngk Spark Plug Co Ltd Layer-built gas sensor element manufacturing method
KR100493144B1 (en) * 1997-12-26 2005-08-04 삼성전기주식회사 A sensor for measuring a exhaust gas and a manufacturing method thereof
JP2017223488A (en) * 2016-06-14 2017-12-21 日本特殊陶業株式会社 Gas sensor element and gas sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04151550A (en) * 1990-10-15 1992-05-25 Kyocera Corp Oxygen sensor having heater
KR100493144B1 (en) * 1997-12-26 2005-08-04 삼성전기주식회사 A sensor for measuring a exhaust gas and a manufacturing method thereof
JP2002071629A (en) * 2000-08-31 2002-03-12 Ngk Spark Plug Co Ltd Layer-built gas sensor element manufacturing method
JP2017223488A (en) * 2016-06-14 2017-12-21 日本特殊陶業株式会社 Gas sensor element and gas sensor

Also Published As

Publication number Publication date
JPH0781982B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
JPS60228955A (en) Electrochemical apparatus and its preparation
US3911386A (en) Exhaust gas air fuel ratio sensor
JP4502991B2 (en) Oxygen sensor
JP4189260B2 (en) Manufacturing method of ceramic heater structure and ceramic heater structure
JPS63290952A (en) Oxygen concentration detector
JP3874690B2 (en) Multilayer gas sensor element, method for manufacturing the same, and gas sensor
JP2003294697A (en) Stacked gas sensor element, its manufacturing method, and gas sensor
JP7000221B2 (en) Gas sensor and its manufacturing method
JP3572241B2 (en) Air-fuel ratio sensor element
WO2022264918A1 (en) Oxygen sensor element and method for manufacturing same
JP2000338078A (en) Heater one-piece type oxygen sensor and manufacture thereof
KR101689858B1 (en) Limiting current type oxygen sensor and Method of manufacturing the same
JP2001041922A (en) Oxygen sensor element integrated with heater
JP2003279531A (en) Oxygen sensor element
US5660661A (en) Oxygen sensor
JP4698041B2 (en) Air-fuel ratio sensor element
JP2002228622A (en) Oxygen sensor and its manufacturing method
JPS62170846A (en) Oxygen sensor
JP2003149196A (en) Oxygen sensor
JP2003014690A (en) Gas sensor element and gas sensor
JP4262764B2 (en) Multilayer gas sensor element
JP3667099B2 (en) High temperature thermistor element, manufacturing method thereof, and temperature sensor for high temperature using the same
JPS6288954A (en) Oxygen sensor
JPS62211525A (en) Temperature sensor
JP2000275210A (en) Combustion gas component sensor and manufacture thereof