JPS63290007A - Tracking type reference power source - Google Patents

Tracking type reference power source

Info

Publication number
JPS63290007A
JPS63290007A JP12404887A JP12404887A JPS63290007A JP S63290007 A JPS63290007 A JP S63290007A JP 12404887 A JP12404887 A JP 12404887A JP 12404887 A JP12404887 A JP 12404887A JP S63290007 A JPS63290007 A JP S63290007A
Authority
JP
Japan
Prior art keywords
circuit
output
signal
input
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12404887A
Other languages
Japanese (ja)
Inventor
Satoru Kuriki
栗木 哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP12404887A priority Critical patent/JPS63290007A/en
Publication of JPS63290007A publication Critical patent/JPS63290007A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain two output reference voltages to satisfy the relation of V1=-V2 at an optional precision by quantizing a signal V3, which is the sum of two output voltages V1, V2, into a binary digit according to its plus and minus, and controlling the gain of an inversion circuit by the integrated value of the said value. CONSTITUTION:The inversion circuit 1, the gain of which varies according to a control signal, and which inverts the polarity of an input signal, and an addition circuit 2, which makes the output signal of the inversion circuit 1 be the first input signal, and makes the input signal be the second input, and makes the sum of the first input and the second input be an output, and a comparison circuit 3, which quantizes the output of the addition circuit 2 into the positive and the negative binary digits, and an integration circuit 4, which integrates the output signal of the comparison circuit 3, are provided. Besides, the output signal of the integration circuit 4 is made to be the control signal of the inversion circuit 1, and the output terminal 7 of the inversion circuit 1 is made to be a first output reference voltage terminal, and the terminal 8, directly led from the terminal, to which the input signal is impressed, is made to be the second output reference voltage terminal. Thus, two reference voltages V1, V2 being in the relation of V1=-V2, can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はトラッキング型比較電源、特に絶対値が等しく
符号が正と負の2基準電圧を得る電源に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a tracking type comparison power supply, and particularly to a power supply that obtains two reference voltages having the same absolute value and having positive and negative signs.

[従来の技術] 従来、この種の絶対値が等しく符号が正と負の2基準電
圧を得る電源回路は、第11図のように1つの演算増幅
器を用いて実現されていた。以下では第11図を参照し
て説明する。抵抗102゜103の抵抗値をそれぞれR
□ 、R2とする。入力端子104の電位V0 、出力
基準電圧を得る端子105.106の電位をそれぞれv
l 、v2とする。ここでR1=R2に選ぶと系算増幅
器101の利得を十分大きくとればvoからVlまでの
利得は−lなのでv、=−v、となる。一方、V2=V
0なので、出力基準電圧Vl 9v、として。
[Prior Art] Conventionally, this type of power supply circuit that obtains two reference voltages with equal absolute values and positive and negative signs has been realized using one operational amplifier as shown in FIG. This will be explained below with reference to FIG. The resistance values of resistors 102 and 103 are respectively R
□ , R2. The potential V0 of the input terminal 104 and the potential of the terminals 105 and 106 from which the output reference voltage is obtained are respectively v.
Let it be l, v2. Here, if R1=R2 is selected, if the gain of the system amplifier 101 is set sufficiently large, the gain from vo to Vl is -l, so v,=-v. On the other hand, V2=V
0, so the output reference voltage Vl is 9v.

絶対値が等しく符号が正と負の2基準電圧を得ることが
できる。
Two reference voltages with equal absolute values and positive and negative signs can be obtained.

[発明が解決しようとする問題点] 上述した従来の電源回路においては、出力の2基塾電圧
v1 、v2の精度は抵抗値Rエ +R2の精度に依存
する。R,=R2ならばv、==−v2であるが、集積
回路化した場合、抵抗値を完全に一致させる事は不可能
であり、トリミング等の手法を用いても、温度変動など
による要因があるため高い精度でR工=R2とすること
は難しい。そのため、高い精度でV 、 == −V 
2である2基準電圧V□ 、V2を得ることが難しいと
いう問題点がある。
[Problems to be Solved by the Invention] In the conventional power supply circuit described above, the accuracy of the two output voltages v1 and v2 depends on the accuracy of the resistance value R + R2. If R, = R2, then v, = = -v2, but when it is integrated into an integrated circuit, it is impossible to match the resistance values completely, and even if techniques such as trimming are used, factors such as temperature fluctuations Therefore, it is difficult to set R = R2 with high accuracy. Therefore, with high accuracy V, == −V
There is a problem in that it is difficult to obtain two reference voltages V□, V2 which are equal to 2.

本発明は従来のもののこのような問題点を解決較電源を
提供するものである。
The present invention provides a calibrating power source that overcomes these problems of the prior art.

[問題点を解決するための手段] 本発明によると; 制御信号に応じて利得が変化し、入力信号の極性を反転
させる反転回路と; 該反転回路の出力信号を第1の入力信号、前記入力信号
を第2の入力として第1の入力と第2の入力の和を出力
とする加算回路と; 該加算回路の出力を正負の2値に量子化する比較回路と
; 該比較回路の出力信号を積分する積分回路と;該積分回
路の出力信号を前記反転回路の制御信号とし前記反転回
路の出力端子を第1の出力基準電圧端子とし。
[Means for Solving the Problems] According to the present invention; an inverting circuit whose gain changes according to a control signal and inverting the polarity of an input signal; and an output signal of the inverting circuit as a first input signal, an adder circuit that takes an input signal as a second input and outputs the sum of the first input and the second input; a comparator circuit that quantizes the output of the adder circuit into positive and negative binary values; an output of the comparator circuit. an integrating circuit that integrates a signal; an output signal of the integrating circuit is used as a control signal for the inverting circuit, and an output terminal of the inverting circuit is used as a first output reference voltage terminal;

前記入力信号の印加される端子より直接導かれる端子を
第2の出力基準電圧端子とする ことを特徴とするトラッキング型比較電源が得られる。
A tracking type comparison power supply is obtained, characterized in that a terminal directly led from the terminal to which the input signal is applied is used as a second output reference voltage terminal.

[実施例] 次に1本発明について図面を参照して説明する。[Example] Next, one embodiment of the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の構成図である。第1図にお
いて9反転回路1と加算回路2をスイッチドキャ・gシ
タ回路で構成した例が第2図である。
FIG. 1 is a block diagram of an embodiment of the present invention. FIG. 2 shows an example in which the nine inversion circuit 1 and the addition circuit 2 in FIG.

第3図に、第2図の回路におけるスイッチの開閉タイミ
ングを表すタイミングチャートを示す。以下では第2図
と第3図を参照して説明する。
FIG. 3 shows a timing chart showing the timing of opening and closing the switches in the circuit of FIG. 2. The following description will be made with reference to FIGS. 2 and 3.

最初に、第2図における反転回路1について説明する。First, the inversion circuit 1 shown in FIG. 2 will be explained.

コンデンサ31.32の容量をC3,C4とする。コン
デンサ33の容量は、後述する方式ごてより、積分回路
4の出力に従って変化させるものとする。スイッチ35
 (S s ) 、37 (Sl。)。
The capacitances of capacitors 31 and 32 are assumed to be C3 and C4. It is assumed that the capacitance of the capacitor 33 is changed according to the output of the integrating circuit 4 using a method described later. switch 35
(S s ), 37 (Sl.).

38(Sll)は第2図のクロックφ4で作動し。38 (Sll) is operated by the clock φ4 shown in FIG.

スイッチ34(Sy )、36(S9 )、39(’5
t2)(riクロックφ5で作動する。以下に第3図の
タイムチャートに従って動作を説明する。
Switches 34 (Sy), 36 (S9), 39 ('5
t2) (operates with ri clock φ5. The operation will be explained below according to the time chart of FIG. 3.

時刻t2ではスイッチ3 s (S、 ) 、 37(
81G)。
At time t2, switches 3 s (S, ), 37 (
81G).

38(Sit)がオンなので、コンデンサ32゜33に
貯えられていた電荷は放電する。端子7の電位は、その
時点でコンデンサ31に貯えられていた電荷をC3とす
るとき、■1=Q3/C3となる(第5図参照)。
38 (Sit) is on, the charges stored in the capacitors 32 and 33 are discharged. The potential of the terminal 7 is 1=Q3/C3, where C3 is the charge stored in the capacitor 31 at that time (see FIG. 5).

その後1時刻t4では、スイッチ34(S7)。Thereafter, at one time t4, the switch 34 (S7).

36(S9 )、39(Sユ2)がオン、他のスイッチ
はオフなので、端子7の電位v1は端子6の′i位をv
。とすると、■、=−Cv/(C3+04 )・Voと
なる(第6図参照)。特に。
Since 36 (S9) and 39 (S2) are on and the other switches are off, the potential v1 of terminal 7 is
. Then, ■,=-Cv/(C3+04)·Vo (see FIG. 6). especially.

Cvf:C3+C4に選ぶと、V1中−Voとなり、入
力を反転した出力を得ることができる。CvO値の後に
述べる方式により微調整する。vlの値はCvの値を微
調整することにより調整することができる。またコンデ
ンサ31に貯えられた電荷Q3は。
If Cvf:C3+C4 is selected, it becomes -Vo in V1, and an output obtained by inverting the input can be obtained. Fine adjustment is made using the method described after the CvO value. The value of vl can be adjusted by finely adjusting the value of Cv. Also, the electric charge Q3 stored in the capacitor 31 is as follows.

時刻t3の後も保持されるので、端子7の電位v0も保
持される。
Since it is held even after time t3, the potential v0 of the terminal 7 is also held.

次に第2図における加算回路2について説明する。Next, the adder circuit 2 in FIG. 2 will be explained.

コンデンサ11.12の容量をC1,C2とする。また
、スイッチ13(Sl )は第2図のクロックφ、で作
動し、スイッチ14(S2)はクロックφ2 、スイッ
チ15 (S3  ) 、 16 (S、  )はクロ
ックφ3 、スイッチ17(S5)はクロックφ4.ス
イッチ18(S、)はクロックφ5で作動する。以下に
第3図のタイムチャートに従ってこの部分の動作を説明
する。
Let the capacitances of capacitors 11 and 12 be C1 and C2. The switch 13 (Sl) is operated by the clock φ in FIG. 2, the switch 14 (S2) is operated by the clock φ2, the switches 15 (S3) and 16 (S, ) are operated by the clock φ3, and the switch 17 (S5) is operated by the clock φ3. φ4. The switch 18 (S,) is activated by the clock φ5. The operation of this part will be explained below according to the time chart of FIG.

時刻t1では、スイッチ13(Sl)、15(33)−
16(34)がオンなので、コンデンサ11.12に貯
えられていた電荷は放電する(第7図参照)。その後1
時刻t2では、スイッチ14(S2)t 17(S5)
がオン、他のスイッチはオフなので、コンデンサ11.
12にはそれぞれQ 1 ” C2v工の電荷が貯えら
れ、端子21の電位V、は、 V 3 =−Ql/C1
トナル(i8図参照)。
At time t1, switches 13 (Sl), 15 (33)-
Since capacitors 11 and 16 (34) are on, the charges stored in capacitors 11 and 12 are discharged (see FIG. 7). then 1
At time t2, switch 14 (S2) t 17 (S5)
is on and the other switches are off, so capacitor 11.
A charge of Q 1 ” C2v is stored in each terminal 12, and the potential V of the terminal 21 is V 3 =-Ql/C1
tonal (see figure i8).

時刻t、では、スイッチ15(S3)、16(S4 )
がオンで他のスイッチがオフなのでコンデンサ12の電
荷が放電する(第9図参照)。時刻t4では、スイッチ
14(S2 ) 、18(S6)がオンで、他のスイッ
チはオフである。この状態では、コンデンサ12にばC
2=C2■、の電荷が貯えられ、コンデンサ11にはQ
t + C2=C2(”1 +”2)の電荷が貯えられ
る。このときの端子21の電位V3は、”3 = (C
1+C2)/ C1= C2(Vl +V2)/C工で
ある(第10図参照)。
At time t, switches 15 (S3) and 16 (S4)
Since the switch is on and the other switches are off, the charge in the capacitor 12 is discharged (see FIG. 9). At time t4, switches 14 (S2) and 18 (S6) are on, and the other switches are off. In this state, if the capacitor 12 is
A charge of 2=C2■ is stored in the capacitor 11, and a charge of Q
Charges of t + C2 = C2 ("1 +"2) are stored. At this time, the potential V3 of the terminal 21 is “3 = (C
1+C2)/C1=C2(Vl+V2)/C (see Figure 10).

以上に説明した9反転回路1と加算回路2を通して見た
ときに、端子6,7.8.21のそれぞれの電位■。*
 Vl  1 v2  y v3の関係は。
When viewed through the nine inverting circuit 1 and addition circuit 2 described above, the respective potentials ■ of the terminals 6, 7, 8, and 21. *
What is the relationship between Vl 1 v2 y v3?

となる。特に■3は、V1+V2>OならばV3<0と
なり、 V、 +V2<Oならばv3〉0となり、加算
結果の正負に関しては、コンデンサの容量C1。
becomes. In particular, (3), if V1+V2>O, then V3<0, and if V, +V2<O, then v3>0, and the sign of the addition result is the capacitance C1 of the capacitor.

C2の精度によらないという性質がある。It has the property that it does not depend on the accuracy of C2.

次に、比較回路3の動作について説明する。比較回路3
は演算増幅器50で構成される。a算増幅器5oの出力
端子51の電位v4は、端子21の電位V3が正(V3
>O)ならば、負の一定電圧−VDDとなり(v4=−
vDD)、負(”3 < o )ならば正の一定電圧v
DDとなる(V4==V、、)。
Next, the operation of the comparison circuit 3 will be explained. Comparison circuit 3
is composed of an operational amplifier 50. The potential v4 of the output terminal 51 of the arithmetic amplifier 5o is such that the potential V3 of the terminal 21 is positive (V3
> O), then the negative constant voltage -VDD becomes (v4=-
vDD), if negative (“3 < o), then positive constant voltage v
It becomes DD (V4==V,,).

次に積分回路4と制御信号5の動作について説明する。Next, the operation of the integrating circuit 4 and the control signal 5 will be explained.

積分回路4は、アップダウンカウンタで構成され、比較
回路3の出力端子51の電位■4を積分した値を制御信
号5(v5 )として出力する。すなわちv、=ΣtV
4+V、。(■5oはアップダウンカウンタの初期値)
を出力する。このV、に定数Δ(Δ〉0)をかけた値を
反転回路1のコンデンサ33の容量Cの微調差分とする
。すなわち。
The integrating circuit 4 is constituted by an up/down counter, and outputs a value obtained by integrating the potential 4 of the output terminal 51 of the comparator circuit 3 as a control signal 5 (v5). That is, v, = ΣtV
4+V,. (■5o is the initial value of the up/down counter)
Output. The value obtained by multiplying this V by a constant Δ (Δ>0) is defined as the fine adjustment difference in the capacitance C of the capacitor 33 of the inverting circuit 1. Namely.

C=Δ・■5+Cvo(Cvoは、Cvのオフセット分
)とする。
C=Δ·■5+Cvo (Cvo is the offset of Cv).

第4図に制御信号5(■5)でコンデンサ33の容量を
調整する方法を示す。第4図の例において、積分回路、
1は4ビツトのアップダウンカウンタで構成され、制御
信号5は4ピントの・ぐラレル信号とする。コンデンサ
33はオフセット分の容:f Cヲ持つコンデンサ60
と、容量Δ、2Δ。
FIG. 4 shows a method of adjusting the capacitance of the capacitor 33 using the control signal 5 (■5). In the example of FIG. 4, the integrating circuit,
1 consists of a 4-bit up/down counter, and the control signal 5 is a 4-pin parallel signal. Capacitor 33 has offset capacity: capacitor 60 with f C.
and capacitance Δ, 2Δ.

・1Δ、8Δを持つコンデンサ61,62,63゜64
が、スイッチ45 、46 、47 、48を介して、
並列接続された構成となっている。スイッチ45 、 
(16、47、・18は制御信号5の各ビットbo 、
bl、b2 +b3 (boをLSB 、 b 3をM
SBとする)の値1.0に応じてオン、オフするものと
する。これにより、制御信号5(V5)K応じたコンデ
ンサ33の容量Cvが実現できる。
・Capacitors 61, 62, 63°64 with 1Δ and 8Δ
However, through the switches 45, 46, 47, 48,
The configuration is connected in parallel. switch 45,
(16, 47, and 18 are each bit bo of the control signal 5,
bl, b2 + b3 (bo is LSB, b3 is M
SB) is turned on and off depending on the value of 1.0. Thereby, the capacitance Cv of the capacitor 33 can be realized in accordance with the control signal 5 (V5)K.

最後に、このようなフィードバック制御をかけることに
よシ、出力端子7,8の電位V、、V2が、希望するだ
けの精度で+ ”1 ””  ”2を満たすことを示す
。今、 IV□l>IV21とすると、Vl<0゜V2
〉0なので■3−(C2/CI ) (Vl +V2 
)>Oとなり、 v、 =−V、D(<o )となる。
Finally, it will be shown that by applying such feedback control, the potentials V, . Now, if IV□l>IV21, then Vl<0°V2
〉0, so ■3-(C2/CI) (Vl +V2
)>O, and v, = -V, D(<o).

コノ結果V、は1周期前の値に比べVDDだけ減少する
。庇って反転回路1のコンデンサ33の容量Cvの値も
」VIll、だけ減少する。この結果、V1=−Cv/
(C3+04)・v。
The result V decreases by VDD compared to the value one cycle ago. Therefore, the value of the capacitance Cv of the capacitor 33 of the inverting circuit 1 also decreases by "VIll". As a result, V1=-Cv/
(C3+04)・v.

であったので、vlの絶対値1v11も、Δ■DD/(
C3+C4)・Voだけ減少する。以上から、 lv、
1>+V21の場合はIVllが一定値ΔVD、/(C
3+C4)だけ減少することがわかった。
Therefore, the absolute value of vl, 1v11, is also Δ■DD/(
C3+C4)・Vo decreases. From the above, lv,
1>+V21, IVll is a constant value ΔVD, /(C
3+C4).

逆にlvt KIV21 (7)場合は、V3−(C2
/C1)(VI+V2 )<O、V4 =VDD(>o
 )となり+ V 5は1周期前の値に比べVDDだけ
増加する。従ってCvo値もΔVDDだけ増加する。こ
れにより、■、の絶対値IV11もΔ’vDD/(c3
+ C4) ・Vcたけ増加する。
Conversely, in the case of lvt KIV21 (7), V3-(C2
/C1)(VI+V2)<O, V4=VDD(>o
), and +V5 increases by VDD compared to the value one cycle ago. Therefore, the Cvo value also increases by ΔVDD. As a result, the absolute value IV11 of ■ is also Δ'vDD/(c3
+C4) ・Increase by Vc.

以上により、Vlと■2は、最悪の場合でもΔ・vDD
/(C3+C4)・■oノ誤差の範囲内テ■、−−v2
ノ関係を満たすことがわかる。Δを小さくすることによ
り、この誤差は任意に小さくすることができる。
From the above, Vl and ■2 are Δ・vDD even in the worst case
/(C3+C4)・■o within the error range te■, -v2
It can be seen that the following relationship is satisfied. By reducing Δ, this error can be made arbitrarily small.

また先に述べたように、加算回路2の出力端子21の電
位v3の精度はコンデンサ11.12の容量C,,C2
の精度で決まるが、■、の正負に関しては正61rであ
る。今の場゛合、■、の正負の情報しか用いないので、
コンデンサ11.12の容量の精度は考慮する必要がな
い。
Furthermore, as mentioned earlier, the accuracy of the potential v3 of the output terminal 21 of the adder circuit 2 is the capacitance C, , C2 of the capacitor 11.12.
It is determined by the accuracy of , but the positive/negative of . In the present case, only the positive and negative information of ■ is used, so
There is no need to consider the accuracy of the capacitance of capacitors 11,12.

[発明の効果] 以上説明したように2本発明は2つの出力電圧V1 、
V2の和の信号V3を正負に応じて2値(±■DD)に
量子化し、その値の積分値で反転回路の利得を制御する
というフィードバック制御を行うことにより、圧意の精
度でV、=−V2の関係を満たす2出力基準電圧を得る
ことができる。また、特に加算回路の回路定数(第2図
コンデンサ11.12の容量CI  、C2)の精度を
考慮しなくとも良いため、従来回路で問題となる温度変
動による影響からも逃げることができる効果がある。
[Effects of the Invention] As explained above, the present invention provides two output voltages V1,
By performing feedback control in which the signal V3, which is the sum of V2, is quantized into binary values (±■DD) according to the positive and negative values, and the gain of the inverting circuit is controlled by the integral value of the quantized value, V, A two-output reference voltage that satisfies the relationship =-V2 can be obtained. In addition, since there is no need to take into account the accuracy of the circuit constants of the adder circuit (capacitances CI and C2 of capacitors 11 and 12 in Figure 2), it is possible to avoid the effects of temperature fluctuations, which is a problem with conventional circuits. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のトラッキング型比較電源の一実施例の
構成図;第2図は第1図の反転回路、加算器をスイッチ
ドキャパシタ回路で構成した一実施例の構成図、第3図
は第2図におけるスイッチドキャノEシタ回路のスイッ
チの開閉のタイミングを示すタイミングチャート;第4
図は第2図の反転回路の、制御信号により容量値を可変
できるコンデンサ33の一例の説明図、第5図、第6図
はそれぞれ第3図のタイミングチャートに示した時刻1
2.14における第2図の反転回路の動作状態を示した
図;第7図、第8図、第9図、第10図はそれぞれ第3
図のタイミングチャートに示した時刻t1  +t2 
+t3 *j4における第2図の加算回路の動作状態を
示した図;第11図は従来の技術による絶対値が等しく
符号が正と負の2基準電圧を得る電源回路の一例の構成
図である。 1・・・反転回路、2・・・加算回路、3・・・比較回
路。 4・・・積分回路、5・・・制御信号、6・・・入力端
子、7゜8・・・出力端子、30・・・演算増幅器、3
1,32゜33・・・コンデンサ、34,35,36,
37゜38.39・・・スイッチ、10・・・演算増幅
器、11゜12・・・コンデンサ、13,14,15.
16゜17.18・・・スイッチ、21・・・端子、5
0・・・演算増幅器、51・・・端子、60,61,6
2,63゜64・・・コンデンサ、65.66.67.
68・・・スイッチ、101・・・演算増幅器、102
,103・・・抵抗、104・・・入力端子、105,
106・・・出力基準電圧を得る端子。
Fig. 1 is a block diagram of an embodiment of a tracking type comparison power supply according to the present invention; Fig. 2 is a block diagram of an embodiment in which the inverting circuit and adder of Fig. 1 are constructed with switched capacitor circuits; is a timing chart showing the timing of opening and closing of the switch of the switched cano E-shita circuit in Fig. 2;
The figure is an explanatory diagram of an example of the capacitor 33 whose capacitance value can be varied by a control signal in the inverting circuit of FIG.
2.14 is a diagram showing the operating state of the inverting circuit of FIG. 2; FIGS. 7, 8, 9, and 10 are respectively
Time t1 + t2 shown in the timing chart in the figure
A diagram showing the operating state of the adder circuit in FIG. 2 at +t3 *j4; FIG. 11 is a configuration diagram of an example of a power supply circuit according to the prior art that obtains two reference voltages with equal absolute values and positive and negative signs. . 1... Inversion circuit, 2... Addition circuit, 3... Comparison circuit. 4... Integrating circuit, 5... Control signal, 6... Input terminal, 7°8... Output terminal, 30... Operational amplifier, 3
1, 32° 33... Capacitor, 34, 35, 36,
37°38.39...Switch, 10...Operation amplifier, 11°12...Capacitor, 13,14,15.
16゜17.18...Switch, 21...Terminal, 5
0...Operation amplifier, 51...Terminal, 60, 61, 6
2,63°64... Capacitor, 65.66.67.
68... Switch, 101... Operational amplifier, 102
, 103...Resistor, 104...Input terminal, 105,
106...Terminal for obtaining the output reference voltage.

Claims (1)

【特許請求の範囲】 1、制御信号に応じて利得が変化し、入力信号の極性を
反転させる反転回路と; 該反転回路の出力信号を第1の入力、前記入力信号を第
2の入力として第1の入力と第2の入力の和を出力とす
る加算回路と; 該加算回路の出力信号を正負の2値に量子化する比較回
路と; 該比較回路の出力信号を積分する積分回路と;該積分回
路の出力信号を前記反転回路の制御信号とし、前記反転
回路の出力端子を第1の出力基準電圧端子とし、前記入
力信号の印加される端子より直接導かれる端子を第2の
出力基準電圧端子とする ことを特徴とするトラッキング型比較電源。
[Claims] 1. An inversion circuit whose gain changes according to a control signal and inverts the polarity of an input signal; an output signal of the inversion circuit is used as a first input, and the input signal is used as a second input. an addition circuit whose output is the sum of a first input and a second input; a comparison circuit which quantizes the output signal of the addition circuit into positive and negative binary values; an integration circuit which integrates the output signal of the comparison circuit. ; The output signal of the integrating circuit is used as a control signal for the inverting circuit, the output terminal of the inverting circuit is used as a first output reference voltage terminal, and the terminal directly led from the terminal to which the input signal is applied is used as a second output. A tracking type comparison power supply characterized by using a reference voltage terminal.
JP12404887A 1987-05-22 1987-05-22 Tracking type reference power source Pending JPS63290007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12404887A JPS63290007A (en) 1987-05-22 1987-05-22 Tracking type reference power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12404887A JPS63290007A (en) 1987-05-22 1987-05-22 Tracking type reference power source

Publications (1)

Publication Number Publication Date
JPS63290007A true JPS63290007A (en) 1988-11-28

Family

ID=14875699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12404887A Pending JPS63290007A (en) 1987-05-22 1987-05-22 Tracking type reference power source

Country Status (1)

Country Link
JP (1) JPS63290007A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006072971A (en) * 2004-09-03 2006-03-16 Au Optronics Corp Reference voltage driving circuit with compensating circuit, and compensating method of same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006072971A (en) * 2004-09-03 2006-03-16 Au Optronics Corp Reference voltage driving circuit with compensating circuit, and compensating method of same

Similar Documents

Publication Publication Date Title
JPS5835670A (en) Offset compensation for integrator having capacitors to be switched
JP2835347B2 (en) Sampled analog current storage circuit
JPS61189718A (en) Integrated electric filter
US4430622A (en) Offset correction circuit
JPS63283226A (en) Apparatus and method for generating step voltage waveform and a set of dc reference voltages
CN112816088A (en) Self-adaptive range switching temperature sensor
GB2070360A (en) Circuit comprising a plurality of voltagecurrent converters
JPS60142610A (en) Comparator circuit
JPS5946131B2 (en) encoding circuit
US4034364A (en) Analog-digital converter
US4086656A (en) Analog-to-digital integrating apparatus with pulse density conversion prior to accumulation
JPS63290007A (en) Tracking type reference power source
US4107671A (en) Improved digital to analog converter providing self compensation to offset errors
KR100263300B1 (en) Tunning circuit for filter
JP3189077B2 (en) ΣΔ AD converter
JPS63219219A (en) Switched capacitor circuit
JPS62136130A (en) Digital-analog converter
JPH10116309A (en) Automatic adjusting operation point adjusting device in amplifier circuit having neuron mos transistor
SU840961A1 (en) Device for solving field theory non-linear problems
SU705654A1 (en) Step voltage former
JPS59172828A (en) Analog voltage/digital signal converting circuit
JP3532080B2 (en) Analog operation circuit
SU1251125A1 (en) Integration device
JPH02170723A (en) A/d converting circuit
SU1488877A1 (en) Analog storage unit