JPS63289984A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS63289984A
JPS63289984A JP12625587A JP12625587A JPS63289984A JP S63289984 A JPS63289984 A JP S63289984A JP 12625587 A JP12625587 A JP 12625587A JP 12625587 A JP12625587 A JP 12625587A JP S63289984 A JPS63289984 A JP S63289984A
Authority
JP
Japan
Prior art keywords
semiconductor
substrate
active layer
layer
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12625587A
Other languages
Japanese (ja)
Inventor
Yoshinori Takeuchi
喜則 武内
Akira Takamori
高森 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12625587A priority Critical patent/JPS63289984A/en
Publication of JPS63289984A publication Critical patent/JPS63289984A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To realize laser, which oscillates in a single vertical mode, in a simple process and without deterioration in substrate's strength, by providing multilayered films which comprise specific semiconductor layers and forming an inclined terminal plane, to face the semiconductor surface plane, on at least one side out of optical waveguide directional ends of an active layer. CONSTITUTION:A first clad layer 2, an active layer 3, a second clad layer 4, and multilayer films 5 formed by laminating semiconductors of n1 and n2 refractive indexes alternately in respective thicknesses of 1/4n1 and 1/4n2, are laminated in order on a semiconductor substrate 1. An inclined terminal plane is formed, to face the semiconductor substrate plane, on at least one side out of optical waveguide directional ends of the active layer 3. For example, an InGaAsP active layer 3 is formed on an InP substrate 1 so that it is interposed between InP clad layers 2 and 4. Semiconductor multilayered films 5 comprising InP and InGaAsP layers, and a cap layer 6 are laminated on the clad layer 4. High reflection multilayer films 9 composed of dielectrics on cleavage planes are formed on one end of the active layer 3, and the inclined terminal plane is formed on the other end so that it faces the substrate surface in an angle thetaof 45 deg..

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光通信システムや光メモリーの光源として使
用することのできる半導体レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor laser that can be used as a light source for optical communication systems and optical memories.

従来の技術 光通信システムの大容量化や、光メモリー大容量化には
、単−縦モードの半導体レーザが不可欠である。単−縦
モードレーザーとしては、分布帰還型(DFB)構造や
分布反射型(DBR)構造を有する半導体レーザが一般
的であシ、その様な構造ですぐれた特性を得ている。
BACKGROUND OF THE INVENTION Single-longitudinal mode semiconductor lasers are essential for increasing the capacity of optical communication systems and optical memories. Semiconductor lasers having a distributed feedback (DFB) structure or distributed reflection (DBR) structure are common as single-longitudinal mode lasers, and excellent characteristics are obtained with such structures.

一方、DFB 、DBR構造よりも容易な製造工程で、
単−縦モード発振を実現することのできる半導体レーザ
構造として、第2図の様な構造が提案されている。この
構造では半導体基板上11に、屈折率がn 1r n 
2からなる半導体が交互に、zn1波長2%n2波長の
厚さに形成された半導体多ノ・、″4膜12と、第1ク
ラッド層13、活性にり14、第2クラッド層15が形
成されている。活性層14の導波方向端面は45°の傾
斜端面16に加工され、面上には多層反射膜17を有し
ている。また、活性層14と傾斜端面15との接点を中
心に対応する部分の半導体基板11に多層膜12まであ
けられた穴あけ部18が設けられていて、レーザ光は、
穴あけ部18より取り出す。
On the other hand, the manufacturing process is easier than that of DFB and DBR structures.
A structure as shown in FIG. 2 has been proposed as a semiconductor laser structure capable of realizing single-longitudinal mode oscillation. In this structure, on the semiconductor substrate 11, the refractive index is n 1r n
A semiconductor multilayer film 12 consisting of 2 semiconductors is alternately formed to a thickness of 2% of zn1 wavelength and n2 wavelength, a first cladding layer 13, an active layer 14, and a second cladding layer 15. The end face of the active layer 14 in the waveguide direction is processed into a 45° inclined end face 16, and has a multilayer reflective film 17 on the face. A hole 18 that extends up to the multilayer film 12 is provided in the semiconductor substrate 11 at a portion corresponding to the center, and the laser beam is
Take it out from the hole 18.

発明が解決しようとする問題点 前記提案中の半導体レーザは、裏面より光を取り出すだ
めの深さ100μm以上の穴をエノチング等であけると
いう工程を含み、非常な熟練を要する。また厚さ150
μm程の基板に、表面数μmの厚さを残して深い穴をあ
けるので、基板の強度も問題となる。
Problems to be Solved by the Invention The proposed semiconductor laser requires a great deal of skill, as it requires a process of drilling a hole with a depth of 100 μm or more by etching or the like to extract light from the back surface. Also thickness 150
The strength of the substrate is also an issue because a deep hole is drilled in a substrate with a thickness of about 1.0 μm, leaving a thickness of several μm on the surface.

本発明は、単−縦モードで発振するレーザを、容易な工
程で、基板強度を損うことなく実現しようとするもので
ある。
The present invention aims to realize a laser that oscillates in a single longitudinal mode through a simple process without impairing the strength of the substrate.

問題点を解決するための手段 本発明にかかる半導体レーザは、半導体基板上に少なく
とも、第1のクラッド層、活性層、第2のクラッド層、
屈折率がn 1 、 n 2からなる半導体層が交互に
!、/4n1波長2%n2波長の厚に形成された多層膜
とが順次積層され、前記活性層の少なくとも一方の光導
波方向端に、前記半導体基板面と対向する傾斜端面を有
する様に構成するものである。
Means for Solving the Problems A semiconductor laser according to the present invention has at least a first cladding layer, an active layer, a second cladding layer,
Semiconductor layers with refractive indices of n 1 and n 2 alternate! , /4n1 wavelengths 2%n2 wavelengths are sequentially laminated, and at least one end of the active layer in the optical waveguide direction has an inclined end face facing the semiconductor substrate surface. It is something.

作   用 本発明は上記した構成をとることにより、活性層中に励
起され基板と平行な方向に進行する励起光を、基板面に
対向する傾斜端面で基板と反対方向に反射させる。反射
した光の一部は屈折率がnl。
Function The present invention has the above-described configuration, so that excitation light excited in the active layer and traveling in a direction parallel to the substrate is reflected in a direction opposite to the substrate at an inclined end face facing the substrate surface. A part of the reflected light has a refractive index of nl.

n2からなる半導体が交互に%n1波長+ X n2波
長の厚さに形成された多層膜を透過するが、一部は反射
して前記傾斜端面に戻る。戻ってきた光は再び前記傾斜
端面により反射され、活性層中を基板と平行な方行に進
行する光となる。この様に、多層膜、傾斜端面、活性層
でレーザ共振器を構成することによシ、レーザ光は、基
板と反対方向に、多層膜を透過して出射する様になる。
The semiconductor consisting of n2 is alternately transmitted through the multilayer film formed to have a thickness of %n1 wavelength + X n2 wavelength, but a portion is reflected and returns to the inclined end face. The returned light is again reflected by the inclined end face, and becomes light that travels through the active layer in a direction parallel to the substrate. By constructing a laser resonator with the multilayer film, the inclined end face, and the active layer in this manner, the laser light is transmitted through the multilayer film and emitted in the opposite direction to the substrate.

一方、多層膜は%n1波長+ X ”2波長の厚さの半
導体膜で構成されているため、鋭い波長選択性を有して
おり、本発明にかかる構成の半導体レーザは、単−縦モ
ード発振する。
On the other hand, since the multilayer film is composed of a semiconductor film with a thickness of %n1 wavelength + oscillate.

実施例 以下本発明の実施例について図面を参照しながら説明す
る。
EXAMPLES Hereinafter, examples of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例における半導体レーザの断面
を示すものである。第1図において1は半導体レーザの
InP基板である。このInP基板1に対してバンドギ
ャップが1.3μmのInGaAsPの活性層3が、I
nPのクラッド層2,4に挾まれて形成されている。ク
ラッド層4の上には、InPとInGaAsPで形成さ
れた半導体多層膜5とキャップ層らが積層されている。
FIG. 1 shows a cross section of a semiconductor laser according to an embodiment of the present invention. In FIG. 1, 1 is an InP substrate of a semiconductor laser. An active layer 3 of InGaAsP with a band gap of 1.3 μm is formed on the InP substrate 1.
It is formed between nP cladding layers 2 and 4. On the cladding layer 4, a semiconductor multilayer film 5 made of InP and InGaAsP, a cap layer, etc. are laminated.

半導体多層膜は、InPの屈折率が3.2、InGaA
sPのそれが3.4であり、今の場合波長は1.3μm
なので、それぞれの膜厚は0.102μmと0.096
μm に設定する。
The semiconductor multilayer film is InP with a refractive index of 3.2, and InGaA with a refractive index of 3.2.
That of sP is 3.4, and in this case the wavelength is 1.3 μm.
Therefore, the respective film thicknesses are 0.102 μm and 0.096 μm.
Set to μm.

活性層3の一端は、骨間によってつくられた端面となっ
ており、面上には誘電体で構成された高反射多層膜9が
形成されており、反射率は、はぼ100%である。一方
、他端は基板面に対向する傾斜端面となっている。本実
施例では角度θは45°である。この様な傾斜端面は、
反応性イオンエツチングや反応性イオンビームエツチン
グにおいて、基板をイオン加速方向に対して傾斜させて
エツチングを行うことによって、容易に形成できる。こ
の傾斜面上に、誘電体多層膜を形成し、反射率を任意の
値に設計することも可能である。
One end of the active layer 3 is an end surface formed by the interbone, and a highly reflective multilayer film 9 made of dielectric material is formed on the surface, and the reflectance is approximately 100%. . On the other hand, the other end is an inclined end face facing the substrate surface. In this example, the angle θ is 45°. Such an inclined end surface is
In reactive ion etching or reactive ion beam etching, it can be easily formed by tilting the substrate with respect to the ion acceleration direction. It is also possible to form a dielectric multilayer film on this inclined surface and design the reflectance to an arbitrary value.

直流の注入は、電極7,8によって行うが、上部、−E
極8の一部には、レーザ光出力窓1oが形成されている
。この窓にも屈折率調整用の誘電体多層膜を形成しても
良い。
Direct current injection is carried out by means of electrodes 7, 8, at the top, -E
A laser light output window 1o is formed in a part of the pole 8. A dielectric multilayer film for adjusting the refractive index may also be formed on this window.

なお、半導体多層膜5の層数、高反射多層膜の反射率及
び、前記傾斜端面とレーザ光出力窓1゜に形成する多層
膜の反射率を適当に選んで半導体レーザの共振器の特性
を任意に選ぶことができる。
Note that the characteristics of the resonator of the semiconductor laser are determined by appropriately selecting the number of layers of the semiconductor multilayer film 5, the reflectance of the high-reflection multilayer film, and the reflectance of the multilayer film formed on the inclined end face and the 1° laser light output window. Can be selected arbitrarily.

これによ)、発振閾電流、光出力、縦単−モード注等の
制御が可能となり、最適須を選ぶと、発掘閾値30mA
で単−縦モードのレーザ光を、基板垂直方向に取シ出す
ことができる。
This makes it possible to control the oscillation threshold current, optical output, longitudinal single mode Note, etc., and if the optimum is selected, the excavation threshold is 30 mA.
Single-longitudinal mode laser light can be extracted in the direction perpendicular to the substrate.

発明の効果 本発明にかかる半導体レーザ構造をもってすれば、単−
縦モード発振する半導体レーザを、容易に歩留まりの良
く作製できる。また、本発明にかかる半導体レーザの光
出力は、基板に対して垂直方向に出てくるので検査工程
をウェハ一単位で行うことができ、生産性が大幅に向上
できる。
Effects of the Invention With the semiconductor laser structure according to the present invention, a single
A semiconductor laser that oscillates in a longitudinal mode can be easily manufactured with a high yield. Furthermore, since the optical output of the semiconductor laser according to the present invention is emitted in a direction perpendicular to the substrate, the inspection process can be performed on a wafer-by-wafer basis, and productivity can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の半導体レーザの断面図、第
2図は従来例の半導体レーザの断面図である。 1・・・・・・InP基板、2・・・・・・InPクラ
ッド層、3・・・・・・InGaAsP基板、4・・・
・・・InPクラッド層、5・・・・・・半導体多層膜
、6・・・・・・キャップ層、7・・・・・・電極、8
・・・・・・電極、9・・・・・・高反射多、習膜、1
0・・・・・・レーザ光出力窓、11・・・・・・半導
体基板、12・・・・・・半導体多層膜、13・・・−
・・第1クラッド層、14・・・・・・活性、苦、15
・・・・・・第2クラッド層、16・・・・・・傾斜端
面、17・・・・・・多層反射膜、18・・・・・・穴
あけ部、19・・・・・電極、20・・・・・・電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図
FIG. 1 is a sectional view of a semiconductor laser according to an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional semiconductor laser. 1... InP substrate, 2... InP cladding layer, 3... InGaAsP substrate, 4...
... InP cladding layer, 5 ... semiconductor multilayer film, 6 ... cap layer, 7 ... electrode, 8
・・・・・・Electrode, 9・・・High reflective polyurethane, 1
0... Laser light output window, 11... Semiconductor substrate, 12... Semiconductor multilayer film, 13...-
...First cladding layer, 14... Active, bitter, 15
...Second cladding layer, 16...Slanted end surface, 17...Multilayer reflective film, 18...Drilling part, 19...Electrode, 20... Electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に、少なくとも第1のクラッド層、活性層
、第2のクラッド層および屈折率がn_1、n_2から
なる半導体が交互に1/4n_1波長、1/4n_2波
長の厚さに形成された多層膜とが順次積層され、前記活
性層の少なくとも一方の光導波方向端に、前記半導体基
板面と対向する傾斜端面を有することを特徴とする半導
体レーザ。
A multilayer in which at least a first cladding layer, an active layer, a second cladding layer, and a semiconductor having a refractive index of n_1 and n_2 are alternately formed to have a thickness of 1/4n_1 wavelength and 1/4n_2 wavelength on a semiconductor substrate. 1. A semiconductor laser, wherein films are sequentially laminated, and at least one end of the active layer in the optical waveguide direction has an inclined end face facing the semiconductor substrate surface.
JP12625587A 1987-05-22 1987-05-22 Semiconductor laser Pending JPS63289984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12625587A JPS63289984A (en) 1987-05-22 1987-05-22 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12625587A JPS63289984A (en) 1987-05-22 1987-05-22 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS63289984A true JPS63289984A (en) 1988-11-28

Family

ID=14930647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12625587A Pending JPS63289984A (en) 1987-05-22 1987-05-22 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS63289984A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135528A (en) * 2009-03-13 2009-06-18 Hitachi Ltd Semiconductor optical element
EP2043210A3 (en) * 2007-09-28 2010-12-22 OSRAM Opto Semiconductors GmbH Semiconductor laser and method for producing the semiconductor laser
US8179940B2 (en) 2007-09-28 2012-05-15 Osram Opto Semiconductors Gmbh Semiconductor laser and method for producing the semiconductor laser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2043210A3 (en) * 2007-09-28 2010-12-22 OSRAM Opto Semiconductors GmbH Semiconductor laser and method for producing the semiconductor laser
US8179940B2 (en) 2007-09-28 2012-05-15 Osram Opto Semiconductors Gmbh Semiconductor laser and method for producing the semiconductor laser
JP2009135528A (en) * 2009-03-13 2009-06-18 Hitachi Ltd Semiconductor optical element

Similar Documents

Publication Publication Date Title
US7795058B2 (en) Method for manufacturing optical element
US20080069166A1 (en) Vertical-cavity surface-emitting laser
US20050074197A1 (en) Integrated surface emitting laser and light amplifier
KR100790898B1 (en) Pump laser integrated vertical external cavity surface emitting laser
JP2000200940A (en) Semiconductor laser diode
JPS63289984A (en) Semiconductor laser
JPS60124887A (en) Distributed feedback type semiconductor laser
JP2018046118A (en) Broad area semiconductor laser device
JPS645474B2 (en)
KR20120034099A (en) Multibeam coherent laser diode source(embodiments)
JP2002076510A (en) Semiconductor laser and production method therefor
JPS62291192A (en) Surface emission laser
JP3485260B2 (en) Distributed reflection optical waveguide and optical device including the same
JP3317891B2 (en) Optical function element
JP2002323629A (en) Optical waveguide element and semiconductor laser beam device
JPH06188518A (en) Variable wavelength surface emission laser
JPS61137388A (en) Semiconductor laser
JPH05129728A (en) Metallic polarizer and semiconductor laser device
US20230275399A1 (en) Semiconductor optical device and method of manufacturing the same
JP2514096B2 (en) Semiconductor laser device and manufacturing method thereof
JP2000101146A (en) Light emitting element module
JPS63211784A (en) Quantum well type semiconductor laser
JPH03266490A (en) Semiconductor laser device and manufacture thereof
JPS63164286A (en) Semiconductor laser array device
JPH0581198B2 (en)