JPS632891A - Vapor phase epitaxy - Google Patents
Vapor phase epitaxyInfo
- Publication number
- JPS632891A JPS632891A JP14438186A JP14438186A JPS632891A JP S632891 A JPS632891 A JP S632891A JP 14438186 A JP14438186 A JP 14438186A JP 14438186 A JP14438186 A JP 14438186A JP S632891 A JPS632891 A JP S632891A
- Authority
- JP
- Japan
- Prior art keywords
- silicon
- film
- oxide film
- growth
- vapor phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000927 vapour-phase epitaxy Methods 0.000 title 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 43
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 42
- 239000010703 silicon Substances 0.000 claims abstract description 42
- 230000012010 growth Effects 0.000 claims abstract description 27
- 239000012808 vapor phase Substances 0.000 claims abstract description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims abstract 3
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims abstract 3
- 238000000034 method Methods 0.000 claims description 11
- 239000007789 gas Substances 0.000 claims description 6
- 239000012071 phase Substances 0.000 claims description 3
- 239000000758 substrate Substances 0.000 abstract description 23
- 238000004140 cleaning Methods 0.000 abstract description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052681 coesite Inorganic materials 0.000 abstract description 2
- 238000007796 conventional method Methods 0.000 abstract description 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 2
- 239000000377 silicon dioxide Substances 0.000 abstract description 2
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 2
- 229910052682 stishovite Inorganic materials 0.000 abstract description 2
- 229910052905 tridymite Inorganic materials 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 61
- 230000007547 defect Effects 0.000 description 16
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 3
- 230000034655 secondary growth Effects 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000001947 vapour-phase growth Methods 0.000 description 2
- 241000238557 Decapoda Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明はシリコンの選択的な気相エピタキシャル成長
法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for selective vapor phase epitaxial growth of silicon.
(従来の技術)
従来、シリコン気相エピタキシャルにおける成長前処理
としては、
1) HCIを用いた高温でのガスエツチング、2)高
温、水素雰囲気でのプリベーキング、3)Ar上などを
用いたイオンエツチング、などの方法が知られている。(Prior art) Conventionally, pre-growth treatments for silicon vapor phase epitaxial growth include: 1) gas etching at high temperature using HCI, 2) pre-baking at high temperature in a hydrogen atmosphere, 3) ionization using Ar, etc. Methods such as etching are known.
より微細なデバイスを形成するためシリコンプロセスは
低温化の傾向にある。また三次元デバイスの実現や選択
成長膜の結晶性のためにも成長温度の低温化は望ましい
方向である。1)や2)はシリコンプロセス低温化の傾
向に反するものであり、不純物プロファイルをだれさせ
るなどの欠点を有していた。3)のイオンエツチングは
表面にダメージを残すが、このダメージは格子欠陥の発
生原因になるし、ダメージを除去するには高温のアニー
ルを必要とするため1)や2)と同じ欠点が顕在化する
ことになる。Silicon processes are trending toward lower temperatures to form smaller devices. Furthermore, lowering the growth temperature is desirable for the realization of three-dimensional devices and the crystallinity of selectively grown films. Methods 1) and 2) go against the trend of lower silicon process temperatures and have drawbacks such as a sloping impurity profile. Ion etching in 3) leaves damage on the surface, but this damage causes lattice defects, and high temperature annealing is required to remove the damage, so the same drawbacks as 1) and 2) become apparent. I will do it.
(発明が解決しようとする問題点)
シリコン表面の成長前処理は通常RCA洗浄(塩酸ない
しアンモニアと過酸化水素と水の混合液に浸す)を行う
が、この処理後はシリコン表面に薄い酸化膜が形成され
る。この薄い酸化膜はシリコン表面を汚染からまもる役
割を果たすため成長直前まで除去しないほうが望ましい
。成長温度が高ければ薄い酸化膜は成長膜の結晶性に何
の影響も及ぼさないが、成長温度を低くしていくと積層
欠陥や転位などの格子欠陥が基板と成長膜の界面から発
生するようになる。本発明は従来例のような高温にシリ
コン基板を晒さずにしかもRCA洗浄後シリコン表面に
形成される薄い酸化膜の影響がないような気相エピタキ
シャル成長法を提供することにある。(Problem to be solved by the invention) RCA cleaning (soaking in a mixture of hydrochloric acid or ammonia, hydrogen peroxide, and water) is usually performed as a pre-growth treatment on the silicon surface, but after this treatment, a thin oxide film is formed on the silicon surface. is formed. Since this thin oxide film plays the role of protecting the silicon surface from contamination, it is preferable not to remove it until immediately before growth. If the growth temperature is high, a thin oxide film will have no effect on the crystallinity of the grown film, but if the growth temperature is lowered, lattice defects such as stacking faults and dislocations will occur at the interface between the substrate and the grown film. become. An object of the present invention is to provide a vapor phase epitaxial growth method that does not expose a silicon substrate to high temperatures as in the prior art and is not affected by a thin oxide film formed on the silicon surface after RCA cleaning.
(問題点を解決するための手段)
この発明は、HCIを含んだ雰囲気において比較的高温
でいったんシリコン薄膜を成長したあと低温にして所望
の膜厚までシリコンを成長することを特徴とする。(Means for Solving the Problems) The present invention is characterized in that a silicon thin film is once grown at a relatively high temperature in an atmosphere containing HCI, and then the silicon is grown at a low temperature to a desired film thickness.
(作用)
ジクロロシランやHCIを加えたシランなどを用いた気
相成長では、部分的に酸化膜厚が形成されているシリコ
ン基板を用いるとシリコン上だけにシリコンを選択成長
させることができることはよく知られている。従っであ
る程度の時間、酸化膜の表面にはシリコンが堆積しない
状態が起こることになる。さらに基板表面あるいは気相
中で分解した活性なシリコン原子が気相中に存在するた
めSi + 5i02−2 SiO↑
の反応が5i02表面およびSiO2とシリコン基板と
の界面で起こり、薄い酸化膜であれば除去されると考え
られる。この反応を有効に働かせるためには、−次成長
として低圧で薄い酸化膜を用いることが望ましい。温度
に関しては反応を速く進めるためには高温の方が良いが
、プロセスの低温化を考えるならば出来るだけ低温でが
っ短時間で行うことが望ましい。この反応によりRCA
洗浄により形成された薄い酸化膜を完全に除去すれば、
即ち比較的高温で薄いシリコン膜を成長させたあと、低
温にして厚いシリコン膜の成長を行えば、格子欠陥の発
生しないシリコン膜を得ることができる。(Operation) In vapor phase growth using dichlorosilane or silane added with HCI, it is often possible to selectively grow silicon only on silicon by using a silicon substrate on which a partially thick oxide film is formed. Are known. Therefore, a state occurs in which silicon is not deposited on the surface of the oxide film for a certain period of time. Furthermore, since active silicon atoms decomposed on the substrate surface or in the gas phase exist in the gas phase, the reaction of Si + 5i02-2 SiO↑ occurs on the 5i02 surface and the interface between SiO2 and the silicon substrate, and even if it is a thin oxide film, It is thought that it will be removed if In order to make this reaction work effectively, it is desirable to use a thin oxide film at low pressure as the secondary growth. As for temperature, a high temperature is better in order for the reaction to proceed quickly, but if you are thinking about lowering the temperature of the process, it is desirable to carry out the reaction at the lowest possible temperature and in the shortest possible time. This reaction causes RCA
If the thin oxide film formed by cleaning is completely removed,
That is, by growing a thin silicon film at a relatively high temperature and then growing a thick silicon film at a low temperature, a silicon film free from lattice defects can be obtained.
(実施例)
第1図は本発明を示している。(a)は比較的高温でシ
リコンを成長しはじめた状態を示している。シリコン基
板1上の薄い酸化膜2はRCA洗浄で出来たもので、膜
厚は20人程度と思われる。酸化膜の表面3および酸化
膜とシリコン基板の界面4ではSi+5i02−2 S
iO↑の反応が起こり、成長の初期に酸化膜は除去され
る。(b)は−次成長のあと温度をさけて更にシリコン
膜を成長した状態を示しており、5は高温で成長した膜
を、6は低温で成長した膜を示している。(Example) FIG. 1 shows the present invention. (a) shows a state in which silicon has begun to grow at a relatively high temperature. The thin oxide film 2 on the silicon substrate 1 was made by RCA cleaning, and the film thickness is thought to be about 20. At the surface 3 of the oxide film and at the interface 4 between the oxide film and the silicon substrate, Si+5i02-2S
An iO↑ reaction occurs, and the oxide film is removed at the initial stage of growth. (b) shows a state in which a silicon film is further grown at a lower temperature after the second growth, and 5 shows a film grown at a high temperature, and 6 shows a film grown at a low temperature.
原料ガスとしてジクロロシランを用い、40Torrで
行った結果、900°Cでの一次成長を10秒、膜厚に
して100A程度成長させれば、800°Cに温度を下
げて成長を行っても欠陥発生の無いエピタキシャル膜を
得ることができた。成長を常圧で行った場合には900
°C程度の一次成長では欠陥が多数発生し、酸化膜の除
去ができないと思われる結果となった。850°Cだけ
で成長したところ、基板とエビ膜との界面から欠陥が発
生し酸化膜除去が不十分であるという結果になった。酸
化膜を除去すれば良いということは、成長直前にフッ酸
で酸化膜を除去してから成長炉にいれて850°Cで成
長した膜に欠陥がほとんど観察されないことから判る。As a result of using dichlorosilane as the raw material gas and performing the growth at 40 Torr, if the primary growth was performed at 900°C for 10 seconds and the film thickness was grown to about 100A, there would be no defects even if the growth was performed at a lower temperature of 800°C. It was possible to obtain an epitaxial film free of generation. 900 when grown under normal pressure
During the primary growth at a temperature of about 10.degree. C., a large number of defects were generated, and the results suggested that the oxide film could not be removed. When grown at only 850°C, defects occurred at the interface between the substrate and the shrimp film, resulting in insufficient removal of the oxide film. The fact that it is sufficient to remove the oxide film can be seen from the fact that almost no defects are observed in the film grown at 850° C. by removing the oxide film with hydrofluoric acid immediately before growth and then placing the film in a growth furnace.
成長圧力を下げれば一次成長の温度を更に下げても欠陥
のないエピタキシャル膜を得ることができる。If the growth pressure is lowered, a defect-free epitaxial film can be obtained even if the primary growth temperature is further lowered.
第2図は選択エピタキシャル成長を行った例である。原
料ガスとしてジクロロシランにHCIを添加したものを
用いた。シリコン基板7の上に形成された酸化膜8の開
口部9に選択的に単結晶シリコン膜10で埋めこむこと
ができる。この場合、より低温で成長することは側壁部
での格子欠陥発生を抑制するのに効果があるが、単に成
長温度を下げただけでは第1図に示したように基板とエ
ピタキシャル膜との界面から欠陥が発生する。成長圧力
を20Torrとし、−次成長温度を900’C1二次
成長温度を800°Cとした結果、基板とエピタキシャ
ル膜との界面で欠陥性がなく、側壁とエピタキシャル膜
との界面でもきわめて欠陥の少ないエピタキシャル膜が
得られた。FIG. 2 is an example of selective epitaxial growth. As a raw material gas, dichlorosilane to which HCI was added was used. Openings 9 of oxide film 8 formed on silicon substrate 7 can be selectively filled with single crystal silicon film 10. In this case, growing at a lower temperature is effective in suppressing the generation of lattice defects on the sidewalls, but simply lowering the growth temperature will cause the interface between the substrate and the epitaxial film to deteriorate as shown in Figure 1. Defects occur from this. As a result of setting the growth pressure to 20 Torr, the secondary growth temperature to 900°C, and the secondary growth temperature to 800°C, there were no defects at the interface between the substrate and the epitaxial film, and there were very few defects at the interface between the sidewall and the epitaxial film. A small epitaxial film was obtained.
第2図の構造は酸化膜の幅を小さくすることによってき
わめて微細な素子分離に適応することが可能となるが、
従来の方法では酸化膜の幅がlpm程度以下と小さい場
合に高温の熱処理を加えると酸化膜が基板から分離して
浮き上がるという現象が見られた。本発明を用いた場合
にはそのような現象も見られず、サブミクロンの素子分
離にも適応が可能であった。The structure shown in Figure 2 can be adapted to extremely fine element isolation by reducing the width of the oxide film.
In the conventional method, when a high temperature heat treatment is applied when the width of the oxide film is as small as about lpm or less, a phenomenon has been observed in which the oxide film separates from the substrate and floats up. When the present invention was used, such a phenomenon was not observed, and it was possible to apply the method to submicron element isolation.
第3図は第2図の方法を酸化膜上への横方向成長へ適応
した例である。シリコン基板11の上に形成された酸化
膜12の開口部13に選択成長を行い更に酸化膜上にシ
リコン膜14を横方向成長した。この場合にも基板とエ
ピタキシャル膜との界面で欠陥発生がなく、側壁ととエ
ピタキシャル膜との界面でもきわめて欠陥の少なく、酸
化膜上にもきわめて欠陥の少ないエピタキシャル膜が得
られた。FIG. 3 is an example in which the method shown in FIG. 2 is applied to lateral growth on an oxide film. Selective growth was performed in the opening 13 of the oxide film 12 formed on the silicon substrate 11, and a silicon film 14 was laterally grown on the oxide film. In this case as well, no defects occurred at the interface between the substrate and the epitaxial film, there were very few defects at the interface between the sidewall and the epitaxial film, and an epitaxial film with very few defects on the oxide film was obtained.
(発明の効果)
以上述べたように、本発明によれば、
1)不純物プロファイルをだれさせる
2)選択成長における欠陥発生を抑制するなどをはじめ
とする高温の熱処理によってもたらされる問題がなく、
微細なデバイス構造に適用されるであろう多くの基板構
造の場合にも欠陥発生が抑制されるような気相成長法を
提供することができる。(Effects of the Invention) As described above, according to the present invention, there are no problems caused by high-temperature heat treatment, such as 1) degrading the impurity profile, 2) suppressing the generation of defects during selective growth, etc.
It is possible to provide a vapor phase growth method that suppresses the occurrence of defects even in the case of many substrate structures that may be applied to fine device structures.
第1図から第3図は本発明の実施例を示す断面図である
。図において、1はシリコン基板、2は薄い酸化膜、3
は酸化膜の表面、4は酸化膜とシリコン基板の界面、5
は高温で成長した膜、6は低温で成長した膜、7はシリ
コン基板、8は酸化膜、9は開口部、10は単結晶シリ
コン膜、11はシリコン基板、12は酸化膜、13は開
口部、14はシリコン膜をそれぞれ示す。
第 1 図
6低温で成長した
第 2 図
開口部1 to 3 are cross-sectional views showing embodiments of the present invention. In the figure, 1 is a silicon substrate, 2 is a thin oxide film, and 3 is a silicon substrate.
is the surface of the oxide film, 4 is the interface between the oxide film and the silicon substrate, and 5 is the surface of the oxide film.
is a film grown at high temperature, 6 is a film grown at low temperature, 7 is a silicon substrate, 8 is an oxide film, 9 is an opening, 10 is a single crystal silicon film, 11 is a silicon substrate, 12 is an oxide film, 13 is an opening Sections and 14 indicate silicon films, respectively. Fig. 1 Fig. 6 Fig. 2 Opening grown at low temperature
Claims (1)
リコン膜を成長したあと低温でシリコン膜を成長するこ
とを特徴とする気相エピタキシャル成長法。A vapor phase epitaxial growth method that is characterized by first growing a silicon film at high temperature in an atmosphere where hydrogen chloride is present in the gas phase, and then growing the silicon film at low temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14438186A JPS632891A (en) | 1986-06-19 | 1986-06-19 | Vapor phase epitaxy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14438186A JPS632891A (en) | 1986-06-19 | 1986-06-19 | Vapor phase epitaxy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS632891A true JPS632891A (en) | 1988-01-07 |
Family
ID=15360805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14438186A Pending JPS632891A (en) | 1986-06-19 | 1986-06-19 | Vapor phase epitaxy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS632891A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5358391A (en) * | 1986-08-22 | 1994-10-25 | Copeland Corporation | Hermetic compressor with heat shield |
US5649816A (en) * | 1986-08-22 | 1997-07-22 | Copeland Corporation | Hermetic compressor with heat shield |
US5674062A (en) * | 1986-08-22 | 1997-10-07 | Copeland Corporation | Hermetic compressor with heat shield |
JP2006521015A (en) * | 2003-03-12 | 2006-09-14 | エーエスエム アメリカ インコーポレイテッド | Method for reducing planarization and defect density in silicon germanium |
-
1986
- 1986-06-19 JP JP14438186A patent/JPS632891A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5358391A (en) * | 1986-08-22 | 1994-10-25 | Copeland Corporation | Hermetic compressor with heat shield |
US5487654A (en) * | 1986-08-22 | 1996-01-30 | Copeland Corporation | Hermetic compressor with heat shield |
US5649816A (en) * | 1986-08-22 | 1997-07-22 | Copeland Corporation | Hermetic compressor with heat shield |
US5674062A (en) * | 1986-08-22 | 1997-10-07 | Copeland Corporation | Hermetic compressor with heat shield |
JP2006521015A (en) * | 2003-03-12 | 2006-09-14 | エーエスエム アメリカ インコーポレイテッド | Method for reducing planarization and defect density in silicon germanium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8847236B2 (en) | Semiconductor substrate and semiconductor substrate manufacturing method | |
US4472459A (en) | Local oxidation of silicon substrate using LPCVD silicon nitride | |
WO2008075449A1 (en) | Method for manufacturing deformation silicon substrate | |
WO2005048331A1 (en) | Process for producing silicon epitaxial wafer | |
JPH04267339A (en) | Semiconductor substrate and its manufacture | |
JP4894390B2 (en) | Manufacturing method of semiconductor substrate | |
KR100889583B1 (en) | Method of improving a surface | |
JPS632891A (en) | Vapor phase epitaxy | |
JP4120163B2 (en) | Si epitaxial wafer manufacturing method and Si epitaxial wafer | |
JPH04139819A (en) | Method and apparatus for selective growth of silicon epitaxial film | |
JPH0236060B2 (en) | KAGOBUTSU HANDOTAINOSEICHOHOHO | |
JP2647927B2 (en) | Selective epitaxial growth method | |
JP3922674B2 (en) | Silicon wafer manufacturing method | |
JP2987926B2 (en) | Vapor growth method | |
JP2861600B2 (en) | Method and apparatus for selective growth of silicon epitaxial film | |
JP4550870B2 (en) | Manufacturing method of semiconductor device | |
JP2874262B2 (en) | Method for manufacturing semiconductor device | |
JPH0247836A (en) | Manufacture of semiconductor device | |
JPH0660401B2 (en) | Silicon thin film manufacturing method | |
JPS60145625A (en) | Manufacture of semiconductor device | |
JPH04258115A (en) | Manufacture of semiconductor substrate | |
JP3166743B2 (en) | Method for manufacturing semiconductor device | |
KR100423754B1 (en) | A method for high temperature heating of silicon wafer | |
KR20230114690A (en) | Method for controlling generaton of epitaxial staking fault in epitaxial wafers | |
JPH0613328A (en) | Growing method for compound semiconductor thin film |