JPS63288967A - Tough ceramic material for gas turbine and its production - Google Patents

Tough ceramic material for gas turbine and its production

Info

Publication number
JPS63288967A
JPS63288967A JP62123948A JP12394887A JPS63288967A JP S63288967 A JPS63288967 A JP S63288967A JP 62123948 A JP62123948 A JP 62123948A JP 12394887 A JP12394887 A JP 12394887A JP S63288967 A JPS63288967 A JP S63288967A
Authority
JP
Japan
Prior art keywords
molding
silica
capsule
silicon nitride
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62123948A
Other languages
Japanese (ja)
Other versions
JP2512942B2 (en
Inventor
Tadashi Sasa
佐々 正
Arata Koga
古賀 新
Kaoru Miyahara
宮原 薫
Hideo Ohashi
大橋 英雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP62123948A priority Critical patent/JP2512942B2/en
Publication of JPS63288967A publication Critical patent/JPS63288967A/en
Application granted granted Critical
Publication of JP2512942B2 publication Critical patent/JP2512942B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled material which has excellent strength, toughness, heat resistance, corrosion resistance and wear resistance by mixing high-purity Si3N4 powder and high-purity SiC whiskers, molding the mixture, and adding and incorporating silica to and into the mixture, then forming a capsule on the molding and sintering the molding with a hot isostatic press. CONSTITUTION:(B) 10-40% SiC whiskers contg. <=0.5% metal impurities is mixed with (A) Si3N4 powder contg. <=0.5% metal impurities except Si and having <=1mu average grain size and SiO2 is added to this mixture or is subjected to high-temp. oxidation at 900-1,500 deg.C in an O2-contg. atmosphere or air or the like to form an SiO2 (C) film on the surfaces of the respective components A, B. This mixture is then molded to a desired shape by slurry cast molding, injection molding or extrusion molding. The molding is then vacuum-sealed into a silica glass tube in which, for example, BN is packed to form the capsule. The capsule is thereafter treated at 1,650-2,200 deg.C under 100-2,000atm. pressure by the hot isostatic press. The capsule is removed after cooling and the molding is heat-treated at, for example, about 1,400 deg.C in an H2 atmosphere. The tiled material consisting of Si3N4 having 0 open pore rate and having the thin layer of 3-20% silica at the boundary is thus obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、車両用、航空用9発電用などに用いられるガ
スタービンの材料に係り、特に耐熱性、耐蝕性、耐摩耗
性を向上させたガスタービン用強靭セラミック材料及び
その製造方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to materials for gas turbines used for vehicles, aircraft power generation, etc., and particularly relates to materials with improved heat resistance, corrosion resistance, and wear resistance. The present invention relates to a strong ceramic material for gas turbines and a method for manufacturing the same.

[従来の技術] 従来、車両用、航空用、舶用2発電用などのガスタービ
ンのU買、静翼、燃焼器などとして使用の検討されてい
る窒化けい素は、セラミックス中でも、比較的強度が高
く、耐熱衝撃性が高いが、セラミックス全般の特徴とし
て靭性が低い。このため、窒化けい素に、炭化けい素な
どのセラミックウィスカーを混ぜ、セラミックスを強靭
化することが試みられている。
[Conventional technology] Silicon nitride, which has been considered for use in gas turbines, stationary blades, combustors, etc. for vehicles, aircraft, marine power generators, etc., has a relatively strong strength among ceramics. Although it has high thermal shock resistance, it is characterized by low toughness as a general characteristic of ceramics. For this reason, attempts have been made to toughen ceramics by mixing silicon nitride with ceramic whiskers such as silicon carbide.

従来のウィスカー強化窒化けい素の製造方法は、窒化け
い素粉及び焼結助剤となるアルミナ。
The conventional method for manufacturing whisker-reinforced silicon nitride is to use silicon nitride powder and alumina as a sintering aid.

イツトリア等の他の金属化合物を数%以上混ぜ、これに
ウィスカーをさらに混合して成形し、加圧焼結を行って
いる。
A few percent or more of other metal compounds such as ittria are mixed in, whiskers are further mixed in, molded, and pressure sintered.

[発明が解決しようとする問題点] しかしながら、マトリックスとなる窒化けい素の緻密化
のために、多量の焼結助剤を混ぜるため、成形焼結体の
高)g (1,000℃以上)での強度が低下し、また
高温燃焼ガスに対する耐蝕性も低くなる問題がある。
[Problems to be solved by the invention] However, in order to make the silicon nitride matrix denser, a large amount of sintering aid is mixed, which causes the molded sintered body to have a high temperature (1,000°C or higher). There is a problem that the strength of the steel is reduced, and the corrosion resistance against high-temperature combustion gas is also reduced.

また焼結助剤を全く混ぜないと上述の耐熱性。Also, if no sintering aid is mixed, the above heat resistance will not be achieved.

耐蝕性は高くできるが、反面焼結しにクク、マトリック
スの密度が向上しにくい問題がある。
Although high corrosion resistance can be achieved, there are problems with sintering and difficulty in improving the density of the matrix.

本発明は、上記事情を考慮してなされたもので、窒化け
い素をマトリックスとするガスタービン用強靭セラミッ
ク材料において、高温強度及び耐蝕性が良好で、しかも
マトリックスが緻密であるガスタービン用強靭セラミッ
ク材料およびその製造方法を提供することを目的とする
The present invention has been made in consideration of the above circumstances, and is a strong ceramic material for gas turbines that has good high-temperature strength and corrosion resistance and has a dense matrix. The purpose is to provide materials and methods for producing the same.

[問題点を解決するための手段及び作用]本発明は上記
の目的を達成するために、炭化けい素ウィスカーを10
〜40%含み、けい素以外の金属含有量が0.5%以下
で開気孔率が実質的にOである窒化けい素をマトリック
スとし、境界にシリカないし酸窒化けい素を主成分とす
る層を有するガスタービン用強靭セラミック材料であり
、また、金属不純物含有量0.5%以下で平均粒径1μ
m以下の窒化けい素粉に対し、金属不純物含有ω0.5
%以下の炭化けい素ウィスカーを、10〜40%となる
よう混合し、この混合物を用いて成形を行うと共にその
混合物または成形体に対してシリカ添加または高温酸化
によって3〜20%のシリカを含有さ、しかる後にカプ
セルを成形体上に形成させて1.650〜2,200℃
にて熱間等方圧プレスにより焼結させるガスタービン用
強靭セラミック材料の製造方法である。
[Means and effects for solving the problems] In order to achieve the above-mentioned objects, the present invention provides silicon carbide whiskers with 10
~40%, the content of metals other than silicon is 0.5% or less, and the open porosity is substantially O. The matrix is silicon nitride, and the boundary is a layer mainly composed of silica or silicon oxynitride. It is a strong ceramic material for gas turbines with a metal impurity content of 0.5% or less and an average grain size of 1μ.
Metal impurity content ω0.5 for silicon nitride powder of m or less
% or less of silicon carbide whiskers to be 10 to 40%, molding is performed using this mixture, and the mixture or molded product contains 3 to 20% silica by adding silica or high temperature oxidation. Then, capsules are formed on the molded body and heated to 1.650 to 2,200°C.
This is a method for producing a strong ceramic material for gas turbines, which is sintered by hot isostatic pressing.

本発明による強靭セラミック材料は、窒化けい素をマト
リックスとし、炭化けい素ウィスカーにより強化された
セラミックスで、特に従来の材料と比較して次のような
特徴を有する。
The strong ceramic material according to the present invention is a ceramic having a silicon nitride matrix and reinforced with silicon carbide whiskers, and has the following characteristics in particular compared to conventional materials.

a、窒化けい素の高温強度および耐蝕性の低下の原因と
なるけい素以外の金属の含有量を0.5%以下とした。
a. The content of metals other than silicon, which cause a decrease in high-temperature strength and corrosion resistance of silicon nitride, was set to 0.5% or less.

b、これに伴うマトリックスの焼結性の困難化に対処す
るため、シリカを3〜20%添加し、緻密な組織とした
b. In order to deal with the accompanying difficulty in sinterability of the matrix, 3 to 20% of silica was added to create a dense structure.

C1炭化【ノい素ウィスカーと窒化けい素マトリックス
の界面にもシリカの薄属を形成させ、ウィスカーとマト
リックスが直接結合している場合よりも、強度と靭性を
向上させる。
C1 carbonization [Also forms a thin layer of silica at the interface between the nitride whiskers and the silicon nitride matrix, improving strength and toughness compared to when the whiskers and matrix are directly bonded.

[実施例] 以下本発明の好適実施個含添付図面に基づいて説明する
[Embodiments] Hereinafter, preferred embodiments of the present invention will be described based on the attached drawings.

添付図面はガスタービン用強靭セラミック材料の製造工
程を示す。
The accompanying drawings show the manufacturing process of a strong ceramic material for gas turbines.

同図において、原料の炭化けい素ウィスカー1とマトリ
ックスとなる窒化けい素粉2とを混合3したのち成形4
する。この混合物又は成形体中にシリカ含有5を行い、
成形体にカプセルを形成6する。その後熱間等方圧プレ
ス(HIP)7にて焼結(緻密化)を行い強靭セラミッ
ク材料8を得る。
In the figure, silicon carbide whiskers 1 as raw materials and silicon nitride powder 2 as a matrix are mixed 3 and then molded 4.
do. Containing silica 5 in this mixture or molded body,
A capsule is formed 6 in the molded body. Thereafter, sintering (densification) is performed using a hot isostatic press (HIP) 7 to obtain a tough ceramic material 8.

以上のような強靭セラミック材料は、従来の製造法では
製造が困難なため、本発明では下記のような製造法によ
りこれを可能とした。
Since it is difficult to manufacture the above-mentioned tough ceramic materials using conventional manufacturing methods, the present invention has made it possible to manufacture such materials using the following manufacturing method.

以下各工程毎に製造法を説明する。The manufacturing method will be explained below for each step.

■ 原料 本発明の強靭セラミックスでは、窒化けい素をマトリッ
クスとするが、後段の焼結の段階での緻密化を容易にす
るため、窒化【ノい素粉としては、平均粒径1μm以下
、望ましくは0.5μm以下とすることが必要である。
■ Raw Materials The tough ceramics of the present invention use silicon nitride as a matrix, but in order to facilitate densification in the subsequent sintering stage, silicon nitride powder with an average particle size of 1 μm or less is preferable. must be 0.5 μm or less.

平均粒径が1μm以上の窒化けい素粉では、マトリック
スの開気孔率をOとすることが困難である。
With silicon nitride powder having an average particle size of 1 μm or more, it is difficult to set the open porosity of the matrix to O.

またこの窒化けい素粉は、けい素以外の金属不純物の含
有量が0.5%以下、望ましり0.2%以下であること
が必要である。金属不純物がこれを越えると、窒化けい
素マトリックスの高温強度および耐蝕性が低下し、特に
ガスタービンとしての高温高速中での腐食に対しては、
これが重要である。
The silicon nitride powder also needs to have a content of metal impurities other than silicon of 0.5% or less, preferably 0.2% or less. If the metal impurities exceed this, the high temperature strength and corrosion resistance of the silicon nitride matrix will decrease, especially against corrosion in high temperature and high speed as gas turbines.
This is important.

この窒化けい素粉の表面には、均質にシリカを形成させ
る必要がある。これによって模膜の熱間等方圧プレス焼
結の段階での窒化けい素粉の緻密化が可能になる。シリ
カの済としては窒化けい素に対して3〜20%の範囲が
適当゛である。
It is necessary to uniformly form silica on the surface of this silicon nitride powder. This makes it possible to densify the silicon nitride powder at the stage of hot isostatic press sintering of the pattern. The appropriate amount of silica is in the range of 3 to 20% relative to silicon nitride.

シリカ量がこれ以下では、窒化けい素の焼結に効果が少
なく、シリカ量がこれを越えると、緻密化するものの、
マトリックスの高温強度が低下する。
If the amount of silica is less than this, it will have little effect on sintering silicon nitride, and if the amount of silica exceeds this, it will become densified, but
The high temperature strength of the matrix is reduced.

以上の窒化けい素粉に対して、炭化けい素ウィスカーを
混合し、マトリックスの強靭化をはかる。炭化けい素ウ
ィスカーを選定する理由は、炭化けい素が、窒化けい素
と同様、壬数百℃以上での高温強度に優れ、耐蝕性も高
いためであり、更に窒化けい素よりも高い弾性率と熱膨
張係数を有するため、窒化けい素マトリックスへの引張
応力負荷を低減し、強靭化に効果が大きいためである。
Silicon carbide whiskers are mixed with the above silicon nitride powder to strengthen the matrix. The reason for selecting silicon carbide whiskers is that silicon carbide, like silicon nitride, has excellent high-temperature strength at temperatures of several hundred degrees Celsius or more and high corrosion resistance, and also has a higher modulus of elasticity than silicon nitride. This is because it has a coefficient of thermal expansion of , which reduces the tensile stress load on the silicon nitride matrix and has a large effect on toughening it.

この炭化けい素ウィスカーに対しても、表面に均質なシ
リカ被膜生成を行う必要がある。これによって焼結後、
窒化けい素マトリックスと炭化けい素ウィスカーとの間
にシリカないし酸窒化けい素の薄層が形成され、前記の
強靭化の効果が出現するためである。
It is also necessary to form a homogeneous silica film on the surface of these silicon carbide whiskers. After sintering,
This is because a thin layer of silica or silicon oxynitride is formed between the silicon nitride matrix and the silicon carbide whiskers, producing the above-mentioned toughening effect.

このシリカ被膜の厚さは、ウィスカーの径に対して1/
 100以上1/20程麿がよい。これ以下では、マト
リックスとウィスカーの直接強固に接合することを防ぐ
目的に不充分であり、これ以上では、高温での材料の強
度低下を招くためである。この値は表面シリカのウィス
カーに対する重量%にして約3〜20%に相当する。
The thickness of this silica film is 1/1 of the diameter of the whisker.
100 or more and about 1/20 is good. If it is less than this, it is insufficient to prevent direct and strong bonding between the matrix and the whiskers, and if it is more than this, the strength of the material will decrease at high temperatures. This value corresponds to about 3 to 20% by weight of the surface silica relative to the whisker.

以上の窒化けい素粉および炭化けい素ウィスカーの表面
へのシリカ形成の方法としては、900〜1,500℃
の高温において、空気など酸素含有雰囲気における表面
酸化によってもよいし、シリカゾル溶液を用いてシリカ
膜を表面に沈積させる方法によってもよい。また、Si
Cρ4+H2+H20ガス等を用いたCVD法によって
シリカ膜を形成させてもよい。 ・ また、このシリカ形成は、始めにそれぞれ原料の段階に
おいて行ってもよいし、窒化けい素粉と炭化けい素粉の
混合の段階、或いは混合物の成形後の段階において行っ
てもよい。
The method for forming silica on the surface of the silicon nitride powder and silicon carbide whiskers described above is as follows:
The method may be performed by surface oxidation in an oxygen-containing atmosphere such as air at a high temperature, or by a method in which a silica film is deposited on the surface using a silica sol solution. Also, Si
The silica film may be formed by a CVD method using Cρ4+H2+H20 gas or the like. - In addition, this silica formation may be performed initially at the stage of each raw material, at the stage of mixing silicon nitride powder and silicon carbide powder, or at a stage after molding the mixture.

■  混    合 前記窒化【ノい素粉と炭化けい素ウィスカーを混合づる
が、望ましくは水、非水溶媒、溶融ワックス、溶融樹脂
等の液体の中に分散して行う法がより分散効果を上げる
ことができる。
■ Mixing nitriding (mixing the silicon carbide whiskers with the silicon carbide whiskers, but preferably dispersing them in a liquid such as water, a non-aqueous solvent, molten wax, or molten resin will improve the dispersion effect) be able to.

炭化けい素ウィスカーの窒化けい素粉に対する混合量は
、後者が10〜40%となるように選ぶ。
The amount of silicon carbide whiskers to be mixed with the silicon nitride powder is selected so that the latter is 10 to 40%.

この理由は10%以下では強靭化の効果が低く、40%
以上では、混合及び成形の際に、充填密度を高くするこ
とが困難となるためである。
The reason for this is that below 10%, the toughening effect is low;
This is because it becomes difficult to increase the packing density during mixing and molding.

■  成  形 以上の混合物を、泥しよう鋳込み成形、射出成形、押出
成形、静水圧プレス成形などの方法により、所定の形状
に成形する。
■ Molding The above mixture is molded into a predetermined shape using methods such as plaster casting, injection molding, extrusion molding, and isostatic press molding.

■ カプセル形成および熱間等方圧プレス焼結以上の工
程で得られた成形体に対して、熱間等方圧プレスにより
焼結緻密化を行う。
■ Capsule formation and hot isostatic press sintering The compact obtained through the above steps is sintered and densified by hot isostatic press.

熱間等方圧プレスの温度としては窒化けい素粉に含有せ
しめられたシリカが軟化ないし溶融し、焼結の進行する
温度を選ぶ必要があり 1,650℃以上とする必要が
ある。
The temperature for hot isostatic pressing must be selected at a temperature at which the silica contained in the silicon nitride powder softens or melts and sintering progresses, and must be 1,650°C or higher.

熱間等方圧プレスの高圧下でも、2,200℃を越える
と窒化けい素等の分解が起り、また更に炭化けい素ウィ
スカーの劣化が起こるため、焼結の上限4喰は2,20
0℃とする必要がある。圧力は高い程効果が大きいが、
通常の熱間等方圧プレスの圧力範囲、即ち100〜2,
000気圧程度でよい。
Even under the high pressure of hot isostatic pressing, if the temperature exceeds 2,200°C, silicon nitride etc. will decompose, and silicon carbide whiskers will further deteriorate, so the upper limit for sintering is 2,20°C.
It is necessary to set the temperature to 0°C. The higher the pressure, the greater the effect.
Pressure range of normal hot isostatic press, i.e. 100~2,
A pressure of about 0,000 atmospheres is sufficient.

このような条件による熱間等方圧プレスは、カプセル法
、即ち、気密かつ柔軟なカプセルを成形体上に形成させ
た後行なう。このカプセル成形法については、成形体の
形状が、比較的単純な場合には、窒化はう素粉を充填し
たシリカ・ガラス管中に真空封入する方法によってもよ
いが、複雑形状の成形体の場合には、本発明者らが、先
に特許出願を行っている方法(特開昭61−15902
号、特開昭61−17902号)が有効である。
Hot isostatic pressing under such conditions is carried out by the capsule method, that is, after forming an airtight and flexible capsule on the molded article. Regarding this capsule molding method, if the shape of the molded product is relatively simple, vacuum sealing in a silica glass tube filled with nitrided boron powder may be used, but if the shape of the molded product is complex, In this case, the method for which the present inventors have previously filed a patent application (Japanese Patent Laid-Open No. 15902/1983
No., JP-A-61-17902) is effective.

これら先願の方法を、本発明に適用すれば、成形体上に
第1層として離型材としての窒化はう素粉の層、第2層
として、熱間等方圧プレス時の圧力伝達材として、シリ
カガラス+アルミナ粉など、第3層として、カプセル気
密化のためにバイレックスなど、低融点ガラス層を形成
させ、真空中加熱などによりカプセルを気密化させた後
、所要の温度と圧力により、熱間等方圧プレス焼結を行
う。
If the methods of these earlier applications are applied to the present invention, the first layer on the molded body is a layer of nitrided boron powder as a release agent, and the second layer is a pressure transmitting material during hot isostatic pressing. As a third layer, a low melting point glass layer such as silica glass + alumina powder, such as Vilex, is formed to make the capsule airtight, and after making the capsule airtight by heating in a vacuum, etc., it is heated to the required temperature and pressure. Hot isostatic press sintering is performed.

熱間等方圧プレス焼結後、カプセルを除去することによ
り、炭化けい素ウィスカーで強化され、緻密でかつ金属
不純物をほとんど含まない窒化けい素マトリックスから
なり、マトリックスとウィスカー境界にシリカまたは酸
化けい素の薄層を有する強靭セラミック材料から成るガ
スタービン部品が得られる。
After hot isostatic press sintering, the capsule is removed, and the result is a dense silicon nitride matrix reinforced with silicon carbide whiskers and containing almost no metal impurities, with silica or silicon oxide at the matrix-whisker interface. A gas turbine component is obtained consisting of a strong ceramic material with a thin layer of material.

次に本発明の具体的な実施例により更に詳しく説明する
Next, the present invention will be explained in more detail using specific examples.

実施例1 金属不純物0.1%以下、平均粒径0.3μIの窒化け
い素粉を1,300℃の乾燥空気中にて酸化し、約5%
のシリカを形成させた。同様に平均径2μ■の炭化けい
素ウィスカーを1,400℃にて乾燥空気中にて酸化し
、°表面に約O,OSμmのシリカ層を形成させた。こ
の窒化けい素粉と炭化けい素ウィスカーとを70%:3
0%となるように混合し、ワックスを主体とする溶融有
II料中で100℃にて混練した。その後、射出成形機
を用いてガスタービン動画形状に成形した。この成形体
上に、第1層を、窒化はう素粉、第2層をシリカ及びア
ルミナ混合物粉、第3層をバイコール粉とする層を形成
し、加熱して気密なカプセルを形成させた後、1.90
0℃、  2,000気圧にて熱間等方圧プレスを行っ
た。カプセル除去後、試験片採取を行った所、見掛気孔
率O2金属不純物0.2%以下、ウィスカーとマトリッ
クス境界にシリカを主成分とし、若を有する強靭セラミ
ック材料であることが判った。
Example 1 Silicon nitride powder with metal impurities of 0.1% or less and an average particle size of 0.3 μI was oxidized in dry air at 1,300°C to reduce the concentration to about 5%.
of silica was formed. Similarly, silicon carbide whiskers having an average diameter of 2 .mu.m were oxidized in dry air at 1,400.degree. C. to form a silica layer of approximately 0.0000000000000000000000000000000000000000000000000 on the surface. This silicon nitride powder and silicon carbide whiskers are 70%:3
0%, and kneaded at 100° C. in a molten material II mainly consisting of wax. Thereafter, it was molded into the shape of a gas turbine movie using an injection molding machine. Layers were formed on this molded body, with the first layer being nitrided boron powder, the second layer being silica and alumina mixture powder, and the third layer being Vycol powder, and heated to form an airtight capsule. After, 1.90
Hot isostatic pressing was performed at 0°C and 2,000 atm. After removing the capsule, a test piece was taken, and it was found to be a strong ceramic material with an apparent porosity of 0.2% or less, O2 metal impurities, and silica as a main component at the whisker-matrix boundary.

比較のため、高温酸化によるシリカ層形成を全く行わな
い窒化けい素粉と炭化けい素粉とを同様に成形し、熱間
等方圧プレス焼結を行った所、得とが判った。
For comparison, silicon nitride powder and silicon carbide powder, in which no silica layer was formed by high-temperature oxidation, were molded in the same way and subjected to hot isostatic press sintering, and results were found.

実施例2 金属不純物0.1%以下、平均粒径0.4μmの窒化け
い素粉と、同じく金属不純物0.1%以下の炭化けい素
ウィスカーとを、それぞれ水溶液中に分散させた後、混
合し、素焼の型を用いて泥しよう鋳込み成形を行い、ガ
スタービン静翼の形状を製作した。この成型体にシリカ
ゾルの20%水溶液を含浸させ、乾燥後1 、000℃
まで加熱して成形体に対し約17%のシリカを含有させ
た。これを窒化はう素を充填したバイコールガラス管中
に真空封入してカプセルとした後、熱間等方圧プレスに
て2.000℃、  1,500気圧の条件下で処理し
、冷却後、バイコールガラスのカプセルを除去した後、
更に窒素雰囲気中で1,400℃にて熱処理した。得ら
れたガスタービン静翼部品の微視的構造を調べた結果、
はぼ理論W!i度の緻密な窒化けい素多結晶が、炭化け
い素ウィスカーで補強され、マトリックスとウィスカー
の境界に酸窒化けい素を主にする層が形成されているこ
とが確認された。
Example 2 Silicon nitride powder with metal impurities of 0.1% or less and an average particle size of 0.4 μm and silicon carbide whiskers with metal impurities of 0.1% or less were each dispersed in an aqueous solution and then mixed. The shape of the gas turbine stationary blade was then fabricated by performing mud casting using an unglazed mold. This molded body was impregnated with a 20% aqueous solution of silica sol and dried at 1,000°C.
The molded body was heated to about 17% silica. This was vacuum-sealed into a Vycor glass tube filled with boron nitride to form a capsule, then processed in a hot isostatic press at 2,000°C and 1,500 atm, and after cooling, After removing the Vycor glass capsule,
Further, heat treatment was performed at 1,400° C. in a nitrogen atmosphere. As a result of investigating the microscopic structure of the obtained gas turbine stationary blade parts,
Habo Theory W! It was confirmed that the i-degree dense polycrystalline silicon nitride was reinforced with silicon carbide whiskers, and a layer mainly made of silicon oxynitride was formed at the boundary between the matrix and the whiskers.

比較のため、窒化けい素粉に各々1%の酸化アルミニウ
ムと酸化イツトリウムを添加したものを用い、同様の製
造工程によりガスタービン静翼部品を製作した。先の金
属酸化物添加のない静翼部品と共に並べ燃焼器後方の高
温高速ガス流中に晒した所、部品表面温度1,200℃
、ガス流速200m /s 、 10hrにて、酸化ア
ルミニウム、酸化イツトリウム添加の部品は著しく腐食
を受けたのに対して、金属酸化物添加のない部品はほと
んど腐食されなかった。
For comparison, gas turbine stationary blade parts were fabricated using silicon nitride powder to which 1% of aluminum oxide and yttrium oxide were added using the same manufacturing process. When exposed to the high-temperature, high-speed gas flow at the rear of the combustor, the surface temperature of the parts was 1,200℃ when placed together with the stator vane parts without metal oxide addition.
, at a gas flow rate of 200 m/s for 10 hours, the parts to which aluminum oxide and yttrium oxide were added were significantly corroded, whereas the parts to which no metal oxide was added were hardly corroded.

実施例3 金属不純物0.1%以下、平均粒径0.6μmの窒化け
い素粉を、水溶液中に分散させ、60時間のボールミル
粉砕を行った結果、平均粒径0.4μm。
Example 3 Silicon nitride powder with metal impurities of 0.1% or less and an average particle size of 0.6 μm was dispersed in an aqueous solution and ball milled for 60 hours, resulting in an average particle size of 0.4 μm.

生成シリカ量5%を得た。この窒化けい素粉に対し、炭
化けい素ウィスカーが40%となるように混合し、更に
コロイダル・シリカを窒化けい素粉十炭化けい素ウィス
カーの3%となるように添加し、充分混合分散を行った
。このスラリーを噴霧乾燥し、得られた顆粒をゴム型に
充填して静水圧プレス成形により燃焼器ライナ一部品形
状を製作した。
The amount of produced silica was 5%. This silicon nitride powder is mixed with silicon carbide whiskers at a concentration of 40%, and colloidal silica is added at a concentration of 3% of the silicon nitride powder and silicon carbide whiskers to ensure thorough mixing and dispersion. went. This slurry was spray-dried, the resulting granules were filled into a rubber mold, and a part shape of a combustor liner was manufactured by isostatic press molding.

得られた成形体に窒化はう素粉を被覆し、シリカ・ガラ
ス粉を充填した黒鉛モールド内に装入し、ホットプレス
を用いて2,000℃、500向f/C12に加熱加圧
し、溶融シリカガラスをカプセルとする熱間等分圧プレ
スを行った。得られた燃焼器ライナ一部品は緻密であり
、また表面を若干機械加工するのみで充分形状精度も有
するものであった。
The obtained molded body was coated with boron nitride powder, placed in a graphite mold filled with silica/glass powder, heated and pressed at 2,000°C and 500 direction f/C12 using a hot press, Hot equal partial pressure pressing was performed using fused silica glass as a capsule. The resulting combustor liner part was dense and had sufficient shape accuracy with only slight surface machining.

[発明の効果] 以上説明してきたことから明らかなように本発明によれ
ば次のごとき優れた効果を発揮する。
[Effects of the Invention] As is clear from the above explanation, the present invention exhibits the following excellent effects.

■ 窒化けい素マトリックスを炭化けい素ウィスカーで
強化したため、通常の窒化けい素より強度、靭性が高い
■ The silicon nitride matrix is reinforced with silicon carbide whiskers, so it has higher strength and toughness than regular silicon nitride.

■ シリカゾルなどを用いて、窒化けい素粉を均質にシ
リカで覆ったため、焼結性が向上し、HIP焼結により
マトリックスが緻密する。
■ Since the silicon nitride powder is uniformly covered with silica using silica sol, sinterability is improved and the matrix becomes denser by HIP sintering.

■ シリカゾルなどを用いて、炭化けい素ウィスカーを
均質にシリカで覆ったため、焼結侵も窒化けい素マトリ
ックスと炭化けい素ウィスカーの界面にシリカのIff
が形成され、境界の強度が適切となって、強度と靭性が
向上する。
■ Because the silicon carbide whiskers are homogeneously covered with silica using silica sol, sintering corrosion is also prevented due to the If of silica at the interface between the silicon nitride matrix and the silicon carbide whiskers.
is formed, the strength of the boundary becomes appropriate, and the strength and toughness are improved.

■ 焼結助剤等として、けい素以外の金属化合物をほと
んど含まないため、高温強度が高く、耐蝕性も高い。
■ It contains almost no metal compounds other than silicon as sintering aids, so it has high high temperature strength and high corrosion resistance.

■ 以上のような特徴を有する強靭セラミック材料であ
るため、ガスタービン部品、特に動翼、静翼等に適用す
ることができる。
■ Since it is a strong ceramic material with the above-mentioned characteristics, it can be applied to gas turbine parts, especially moving blades and stationary blades.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は本発明のガスタービン用強靭セラミック材料
の製造工程を示す図である。 図中、1は炭化けい素ウィスカー、2は窒化けい素粉、
5はシリカ含有、8は強靭セラミック材料である。
The accompanying drawings are diagrams showing the manufacturing process of the tough ceramic material for gas turbines of the present invention. In the figure, 1 is silicon carbide whisker, 2 is silicon nitride powder,
5 is a silica-containing material, and 8 is a strong ceramic material.

Claims (2)

【特許請求の範囲】[Claims] (1)炭化けい素ウィスカーを10〜40%含み、けい
素以外の金属含有量が0.5%以下で、開気孔率が実質
的に0である窒化けい素をマトリックスとし、境界にシ
リカないし酸窒化けい素を主成分とする層を有するガス
タービン用強靭セラミック材料。
(1) The matrix is silicon nitride containing 10 to 40% silicon carbide whiskers, the content of metals other than silicon is 0.5% or less, and the open porosity is essentially 0, and silica or A strong ceramic material for gas turbines that has a layer mainly composed of silicon oxynitride.
(2)金属不純物含有量0.5%以下で平均粒径1μm
以下の窒化けい素粉に対し、金属不純物含有量0.5%
以下の炭化けい素ウィスカーを、10〜40%となるよ
う混合し、この混合物を用いて成形を行うと共にその混
合物または成形体に対してシリカ添加または高温酸化に
よつて3〜20%のシリカを含有させた後、カプセルを
成形体上に形成させて1,650〜2,200℃にて熱
間等方圧プレスにより焼結させることを特徴とするガス
タービン用強靭セラミック材料の製造方法。
(2) Average particle size of 1 μm with metal impurity content of 0.5% or less
Metal impurity content 0.5% for the following silicon nitride powder
The following silicon carbide whiskers are mixed to a concentration of 10 to 40%, and this mixture is used for molding, and 3 to 20% of silica is added to the mixture or molded product by silica addition or high temperature oxidation. A method for producing a strong ceramic material for a gas turbine, comprising: forming a capsule on a molded body and sintering it by hot isostatic pressing at 1,650 to 2,200°C.
JP62123948A 1987-05-22 1987-05-22 Manufacturing method of tough ceramic material for gas turbine Expired - Fee Related JP2512942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62123948A JP2512942B2 (en) 1987-05-22 1987-05-22 Manufacturing method of tough ceramic material for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62123948A JP2512942B2 (en) 1987-05-22 1987-05-22 Manufacturing method of tough ceramic material for gas turbine

Publications (2)

Publication Number Publication Date
JPS63288967A true JPS63288967A (en) 1988-11-25
JP2512942B2 JP2512942B2 (en) 1996-07-03

Family

ID=14873307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62123948A Expired - Fee Related JP2512942B2 (en) 1987-05-22 1987-05-22 Manufacturing method of tough ceramic material for gas turbine

Country Status (1)

Country Link
JP (1) JP2512942B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101864620A (en) * 2010-07-30 2010-10-20 哈尔滨工业大学 Preparation method of silicon nitride whisker

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62265173A (en) * 1986-05-12 1987-11-18 日本特殊陶業株式会社 Silicon carbide whisker-reinforced composite material
JPS63265864A (en) * 1987-04-22 1988-11-02 Yoshida Kogyo Kk <Ykk> High-strength si3n4-sic whisker composite and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62265173A (en) * 1986-05-12 1987-11-18 日本特殊陶業株式会社 Silicon carbide whisker-reinforced composite material
JPS63265864A (en) * 1987-04-22 1988-11-02 Yoshida Kogyo Kk <Ykk> High-strength si3n4-sic whisker composite and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101864620A (en) * 2010-07-30 2010-10-20 哈尔滨工业大学 Preparation method of silicon nitride whisker

Also Published As

Publication number Publication date
JP2512942B2 (en) 1996-07-03

Similar Documents

Publication Publication Date Title
JP3483035B2 (en) Silicon carbide reinforced silicon carbide composite material
EP0052913B1 (en) Ceramic rotor
KR890002156B1 (en) Ceramic structure having thermal shock resistance
EP1561737B1 (en) Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
JPH05105521A (en) Carbon-fiber reinforced silicon nitride-based nano-composite material and its production
Semen et al. Structural ceramics derived from a preceramic polymer
JPS63288967A (en) Tough ceramic material for gas turbine and its production
JPH0157075B2 (en)
JP4014765B2 (en) Silicon carbide long fiber reinforced ceramic matrix composite
JP3142892B2 (en) Manufacturing method of reaction sintered composite ceramics and manufacturing method of sliding member using it
JP2001048653A (en) Titanium boride sintered body obtained by adding silicon nitride as sintering aid and its production
JPH025711B2 (en)
JPH0264066A (en) Ceramics-ceramics composite
JPH0987029A (en) Silicon carbide-based composite material and wear-resistant sliding part using the material
JP2675187B2 (en) Gradient silicon nitride composite material and method of manufacturing the same
JPH1087370A (en) Silicon nitride-base composite ceramics and production thereof
JP2658944B2 (en) Silicon nitride-titanium nitride composite ceramics and method for producing the same
JPH0539535A (en) Combined ceramic sintered body and its manufacture
JPS63277566A (en) Fiber-reinforced silicon carbide ceramics and production thereof
JP2883074B1 (en) Manufacturing method of silicon carbide ceramic powder and ceramic sintered body
JP2631109B2 (en) Method for producing silicon nitride composite sintered body
JP2881189B2 (en) Method for producing silicon nitride-silicon carbide composite ceramics
JP3358472B2 (en) Method for producing silicon nitride ceramic-based composite material
JPH0585506B2 (en)
JP2000026177A (en) Production of silicon-silicon carbide ceramics

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees