JPS63288643A - Super precision machine tool - Google Patents

Super precision machine tool

Info

Publication number
JPS63288643A
JPS63288643A JP12260287A JP12260287A JPS63288643A JP S63288643 A JPS63288643 A JP S63288643A JP 12260287 A JP12260287 A JP 12260287A JP 12260287 A JP12260287 A JP 12260287A JP S63288643 A JPS63288643 A JP S63288643A
Authority
JP
Japan
Prior art keywords
motor
air
machine tool
jet
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12260287A
Other languages
Japanese (ja)
Other versions
JPH0763917B2 (en
Inventor
Kiyoshi Sawada
潔 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP12260287A priority Critical patent/JPH0763917B2/en
Publication of JPS63288643A publication Critical patent/JPS63288643A/en
Publication of JPH0763917B2 publication Critical patent/JPH0763917B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Machine Tool Units (AREA)
  • Turning (AREA)
  • Drilling And Boring (AREA)

Abstract

PURPOSE:To eliminate almost completely the effect of heat produced by a motor by covering a motor with an outer shroud of a heat insulation material allowing an exhaust space communicating to outside between the motor periphery and a case, and arranging a motor shaft with a gap with respect to a supporting portion and the heat insulator. CONSTITUTION:Air in an air pocket 20 is drawn out to an exhaust space 18 as jet air from a nozzle 23 passing through a jet hole 22 produces venturi effect. By the depression at this time, air around a motor shaft 25 is sucked up through a communication clearance 24 so that the air is positively moved and exhausted outside. Air in the exhaust space 18 is released rapidly to the outside by the pressure of the jet air.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は工作機械全体を定温に、かつ均一に維持する
超精密工作機械°に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to an ultra-precision machine tool that maintains the entire machine tool at a constant and uniform temperature.

従来技術 工作機械において1/10μm〜1/100μmオーダ
ーの旋削を行う超精密工作機械では機械にお番ノる]J
iの変動、不均一が工作精度に大きく ・影響するので
、工作機械全体をケース内に収めて内部気温を一定に紺
持し、必要によってはさらに機械全体に定温油によるオ
イルシャワーを施したり、また機械の滑り軸受、ころが
り軸受など発熱量の多いものを温度管理された空気によ
る空気軸受に昔える、など機械全体の温度を一定、かつ
均一に管理する総合対策が講じられている。
In conventional machine tools, ultra-precision machine tools that perform turning on the order of 1/10 μm to 1/100 μm are in charge of the machine] J
Fluctuations and non-uniformity in i greatly affect machining accuracy, so the entire machine tool is housed in a case to maintain a constant internal temperature, and if necessary, the entire machine is given an oil shower with constant temperature oil. Comprehensive measures are also being taken to keep the temperature of the entire machine constant and uniform, such as replacing machines' sliding bearings, rolling bearings, and other items that generate a large amount of heat with air bearings that use temperature-controlled air.

このような超精密工作機械において一つの九間は送りや
回転の駆動力に使用されるモータが発する熱の処理であ
る。
One of the most important aspects of such ultra-precision machine tools is the treatment of heat generated by the motor used for the driving force for feeding and rotation.

超精密工作機械用に低発熱の特殊なモータを開発するこ
とは恐らく可能であるが、現状ではコストの上から発熱
量が比較的高い汎用のモータが使用され、モータが発す
る熱を除去するため、モ−夕の取付は座にプラスデック
などの断熱材を利用したり、取付は座の内部に空気や液
体を流通させたり、また、モータ軸と機械本体側の軸と
の連結に直接接触がない空気接手を利用するなどし、さ
らに、モータの外表面を断熱材で形成した外套体で間隙
を設けて覆い、該間隙の空気を外部に流出さゼ、かつ、
外套体でモータ外表面からの輻射を’aIgiするなど
している。
It is probably possible to develop a special motor with low heat generation for ultra-precision machine tools, but at present, general-purpose motors with relatively high heat generation are used due to cost, and it is necessary to remove the heat generated by the motor. When installing the motor, use a heat insulating material such as Plus Deck on the seat, or install it by circulating air or liquid inside the seat, or by directly contacting the connection between the motor shaft and the shaft on the machine body side. In addition, the outer surface of the motor is covered with a jacket made of a heat insulating material with a gap formed therein, and the air in the gap is not allowed to flow out to the outside.
The outer body absorbs radiation from the outer surface of the motor.

しかし、従来のものにおいてはモータが発する熱は結局
、工作機械全体を収めたケースの内部空間に放出される
ので工作機械を定温に維持する上で効率が悪く、また機
械本体側へ深く入りこんで該本体側の軸と連結されるこ
とが多いモータ軸の外表面から機械本体に伝達される熱
については考慮がなされておらず、満足のいく温度管理
ができなかった。
However, in conventional models, the heat generated by the motor is ultimately released into the internal space of the case that houses the entire machine tool, which is inefficient in maintaining the machine tool at a constant temperature, and the heat does not penetrate deep into the machine body. No consideration was given to heat transferred to the machine body from the outer surface of the motor shaft, which is often connected to the shaft on the main body side, and satisfactory temperature control could not be achieved.

発明が解決しようとする問題点 この発明は前記した従来の温度管理においてネックとな
っていた、モータに関する熱対策を大きく改善すること
を課題とする。
Problems to be Solved by the Invention It is an object of the present invention to significantly improve heat countermeasures for motors, which have been a bottleneck in the conventional temperature control described above.

問題を解決するための手段 工作機械をその全体を覆うケース内に収め、工作改械に
連結したモータを断熱材製の外套体でモータ外周との間
にケース外へ通じる排出空間を設けて覆い、モータの前
面を工作機械のモータ支持部分に断熱体を介して固定す
ると共にモータ軸を前記支持部分および断熱体に対し間
隙を取って配膳し、断熱体は内部にエアポケットとジェ
ットエア供給路を有し、エアポケットは前記の排出空間
に開口した噴出孔とこれに対向した位置の内部壁に前記
のジェットエア供給路に連通し噴出孔に向いたノズルを
備え、かつ、前記断熱体とモータの接触個所へ積極的に
形成した連通間隙によりモータ@周辺の空間と連通させ
る。
Means to solve the problem: The machine tool is housed in a case that covers the entire machine tool, and the motor connected to the machine tool is covered with a jacket made of heat insulating material, with a discharge space leading to the outside of the case between the outer periphery of the motor and the motor. , the front of the motor is fixed to the motor support part of the machine tool via a heat insulator, and the motor shaft is arranged with a gap between the support part and the heat insulator, and the heat insulator has an air pocket and a jet air supply path inside. The air pocket has an ejection hole opening into the discharge space, and a nozzle on an inner wall opposite to the ejection hole that communicates with the jet air supply path and faces the ejection hole. A communication gap actively formed at the contact point of the motor allows communication with the space around the motor.

作  用 ノズルからのジェットエアは噴出孔を通過する時ベンヂ
ュリ効果によりエアポケット内の空気を排出空間に引き
だし、その際の減圧により連通間隙を通じてモータ軸回
りの空気を吸い上げ、モータ軸回りの空気を積極的に流
動させ外部に排出する。
Operation When the jet air from the nozzle passes through the ejection hole, the air in the air pocket is drawn out to the exhaust space by the Venduri effect, and the air around the motor shaft is sucked up through the communication gap due to the reduced pressure at that time, and the air around the motor shaft is Actively flow and discharge to the outside.

排出空間の空気はジェットエアの圧力で速やかにケース
外部へ放出される。
The air in the discharge space is quickly discharged to the outside of the case by the pressure of the jet air.

実施例 第2図は本発明を適用した超精密工性機械の一例を示し
、工作機械1は開閉自在で上部が透明な合成樹脂製のケ
ース2内に収められ、作動時は外部環境からほぼ遮断さ
れるようになっている。図示していないがこの工作機械
には外部補器としてケース内部への定温空気供給装置、
空気軸受や空気接手のための定温圧力空気供給装置およ
び必要に応じて定温オイルシャワー用のオイル循環装置
などがイNj属し、工作機械全体を定温に維持する総合
システムが構成されている。
Embodiment FIG. 2 shows an example of an ultra-precision machine to which the present invention is applied. The machine tool 1 is housed in a synthetic resin case 2 that can be opened and closed and has a transparent upper part, and is almost completely shielded from the external environment during operation. It is now blocked. Although not shown, this machine tool has a constant temperature air supply device to the inside of the case as an external auxiliary device.
A constant-temperature pressure air supply device for air bearings and air joints, and an oil circulation device for a constant-temperature oil shower if necessary are included, forming a comprehensive system that maintains the entire machine tool at a constant temperature.

図示の]工作機械1は第3.4図にも示すようにベース
3に対しZ方向に移動可能な主軸台4とその前方でX方
向に移動右可能な工具台5および該工具台5上で水平回
転する回転テーブル6を備えている。Z軸、X軸方向で
主軸台4、工具台5が移動する領域にはベース3とのス
ライド面を切り粉などから保護するために伸縮可能なカ
バー7が設けられている。
As shown in FIG. 3.4, the machine tool 1 includes a headstock 4 movable in the Z direction with respect to a base 3, a tool rest 5 movable in the X direction in front of the headstock 4, and a tool rest 5 on the tool rest 5. It is equipped with a rotary table 6 that rotates horizontally. An extendable cover 7 is provided in an area where the headstock 4 and tool rest 5 move in the Z-axis and X-axis directions in order to protect the sliding surface with the base 3 from chips and the like.

主軸台4はZ軸サーボモータM1でベース3に軸架した
2軸送りねじ8を駆動することで移動され、工具台5は
x@ナーボモータM2でベース3に軸架されたX軸送り
ねじ9を駆動することにより移動される。また、主軸台
4における主lI4110は主軸モータM3で駆動され
、回転デープル6はテーブル回転サーボモータM4でウ
オーム11を駆動することにより回転される。各軸の軸
受おにび主軸台4と工具台50ベース3に対するスライ
ド面は静圧空気軸受や静圧空気支持面あるいは油の静圧
を利用した同様な構造とされて発熱の抑制と移動制御の
円滑性が図られている。そして、工作機械全体は防振の
ためのエアダンパー12を介してケース2の底部に載置
固定されている。
The headstock 4 is moved by driving the two-axis feed screw 8 that is mounted on the base 3 with the Z-axis servo motor M1, and the tool rest 5 is moved by driving the X-axis feed screw 9 that is mounted on the base 3 using the x@nervo motor M2. It is moved by driving. Further, the main spindle 4110 in the headstock 4 is driven by a main spindle motor M3, and the rotary table 6 is rotated by driving the worm 11 by a table rotation servo motor M4. The bearings of each axis, the headstock 4, the tool rest 50, and the sliding surface for the base 3 have a similar structure using static air bearings, static air support surfaces, or static pressure of oil to suppress heat generation and control movement. The smoothness of the process is ensured. The entire machine tool is placed and fixed on the bottom of the case 2 via an air damper 12 for vibration isolation.

主軸10に取りつけたワーク13はレーナー機器に利用
する非球面鏡を例示し、回転テーブル6にはダイモンド
工具14が取りつけられている。
A workpiece 13 attached to the main shaft 10 is an aspherical mirror used in Lehner equipment, and a diamond tool 14 is attached to the rotary table 6.

第1図に示すように、前記したモータM1〜M4(モー
タMで代表する)はいずれも、あるいは少なくとも主軸
モータM3、テーブル回転サーボモータM4は合成樹脂
などの断熱材からなる外套体15で覆われ、板状の断熱
体16を介して工作機械側の支持部(モータM1.M2
についてはベース3におけるこれらモータの取付は部分
、モータM3については主軸台4の該モータ取付(プ部
分、モータM4については工具台5の践モータ取付は部
分を意味する・・・・・・符号17で代表する)にボル
トで固定される。
As shown in FIG. 1, all of the aforementioned motors M1 to M4 (represented by motor M), or at least the main shaft motor M3 and the table rotation servo motor M4, are covered with a jacket 15 made of a heat insulating material such as synthetic resin. The machine tool side support part (motor M1, M2
For motor M3, the motor mounting on the headstock 4 means a part, and for motor M4, the motor mounting on the tool rest 5 means a part. (represented by 17) is fixed with bolts.

前記の外套体15とモータMの外表面との間には排出空
間1日が形成され、また、断熱体16の内部にはジェッ
トエア供給路19とエアポケット20が形成されている
。ジェットエア供給路19は支持部17側のジェットエ
ア供給路21と接続され、エアポケット20は前記の排
出空間18に間口した噴出孔22を備え、この噴゛出孔
22に対向した内壁部分に前記のジェットエア供給路1
9に連通したノズル23が噴出孔22に向けて設けられ
ている。エアポケット20はまた、断熱体16とモータ
Mの前面が接触する部分に積極的に形成した連通間隙2
4によって、モータ軸25周辺の空間26と連通してい
る。噴出孔22とノズル23はモータMの周縁に沿って
複数個を設け、ジェットエア供給路19や連通間隙24
は通過する空気による断熱板16の冷rJ1を兼ねて放
射状に、エアポケット20は環状に形成されている。な
お、モータの発熱ωが多いときは断熱体16に前記の噴
出孔22とは別にジェットエア供給路19から直接に排
出空間18へ空気を噴ぎだす第2の噴出孔22′を設け
ることがある。
An exhaust space is formed between the jacket 15 and the outer surface of the motor M, and a jet air supply path 19 and an air pocket 20 are formed inside the heat insulator 16. The jet air supply path 19 is connected to the jet air supply path 21 on the side of the support part 17, and the air pocket 20 is provided with an ejection hole 22 opening into the discharge space 18, and an inner wall portion facing the ejection hole 22 is provided with an air pocket 20. Said jet air supply path 1
A nozzle 23 communicating with the nozzle 9 is provided facing the ejection hole 22 . The air pocket 20 also includes a communication gap 2 that is actively formed in the area where the heat insulator 16 and the front surface of the motor M contact each other.
4 communicates with a space 26 around the motor shaft 25. A plurality of jet holes 22 and nozzles 23 are provided along the periphery of the motor M, and a jet air supply path 19 and a communication gap 24 are provided.
The air pockets 20 are formed in a radial shape, and the air pockets 20 are formed in an annular shape. Note that when the heat generation ω of the motor is large, a second blowout hole 22' may be provided in the heat insulator 16, in addition to the blowout hole 22, for blowing air directly from the jet air supply path 19 to the exhaust space 18. be.

モータ軸25は空気接手27を介して前記の送りねじ8
,9ヤ主軸10およびつl−ム11に連結される。符号
28は支持部17に形成された空気静圧供給路で、軸受
部分の静圧空気軸受けを構成するわずかな空間29に連
通している。
The motor shaft 25 is connected to the feed screw 8 via an air joint 27.
, 9 are connected to the main shaft 10 and the arm 11. Reference numeral 28 denotes an air static pressure supply path formed in the support portion 17, which communicates with a small space 29 forming a static pressure air bearing of the bearing portion.

なお、ジェットエア供給路19と空気静圧供給路28へ
の空気供給は要求される諸条件がことなるために別系統
で行なわれ、ジェットエア供給路19には空気でなく定
温の液体が供給されることもある。
Note that air is supplied to the jet air supply path 19 and the air static pressure supply path 28 by separate systems because the required conditions are different, and the jet air supply path 19 is supplied with constant-temperature liquid instead of air. Sometimes it is done.

前記外套体15の後方には伸縮および屈曲が自由なカバ
ー筒30が取りつけられて排出空間18をケース2の外
部へ直接に連通している。
A cover cylinder 30 that is freely expandable and bendable is attached to the rear of the mantle 15, and directly communicates the discharge space 18 with the outside of the case 2.

旋削を行う時はケース2を閉じ、定温維持のための前記
した総合システムを稼動し、さらにジェットエア供給路
21(支持部側)に渇瓜管即された圧縮空気を供給し、
断熱体16の内部におけるジェットエア供給路19を経
てノズル23から噴出孔22に向けて噴出させつつ、各
モータM1〜M4をNCその他所定の制御をもって駆動
する。
When turning, the case 2 is closed, the above-mentioned comprehensive system for maintaining a constant temperature is operated, and compressed air is supplied to the jet air supply path 21 (on the supporting part side) through a cooling tube.
While jetting air from the nozzle 23 toward the jetting hole 22 through the jet air supply path 19 inside the heat insulator 16, each of the motors M1 to M4 is driven under NC or other predetermined control.

主軸を一タM3、テーブル回転サーボモータM4は主軸
f↑4および工具台5の移動とともにカバー管30でケ
ースに繋がれたまま移動するがカバー管30は伸縮およ
び屈曲自在であるから、主軸台4、工具台5の移動に支
承はない。前記の総合システムにより機械本体における
軸支部やスライド部からの発熱が抑制されると共にモー
タが発する熱は外部に排出されてケース内部の気温およ
び機械本体の温度が一定に保たれる。そして、ノズル2
3からのジェットエアは噴出孔22を通過する時のベン
チュリ効果によってニアポケット20内部の空気をも外
に引きだしてモータ軸25周辺の空間26における空気
を連通間隙24を通じて第1図に破線で空気の流れを示
すように強制的にエアポケット20に吸い上げ、該空間
26の空気を滞留させることなく排出空間18へ排出し
、モータ軸25から機械本体へ移動する熱を除去する。
The main spindle is one M3, and the table rotation servo motor M4 moves while being connected to the case with the cover tube 30 as the main spindle f↑4 and the tool rest 5 move, but since the cover tube 30 is extendable and bendable, the headstock 4. There is no support for the movement of the tool stand 5. The above-mentioned comprehensive system suppresses heat generation from the shaft support and sliding portion of the machine body, and also discharges the heat generated by the motor to the outside, thereby maintaining the temperature inside the case and the temperature of the machine body constant. And nozzle 2
When the jet air from 3 passes through the nozzle hole 22, it also pulls out the air inside the near pocket 20 to the outside through the venturi effect, and the air in the space 26 around the motor shaft 25 passes through the communication gap 24 to the air as shown by the broken line in FIG. The air in the space 26 is forcibly drawn up into the air pocket 20 so as to show a flow of air, and the air in the space 26 is discharged to the exhaust space 18 without being retained, thereby removing the heat transferred from the motor shaft 25 to the machine body.

同時に、モータ外表面に接する排出空間18の空気もジ
ェットエアの作用でモータの熱と共にカバー管30を通
じて強制的に外部へ排出される。
At the same time, the air in the exhaust space 18 in contact with the outer surface of the motor is also forcibly discharged to the outside through the cover pipe 30 along with the heat of the motor due to the action of the jet air.

発明の効果 モータが発する熱は直接にケース外部に排出され、工作
機械の機械本体に影響を与えない、特に、機械本体に入
りこんだモータ軸周辺の熱も除去されるからモータが発
する熱の影響を完全に近いレベルで除去できる。
Effects of the invention The heat generated by the motor is directly discharged to the outside of the case and does not affect the machine body of the machine tool.In particular, the heat around the motor shaft that has entered the machine body is also removed, reducing the effects of the heat generated by the motor. can be removed almost completely.

ノズルから噴出されるジェットエアはモータ軸周辺の空
気を吸引すると同時に排出空間18の空気を外部へ押出
す作用もするから、ジェットエアのエネルギーを無駄な
く利用できる。
The jet air ejected from the nozzle sucks the air around the motor shaft and at the same time pushes out the air in the discharge space 18 to the outside, so the energy of the jet air can be used without wasting it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は要部の!断面図、第2図は斜視図、第3図はケ
ースの蓋を取って示す平面図、第4図は概略に示す仝休
の縦断面図である。 1・・・工作機械、2・・・ケース、3・・・ベース、
4・・・主軸台、5・・・工具台、6・・・回転デープ
ル、7・・・カバー、8・・・Z輸送りねじ、9・・・
X軸送りねじ、10・・・主軸、11・・・つA−ム、
12・・・エアダンパー、13・・・ワーク、14・・
・ダイヤモンド工具、15・・・外套体、16・・・断
熱体、17・・・支持部、18・・・排出空間、1つ・
・・(断熱体の)ジェットエア供給路、20・・・エア
ポケット、21・・・(支持部側の)ジェットエア供給
路、22・・・噴出孔、23・・・ノズル、24・・・
連通間隙、25・・・モータ軸、26・・・モータ軸周
辺の空間、27・・・空気接手、28・・・空気静圧供
給路、29・・・わずかな空間、30・・・カバー筒、
Ml・・・Z軸サーボモータ、M2・・・X@勺−ボモ
ータ、M3・・・主軸モータ、M4・・・テーブル回転
サーボモータ。
Figure 1 shows the main part! FIG. 2 is a perspective view, FIG. 3 is a plan view with the lid of the case removed, and FIG. 4 is a schematic vertical sectional view. 1...Machine tool, 2...Case, 3...Base,
4... Headstock, 5... Tool stand, 6... Rotating double, 7... Cover, 8... Z transport screw, 9...
X-axis feed screw, 10... main shaft, 11... two A-m,
12... Air damper, 13... Work, 14...
・Diamond tool, 15... Mantle body, 16... Heat insulator, 17... Support part, 18... Ejection space, 1.
...Jet air supply path (of the heat insulator), 20...Air pocket, 21...Jet air supply path (on the support part side), 22...Blowout hole, 23...Nozzle, 24...・
Communication gap, 25... Motor shaft, 26... Space around motor shaft, 27... Air joint, 28... Air static pressure supply path, 29... Slight space, 30... Cover tube,
Ml... Z-axis servo motor, M2...

Claims (1)

【特許請求の範囲】[Claims] 工作機械をその全体を覆うケース内に収め、工作機械の
各モータは断熱材製の外套体でモータ外周との間にケー
ス外へ通じる排出空間を設けて覆われ、モータの前面を
工作機械のモータ支持部分に断熱体を介して固定すると
共にモータ軸を前記支持部分および断熱体と間隙を取つ
て配置し、断熱体は内部にエアポケットとジェットエア
供給路を有し、エアポケットは前記の排出空間に開口し
た噴出孔とこれに対向した位置の内部壁に前記のジェッ
トエア供給路に連通し噴出孔に向いたノズルを備え、か
つ、前記断熱体とモータの接触個所へ積極的に形成した
連通間隙によりモータ軸周辺の空間と連通してあること
を特徴とした超精密工作機械。
The machine tool is housed in a case that covers the entire machine tool, and each motor of the machine tool is covered with a jacket made of heat insulating material with a discharge space leading to the outside of the case between the outer periphery of the motor and the front of the motor. The motor shaft is fixed to the motor support part via a heat insulator, and the motor shaft is arranged with a gap between the support part and the heat insulator, and the heat insulator has an air pocket and a jet air supply path inside, and the air pocket has the air pocket as described above. A nozzle that communicates with the jet air supply path and faces the nozzle is provided on an internal wall at a position opposite to the nozzle opening into the discharge space, and is actively formed at the contact point between the heat insulator and the motor. An ultra-precision machine tool characterized by communicating with the space around the motor shaft through a communication gap.
JP12260287A 1987-05-21 1987-05-21 Ultra-precision machine tool Expired - Lifetime JPH0763917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12260287A JPH0763917B2 (en) 1987-05-21 1987-05-21 Ultra-precision machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12260287A JPH0763917B2 (en) 1987-05-21 1987-05-21 Ultra-precision machine tool

Publications (2)

Publication Number Publication Date
JPS63288643A true JPS63288643A (en) 1988-11-25
JPH0763917B2 JPH0763917B2 (en) 1995-07-12

Family

ID=14839998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12260287A Expired - Lifetime JPH0763917B2 (en) 1987-05-21 1987-05-21 Ultra-precision machine tool

Country Status (1)

Country Link
JP (1) JPH0763917B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002036066A (en) * 2000-07-18 2002-02-05 Toshiba Mach Co Ltd Main spindle device of machine tool
JP2003291050A (en) * 2002-03-28 2003-10-14 Toyoda Mach Works Ltd Method and device for controlling temperature of finishing machine
WO2014181421A1 (en) * 2013-05-09 2014-11-13 富士機械製造株式会社 Machine tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002036066A (en) * 2000-07-18 2002-02-05 Toshiba Mach Co Ltd Main spindle device of machine tool
JP2003291050A (en) * 2002-03-28 2003-10-14 Toyoda Mach Works Ltd Method and device for controlling temperature of finishing machine
WO2014181421A1 (en) * 2013-05-09 2014-11-13 富士機械製造株式会社 Machine tool

Also Published As

Publication number Publication date
JPH0763917B2 (en) 1995-07-12

Similar Documents

Publication Publication Date Title
JPH0752004A (en) Numerically controlled grinding machine to cut work, especially tool
BRPI0906479B1 (en) tilting device
CN113695646B (en) Machining device for full-surface micro-pit structure of thin-wall spherical shell type micro component
CN111085903A (en) Five-axis linkage numerical control tool grinding machine
KR20210095574A (en) Machine tool
KR20000076987A (en) Method and apparatus for grinding a workpiece
JPS63288643A (en) Super precision machine tool
JP2003071663A (en) Machining center, and machining line
JP2017042875A (en) Grinding device
JP4564202B2 (en) Machine Tools
JP3482331B2 (en) Finishing method
KR100563950B1 (en) Compound work table and vertical lathe provided therewith
JP2008147344A (en) Machining equipment
JPH0751978A (en) Working fluid scattering preventing device for machine tool
JPH1094927A (en) Machine tool
JPH01140945A (en) Machine tool wherein air of room temperature is circulated
JP2002292568A (en) Manufacturing methods of blast device and ceramic dynamic pressure bearing
JPH05309566A (en) Grinding solution feeding structure
KR102646290B1 (en) Table detachable assembly for 5-axis process of 3-axis machine tools
JP2001219339A (en) Headstock cooling device of machine tool
JP2003282503A (en) Trench processing method of pad for semiconductor cmp processing, and ion blow equipment for performing the method
CN216706914U (en) Full-automatic tool grain processing grinding machine
JP2683069B2 (en) Machine tool spindle head
JP2001113442A (en) Slide cover device of machine tool
JP2021154453A (en) Holding device and machine tool