JPS63288408A - Production of composite magnetic head - Google Patents

Production of composite magnetic head

Info

Publication number
JPS63288408A
JPS63288408A JP12310887A JP12310887A JPS63288408A JP S63288408 A JPS63288408 A JP S63288408A JP 12310887 A JP12310887 A JP 12310887A JP 12310887 A JP12310887 A JP 12310887A JP S63288408 A JPS63288408 A JP S63288408A
Authority
JP
Japan
Prior art keywords
magnetic
block
magnetic core
cutting
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12310887A
Other languages
Japanese (ja)
Inventor
Tetsuo Akiyoshi
秋吉 哲雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP12310887A priority Critical patent/JPS63288408A/en
Publication of JPS63288408A publication Critical patent/JPS63288408A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To improve the wear resistance and the track width accuracy by fusing and filling mold glass in a groove preliminarily formed for track width control on a block consisting of an oxide magnetic material. CONSTITUTION:Magnetic core half bodies 31 and 31' are allowed to abut each other so that a metallic magnetic film 33, an oxide magnetic material 34, and an oxide magnetic material 34' face a metallic magnetic film 33', a nonmagnetic material 32', and a nonmagnetic material 32 respectively, and they are joined into one body. Mold glass 39 and 39; having a high melting point are filled in grooves 37 and 37' for track width control which are formed in abutting parts of oxide magnetic materials 34 and 34' and are used to form a main magnetic path on a tape slide face 38 of a magnetic core main body 30 by metallic magnetic films 33 and 33'. Consequently, metallic magnetic films can be formed on a nonmagnetic substrate whose coefficient of thermal expansion is matched to metallic magnetic films, and peeling and the degradation in magnetic characteristic of metallic magnetic films 33 and 33' due to thermal stress are prevented. Thus, the wear resistance and the track width accuracy are improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気記録再生装置、特に、ビデオテープレコー
ダ、回転型デジタルオーディオチーブレコーダ等の高密
度記録再生用磁気ヘッドとして好適な複合型磁気ヘッド
の製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a magnetic recording/reproducing device, particularly a composite magnetic head suitable as a magnetic head for high-density recording/reproducing of a video tape recorder, a rotary digital audio recorder, etc. Relating to a manufacturing method.

(従来例とその問題点) 磁気記録再生装置の高性能化、超小型化を実現するため
に、例えば磁気テープ等の記録媒体に高抗磁力を有する
メタルテープが広く使用されているが、一方ではこのよ
うな高抗磁力を有する磁気テープに用いる磁気ヘッドの
研究開発が進められている。
(Conventional examples and their problems) Metal tapes with high coercive force are widely used as recording media such as magnetic tapes in order to improve the performance and miniaturize magnetic recording and reproducing devices. Research and development of magnetic heads for use with magnetic tapes having such high coercive force is progressing.

このような磁気ヘッドには、高飽和磁束密度の金属系磁
性材と高周波特性に優れた酸化物系磁性材とを組合せて
磁気コア本体とした、いわゆる複合型磁気ヘッドが実現
化されている。
As such magnetic heads, so-called composite magnetic heads have been realized, in which a magnetic core body is made by combining a metal-based magnetic material with a high saturation magnetic flux density and an oxide-based magnetic material with excellent high-frequency characteristics.

第13図は従来の複合型磁気ヘッドの磁気コア本体10
を示す斜視図である。図中、11.12は[n気コア半
体で、例えばセンダスト(登録商標)、アモルファス、
パーマロイ等の金属系磁性材13゜14の両面を例えば
Mn−7nフエライト、Ni−7nフエライト等の酸化
物系磁性材15.16及び17.18にて夫々挟持する
如く一体に接合して構成してなり、その対向する突合せ
面11a。
FIG. 13 shows a magnetic core body 10 of a conventional composite magnetic head.
FIG. In the figure, 11.12 is [n-core half body, such as Sendust (registered trademark), amorphous,
Both surfaces of metal magnetic materials 13 and 14 such as permalloy are sandwiched and joined together by oxide magnetic materials 15, 16 and 17, 18 such as Mn-7n ferrite and Ni-7n ferrite, respectively. and the opposing abutting surfaces 11a.

12aの少なくとも一方、例えば図示のように突合せ面
11a側に巻線窓19を形成すると共に、これ等一対の
磁気コア半体11.12を例えば5i02等のギャップ
材を介して突合せ一体に接合して、磁気ギャップ20を
形成している。22゜23はテープ摺動面21上の磁気
ギャップ20の幅を所定のトラック幅に規制するための
トラック幅規制用溝であり磁気ギャップ20の両側に夫
々形成され、周溝22.23内にモールドガラス24.
25を溶融充填している。
A winding window 19 is formed on at least one of the magnetic core halves 12a, for example on the abutting surface 11a side as shown, and the pair of magnetic core halves 11.12 are abutted and integrally joined via a gap material such as 5i02. A magnetic gap 20 is formed. Reference numerals 22 and 23 indicate track width regulating grooves for regulating the width of the magnetic gap 20 on the tape sliding surface 21 to a predetermined track width. Molded glass 24.
25 is melt-filled.

然して、前記酸化物系磁性材と金属系磁性材とはその熱
膨張係数が大きく異なり、酸化物系磁性材の平面上に金
属系磁性膜を形成すると、この金属系磁性膜が非常に剥
離しやすいため、前記複合型磁気ヘッド10では、予め
トラック幅厚にラップした金属系磁性材からなる薄膜1
3.14を用いるようにしているが、金属系磁性材をト
ラック幅厚さにラップする作業が非常に面倒であるばか
りか、この薄板13.14は非常に薄いためもろくて壊
れ易く、生産性が悪いものであった。又、磁気ギャップ
20両面に夫々トラック幅規制用溝22.23を形成す
るようにしているため、トラック幅の精度があまりよく
、また、溝入れ加工時に誤ってプレートが薄板13.1
4に接触すると、同部位の薄板13.14が飛んでしま
う虞れもある等生産性が悪いものがあった。
However, the thermal expansion coefficients of the oxide-based magnetic material and the metal-based magnetic material are significantly different, and when a metal-based magnetic film is formed on a flat surface of the oxide-based magnetic material, this metal-based magnetic film may peel off considerably. Therefore, in the composite magnetic head 10, a thin film 1 made of a metallic magnetic material wrapped in advance to a track width thickness is used.
3.14 is used, but not only is it very troublesome to wrap the metal magnetic material to the track width thickness, but this thin plate 13.14 is very thin and is brittle and easily broken, which reduces productivity. was bad. In addition, since the track width regulating grooves 22 and 23 are formed on both sides of the magnetic gap 20, the accuracy of the track width is very good, and when the plate is erroneously cut into the thin plate 13.1 during the grooving process.
4, there was a risk that the thin plates 13 and 14 in the same area would fly off, resulting in poor productivity.

このため、図示しないが、酸化物系磁性材からなる一対
の磁気コア半体の突合せ部に金属系磁性膜を形成し、こ
の一対の磁気コア半体を突合せて磁気ギャップを形成す
ると共に、この磁気ギャップの両側にモールドガラスを
溶融充填した複合型磁気ヘッドが一部提供されているが
、これらはいずれも、酸化物系磁性材からなるブロック
にV溝を形成し、このV溝に金属系磁性膜を形成するよ
うにしているため、同V溝加工作業が非常に面倒で量産
性が悪い等の問題点があった。
For this reason, although not shown, a metal-based magnetic film is formed on the abutting portion of a pair of magnetic core halves made of an oxide-based magnetic material, and a magnetic gap is formed by abutting the pair of magnetic core halves. Some composite magnetic heads are available in which molded glass is fused and filled on both sides of the magnetic gap, but in all of these, a V-groove is formed in a block made of an oxide-based magnetic material, and a metal-based magnetic head is formed in the V-groove. Since a magnetic film is formed, there are problems such as the V-groove machining operation is extremely troublesome and mass production is poor.

(問題点を解決すめための手段) 本発明は上記問題点を解決するためになされたものであ
り、結晶化ガラス又はセラミックからなる非磁性基板上
に金属系磁性膜を薄膜形成手段により形成する工程、 酸化物系磁性材からなるブロックに複数の溝を形成し、
この溝内にモールドガラスを溶融充填する工程、 前記モールドガラスを充填したブロックを、基準面に対
して平行な切断線に沿って切断し、複合基板を得る工程
、 前記金属系磁性膜を形成した非磁性基板と複合基板とを
接合用ガラスを介して交互に積層し、一体に接合して、
積層ブロックを得る工程、前記積層ブロックを、基準面
に対して垂直で、モールドガラスを充填した溝の端部を
通る切断線に沿って切断し磁気コア半体ブロックを得る
工程、一対の磁気コア半体ブロックをその突合せ部に、
ギャップ材を介して且つ前記金属系磁性膜同志、及び複
合基板と非磁性基板とが互いに対向するようにして突合
せ一体に接合して磁気コアブロックを得る工程、 前記磁気コアブロックを金属系磁性膜に対して平行な切
断線に沿って切断し、磁気コア本体を得る工程とからな
ることを特徴とする複合型磁気ヘッドの製造方法を提供
するものである。
(Means for Solving the Problems) The present invention has been made to solve the above problems, and includes forming a metal-based magnetic film on a non-magnetic substrate made of crystallized glass or ceramic by a thin film forming means. Process: Form multiple grooves in a block made of oxide-based magnetic material,
a step of melting and filling mold glass into the groove; a step of cutting the block filled with the mold glass along a cutting line parallel to the reference plane to obtain a composite substrate; and forming the metal-based magnetic film. Non-magnetic substrates and composite substrates are alternately laminated via bonding glass and bonded together.
a step of obtaining a laminated block; a step of cutting the laminated block along a cutting line perpendicular to a reference plane and passing through the end of a groove filled with molded glass to obtain a magnetic core half block; a pair of magnetic cores; At the butt part of the half block,
Obtaining a magnetic core block by abutting and joining the metal-based magnetic films and the composite substrate and the non-magnetic substrate facing each other through a gap material to obtain a magnetic core block; The present invention provides a method for manufacturing a composite magnetic head, comprising the step of cutting along a cutting line parallel to the magnetic core to obtain a magnetic core body.

(実施例) 第1図は本発明になる製造方法によって製造された複合
型磁気ヘッドの磁気コア本体30を示す斜視図であり、
第2図は第1図に示す磁気コア本体30の磁気ギャップ
近傍におけるテープ暦動面の一部拡大平面因である。第
1図及び第2図において31及び31−は磁気コア半体
で、例えばセンダストあるいはアモルファス等からなる
金属系磁性B133.33−を後述する酸化膜系磁性材
と略同等の耐摩耗特性を有する結晶化ガラス又はセラミ
ックからなる非磁性材32.32′と、例えば、Mn−
7nフエライト等からなる酸化物系磁性材34.34−
とにより挟持して構成したものであり、その対向する突
合せ面31a 、31a =の少なくとも一方、例えば
、図示のように突合せ面31a側に巻線溝35を形成す
ると共に、これら一対の磁気コア半体31.31=を、
例えば、5i02等のギャップ材を介して金属系磁性膜
磁性膜33.33−同志、酸化物系磁性材34と非磁性
材32−1酸化物系磁性材34−と非磁性材32とが互
いに対向するように突合せ、一体に接合することにより
磁気ギャップ36を有する磁気コア本体30を構成して
いる。37.37”は前記磁気コア半体31.31=の
酸化物系磁性材34.34−の突合せ部に形成した磁気
コア本体30のテープ摺動面38上の主磁路を金属系磁
性膜で形成するためのトラック幅規制用の溝で、例えば
高融点のモールドガラス39.39′を充填している。
(Example) FIG. 1 is a perspective view showing a magnetic core body 30 of a composite magnetic head manufactured by the manufacturing method according to the present invention.
FIG. 2 is a partially enlarged plan view of the tape ephemeris motion surface near the magnetic gap of the magnetic core body 30 shown in FIG. In FIGS. 1 and 2, 31 and 31- are magnetic core halves, and the metal-based magnetic B133.33- made of sendust or amorphous, for example, has approximately the same wear resistance characteristics as the oxide film-based magnetic material described later. A non-magnetic material 32,32' made of crystallized glass or ceramic and, for example, Mn-
Oxide-based magnetic material made of 7n ferrite etc. 34.34-
A winding groove 35 is formed on at least one of the opposing abutting surfaces 31a and 31a, for example, on the abutting surface 31a side as shown in the figure, and the pair of magnetic core halves are The body 31.31=,
For example, the metal magnetic film 33-, the oxide magnetic material 34 and the non-magnetic material 32-1, the oxide-based magnetic material 34- and the non-magnetic material 32 are connected to each other through a gap material such as 5i02. A magnetic core main body 30 having a magnetic gap 36 is formed by abutting the magnetic cores so as to face each other and joining them together. 37.37'' is a metal-based magnetic film that connects the main magnetic path on the tape sliding surface 38 of the magnetic core body 30 formed at the abutting portion of the oxide-based magnetic material 34, 34- of the magnetic core half body 31.31=. The track width regulating groove is filled with, for example, high melting point molded glass 39,39'.

40は前記磁気コア半体31.31−を一体に接合する
ために巻線溝35の一部に溶融充填した接着ガラスであ
る。
Reference numeral 40 denotes adhesive glass that is melted and filled into a part of the winding groove 35 in order to join the magnetic core halves 31 and 31- together.

上述のように、本発明になる複合型磁気ヘッドによれば
、テープ摺動面38上に露出するモールドガラス39.
39′の面積は従来の磁気コア本体10の半分となり、
しかも磁気ギャップ36を挾んで対称位置関係にバラン
スよく配設されていること、非磁性材32.32”の摩
耗特性は酸化物系磁性材34.34′に近いものを容易
に選択出来ること等から耐摩耗性に優れ、かつ、偏摩耗
の少ない複合型磁気ヘッドを可能としている。
As described above, according to the composite magnetic head of the present invention, the molded glass 39. exposed on the tape sliding surface 38.
The area of 39' is half of the conventional magnetic core body 10,
Moreover, they are arranged in a well-balanced manner in a symmetrical position across the magnetic gap 36, and the wear characteristics of the non-magnetic material 32.32'' can be easily selected from those of the oxide-based magnetic material 34.34'. This enables a composite magnetic head with excellent wear resistance and less uneven wear.

次に、第1図に示した磁気コア本体30の製造方法につ
いて説明する。
Next, a method of manufacturing the magnetic core body 30 shown in FIG. 1 will be described.

第3図〜第11図は第1図に示す磁気コア本体30の製
造方法の主要工程の概略説明図である。
3 to 11 are schematic illustrations of the main steps of the method for manufacturing the magnetic core body 30 shown in FIG. 1.

図中、第1図に示す磁気コア本体30に使用されている
同−材料及び同一構成要素には同一符号を付し、説明を
省略する。
In the figure, the same materials and the same components used in the magnetic core body 30 shown in FIG.

第1の工程は第3図(a )に示す様に、結晶化ガラス
又はセラミック等からなる板状の非磁性材32を複数枚
用意し、これらの非磁性材32の両面を鏡面に研磨した
のち、同図(b)に示すように研磨面の一面、あるいは
同図(C)に示すように、研磨面の両面に、例えばセン
ダスト、アモルファス等からなる金属系磁性11133
をスパッタリング、蒸着、イオンブレーティング等の薄
板形成手段により形成する。この時、金属系磁性!13
3を形成した非磁性材32の厚さをtとする。これらの
非磁性材32はこの時使用される金属系磁性!133の
熱膨張係数と略同一で、後述する酸化物系磁性膜34と
略同等の耐摩耗特性を有する非磁性材の中から選択され
るものである。
In the first step, as shown in FIG. 3(a), a plurality of plate-shaped non-magnetic materials 32 made of crystallized glass or ceramic were prepared, and both sides of these non-magnetic materials 32 were polished to a mirror finish. Afterwards, metal-based magnetic material 11133 made of sendust, amorphous, etc., is applied to one surface of the polished surface as shown in FIG.
is formed by thin plate forming means such as sputtering, vapor deposition, and ion blating. At this time, metal magnetism! 13
Let t be the thickness of the non-magnetic material 32 on which 3 is formed. These non-magnetic materials 32 are metal-based magnetic materials used at this time! The material is selected from among non-magnetic materials having approximately the same coefficient of thermal expansion as No. 133 and approximately the same wear resistance properties as the oxide-based magnetic film 34 described later.

第2の工程は、例えば、Mn−7nフエライトからなる
ブロック状の酸化物系磁性材34を用意しく第4図)、
この酸化物系磁性材34の一面34bに第5図に示すよ
うな磁気コア半体31゜31−の幅Wと略等しいピッチ
で基準面34aに対して垂直な溝37を形成する。
In the second step, for example, a block-shaped oxide-based magnetic material 34 made of Mn-7n ferrite is prepared (Fig. 4).
Grooves 37 perpendicular to the reference surface 34a are formed on one surface 34b of this oxide-based magnetic material 34 at a pitch substantially equal to the width W of the magnetic core halves 31.degree. 31-, as shown in FIG.

第3の工程は第6図に示す様に、第2の工程で形成した
溝37の中に耐摩耗特性に優れた高融点のモールドガラ
ス39を溶融充填したのち、余分なモールドガラスを研
磨等により除去する。
In the third step, as shown in FIG. 6, molded glass 39 with a high melting point and excellent wear resistance is melted and filled into the grooves 37 formed in the second step, and then the excess molded glass is removed by polishing, etc. Remove by.

第4の工程は酸化物系磁性材34を基準面34aに対し
て平行な切断線50に沿ってピッチ【切断し複合基板5
1を得る。(第7図) 第5−f#の工程は、第1の工程で金属系磁性膜33を
形成した非磁性材32と前記複合基板51とを接合用ガ
ラスを介して交互に積層し、加圧及び加熱することによ
り一体に接合し積層ブロック52を得る。(第8図) 第6の工程は第5の工程で得られた積層ブロック52を
溝37を通るピッチWなる切断線53に沿って切断する
ことによりブロック状の一対の磁気コア半体31.31
−等を得る。(第9図)第7の工程は第6の工程で得ら
れた一対の磁気コア半体31.31−の切断面のうちモ
ールドガラス37側を突合せ面318.318−とし、
この突合せ面31a、31a−の少なくとも一方、例え
ば、第10図に示すように一方の磁気コア半体31の突
合せ面31aの長手方向に巻線溝35を形成すると共に
、該両突合せ面31a 、 31a −を鏡面に研磨す
る。
In the fourth step, the oxide-based magnetic material 34 is cut at a pitch along cutting lines 50 parallel to the reference plane 34a, and the composite substrate 5
Get 1. (FIG. 7) In the step 5-f#, the non-magnetic material 32 on which the metallic magnetic film 33 was formed in the first step and the composite substrate 51 are alternately laminated with bonding glass interposed therebetween, and then processed. The laminated block 52 is obtained by joining together by applying pressure and heating. (FIG. 8) In the sixth step, the laminated block 52 obtained in the fifth step is cut along cutting lines 53 having a pitch W passing through the grooves 37 to form a pair of block-shaped magnetic core halves 31. 31
− etc. are obtained. (FIG. 9) In the seventh step, the mold glass 37 side of the cut surfaces of the pair of magnetic core halves 31, 31- obtained in the sixth step is made into an abutting surface 318, 318-,
At least one of the abutting surfaces 31a, 31a-, for example, as shown in FIG. 10, a winding groove 35 is formed in the longitudinal direction of the abutting surface 31a of one of the magnetic core halves 31, 31a - is polished to a mirror surface.

第8の工程は他方の磁気コア半体31′を180゛回転
させ、前記突合せ面31a 、 31a =間に、例え
ばSiO2等のギャップ材料を介して金属系磁性[13
3,33−が互いに対向するように突合せ接着ガラス4
0等を用いて一体に接合したのち、金属系磁性11!3
3.33′に平行な切断線54に沿って切断すると、先
端研磨前の第1図に示す磁気コア本体30を得ることが
出来る。(第11図) 次に、第1図及び第2図に示す磁気コア本体30におい
て、磁気ギャップ36がアジマス角θを有する場合の製
造方法について説明する。
In the eighth step, the other magnetic core half 31' is rotated 180 degrees, and a metallic magnetic material [13
3, 33- are facing each other and bonded glass 4.
After joining together using 0 etc., metallic magnetic 11!3
By cutting along the cutting line 54 parallel to 3.33', the magnetic core body 30 shown in FIG. 1 before tip polishing can be obtained. (FIG. 11) Next, a method of manufacturing the magnetic core body 30 shown in FIGS. 1 and 2 in which the magnetic gap 36 has an azimuth angle θ will be described.

前記実施例の製造工程と概略同様な工程であるので同一
構成要素には同一符号を付し異なる点のみを説明する。
Since the manufacturing process is roughly similar to the manufacturing process of the previous embodiment, the same components are given the same reference numerals, and only the different points will be explained.

第12図(a )〜(C)は第1図及び第2図に示す磁
気コア本体30がアジマス角θを有する場合の背理工程
を説明するための図であり、以下同図を用いて説明する
FIGS. 12(a) to 12(C) are diagrams for explaining the paradoxical process when the magnetic core main body 30 shown in FIGS. 1 and 2 has an azimuth angle θ, and will be explained below using the same diagrams. do.

前記第2の工程における酸化物系磁性材340面34b
に磁気コア半体31.31 ′の幅Wと略等しいピッチ
で、かつ、基準面34aの垂I!60に対してθなる傾
斜角を有するように溝37を形成する。
Oxide-based magnetic material 340 surface 34b in the second step
at a pitch substantially equal to the width W of the magnetic core half body 31.31', and perpendicular to the reference surface 34a I! The groove 37 is formed to have an inclination angle of θ with respect to the groove 60.

前記第4の工程において、第12図(b)に示す様に、
酸化物系磁性材34を基準面34aに対して平行で金属
系磁性膜33を形成した非磁性材32の厚さtと略同じ
ピッチを有する切断線50に沿って切断し、複合基板5
1を得ると共にこれらの複合基板51の内、第12図(
b )に示すように、奇数(又は偶数)番目の複合基板
51を金属系磁性膜33を形成した非磁性材32と入れ
替え、接合用がガラスを介して積層し、37が切断l!
53に沿って一直線に並んだ積層ブロック52を得る。
In the fourth step, as shown in FIG. 12(b),
The oxide-based magnetic material 34 is cut along cutting lines 50 that are parallel to the reference plane 34a and have approximately the same pitch as the thickness t of the non-magnetic material 32 on which the metal-based magnetic film 33 is formed.
1, and among these composite substrates 51, FIG. 12 (
As shown in b), the odd-numbered (or even-numbered) composite substrate 51 is replaced with a non-magnetic material 32 on which a metal-based magnetic film 33 is formed, the bonding layer is laminated with glass interposed therebetween, and 37 is cut l!
Laminated blocks 52 aligned in a straight line along 53 are obtained.

以下前記第6〜第8の工程によってアジマス角θを有す
る磁気コア本体30を得ることが出来る。
Thereafter, the magnetic core body 30 having the azimuth angle θ can be obtained by the sixth to eighth steps.

(発明の効果) 本発明の製造方法によれば、熱膨張係数を金属系磁性膜
に合せた非磁性基板上に前記金属系磁性膜を形成するこ
とができるため、熱応力による金属系磁性膜の剥離や磁
気特性の劣化を生じることはない。また、酸化物系磁性
材からなるブロック上にトラック幅規制用溝となる溝を
あらかじめ形成し、この溝内にモールドガラスを溶融充
填したため、個々の磁気ヘッドについてトラック幅規制
用溝の加工が不要となり、トラック幅精度が向上すると
共にモールドガラスとして高融点ガラスの使用が可能と
なり、耐摩耗特性に優れ、信頼性の高い複合型磁気ヘッ
ドの提供を可能とするものである。
(Effects of the Invention) According to the manufacturing method of the present invention, the metal-based magnetic film can be formed on a non-magnetic substrate whose coefficient of thermal expansion matches that of the metal-based magnetic film. No peeling or deterioration of magnetic properties will occur. In addition, grooves for track width regulation were formed in advance on the block made of oxide-based magnetic material, and molded glass was melted and filled into these grooves, so there was no need to process track width regulation grooves for each magnetic head. As a result, the track width accuracy is improved and high melting point glass can be used as the mold glass, making it possible to provide a composite magnetic head with excellent wear resistance and high reliability.

また従来のように金属系磁性膜が破壊される虞がなく、
歩留りの向上と、量産性の向上を図ることができる。
In addition, there is no risk of the metal-based magnetic film being destroyed unlike in the past.
It is possible to improve yield and mass productivity.

また本発明になる製造方法によれば、アジマス角を有す
る複合型磁気ヘッドの製造をも容易に可能とする特長を
有する。
Further, the manufacturing method of the present invention has a feature that it is possible to easily manufacture a composite magnetic head having an azimuth angle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明になる製造方法によって製造された複合
型磁気ヘッドの磁気コア本体を示す斜視図、第2図は第
1図に示す磁気コア本体の磁気ギャップ近傍におけるテ
ープ摺動面の一部拡大平面図、第3図〜第11図は第1
図に示す磁気コア本体の製造方法を説明するための主要
工程の概略説明図、第12図(a )〜(c)は第1図
及び第2図に示す磁気コア本体がアジマス角θを有する
場合の製造工程を説明するための説明図、第13図は従
来の複合型磁気ヘッドのコア本体を示す斜視図である。 30・・・磁気コア本体、31.31 ”・・・磁気コ
ア半体、32.32−・・・非磁性材、33.33−・
・・金属系磁性膜、34.34′・・・酸化物系磁性材
、34a・・・基準面、34b・・・溝加工面、35・
・・巻線溝、36・・・磁気ギャップ、37.37−・
・・溝、38・・・テープ摺動面、39.39”・・・
モールドガラス、51・・・複合基板、52・・・積層
ブロック、60・・・基準面に対する垂線。
FIG. 1 is a perspective view showing a magnetic core body of a composite magnetic head manufactured by the manufacturing method of the present invention, and FIG. 2 is a view of a tape sliding surface near the magnetic gap of the magnetic core body shown in FIG. Enlarged plan view of the section, Figures 3 to 11 are the 1st
12 (a) to (c) are schematic explanatory diagrams of the main steps for explaining the manufacturing method of the magnetic core body shown in the figure. The magnetic core body shown in Figures 1 and 2 has an azimuth angle θ. FIG. 13 is a perspective view showing a core body of a conventional composite magnetic head. 30...Magnetic core body, 31.31''...Magnetic core half body, 32.32-...Non-magnetic material, 33.33--
...Metal magnetic film, 34.34'...Oxide magnetic material, 34a...Reference surface, 34b...Grooved surface, 35.
・Winding groove, 36...Magnetic gap, 37.37-・
...Groove, 38...Tape sliding surface, 39.39"...
Molded glass, 51... Composite substrate, 52... Laminated block, 60... Perpendicular to the reference plane.

Claims (2)

【特許請求の範囲】[Claims] (1)結晶化ガラス又はセラミックからなる非磁性基板
上に金属系磁性膜を薄膜形成手段により形成する工程、 酸化物系磁性材からなるブロックに複数の溝を形成し、
この溝内にモールドガラスを溶融充填する工程、 前記モールドガラスを充填したブロックを、基準面に対
して平行な切断線に沿って切断し、複合基板を得る工程
、 前記金属系磁性膜を形成した非磁性基板と複合基板とを
接合用ガラスを介して交互に積層し、一体に接合して、
積層ブロックを得る工程、 前記積層ブロックを、基準面に対して垂直で、モールド
ガラスを充填した溝の端部を通る切断線に沿って切断し
磁気コア半体ブロックを得る工程、一対の磁気コア半体
ブロックをその突合せ部にギャップ材を介して且つ前記
金属系磁性膜同志、及び複合基板と非磁性基板とが互い
に対向するようにして突合せ一体に接合して磁気コアブ
ロックを得る工程、 前記磁気コアブロックを金属系磁性膜に対して平行な切
断線に沿って切断し、磁気コア本体を得る工程とからな
ることを特徴とする複合型磁気ヘッドの製造方法。
(1) A step of forming a metal-based magnetic film on a non-magnetic substrate made of crystallized glass or ceramic by a thin film forming means, forming a plurality of grooves in a block made of an oxide-based magnetic material,
a step of melting and filling mold glass into the groove; a step of cutting the block filled with the mold glass along a cutting line parallel to the reference plane to obtain a composite substrate; and forming the metal-based magnetic film. Non-magnetic substrates and composite substrates are alternately laminated via bonding glass and bonded together.
a step of obtaining a laminated block; a step of cutting the laminated block along a cutting line perpendicular to the reference plane and passing through the end of the groove filled with molded glass to obtain a magnetic core half block; a pair of magnetic cores; Obtaining a magnetic core block by abutting and joining the half blocks integrally to the abutting portions of the half blocks through a gap material so that the metal-based magnetic films and the composite substrate and the non-magnetic substrate face each other; A method for manufacturing a composite magnetic head, comprising the step of cutting a magnetic core block along cutting lines parallel to a metal magnetic film to obtain a magnetic core body.
(2)結晶化ガラス又はセラミックからなる非磁性基板
上に金属系磁性膜を薄膜形手段により形成する工程、 酸化物系磁性材からなるブロックに、基準面に対してア
ジマス角に等しい傾斜角を有する複数の溝を形成し、こ
れらの溝内にモールドガラスを溶融充填する工程、 前記モールドガラスを充填したブロックを前記基準面に
対して平行で且つ前記金属系磁性膜を形成した非磁性基
板の厚さと略同一のピッチの切断線に沿って切断して複
合基板を得ると共に、その奇数(又は、偶数)番目の複
合基板を金属系磁性膜を形成した非磁性基板と入れ替え
、接合用ガラスを介して積層し、一体に接合して積層ブ
ロックを得る工程、 前記積層ブロックを前記モールドガラスを充填した溝を
通り、この溝の傾斜角に対して平行且つ前記モールドガ
ラスを充填した溝の端部を通る切断線に沿って切断し磁
気コア半体ブロックを得る工程、 この一対の磁気コア半体ブロックを突合せ部にギャップ
材を介して且つ前記金属系磁性膜同志及び複合基板と非
磁性基板とが互いに対向するように突合せ一体に接合し
て磁気コアブロックを得る工程、 前記磁気コアブロックを金属系磁性膜に平行な切断線に
沿って切断し、磁気コア本体を得る工程とからなること
を特徴とする複合型磁気ヘッドの製造方法。
(2) A step of forming a metal-based magnetic film by thin film means on a non-magnetic substrate made of crystallized glass or ceramic, in which a block made of oxide-based magnetic material is made at an inclination angle equal to the azimuth angle with respect to the reference plane. forming a plurality of grooves and melting and filling molded glass into these grooves, placing the block filled with the molded glass parallel to the reference plane and on the non-magnetic substrate on which the metallic magnetic film is formed; A composite substrate is obtained by cutting along cutting lines with a pitch that is approximately the same as the thickness, and the odd numbered (or even numbered) composite substrate is replaced with a nonmagnetic substrate on which a metal magnetic film is formed, and the bonding glass is a step of stacking the stacked blocks through a groove and joining them together to obtain a stacked block; passing the stacked block through the groove filled with the molded glass, and passing the edge of the groove parallel to the inclination angle of the groove and filled with the molded glass; A step of cutting the pair of magnetic core half blocks along a cutting line passing through the magnetic core half blocks, and cutting the pair of magnetic core half blocks at the abutting portions with a gap material between them and between the metal-based magnetic films, the composite substrate, and the nonmagnetic substrate. a step of butting and joining them together so that they face each other to obtain a magnetic core block, and a step of cutting the magnetic core block along cutting lines parallel to the metal-based magnetic film to obtain a magnetic core body. A manufacturing method for a featured composite magnetic head.
JP12310887A 1987-05-20 1987-05-20 Production of composite magnetic head Pending JPS63288408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12310887A JPS63288408A (en) 1987-05-20 1987-05-20 Production of composite magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12310887A JPS63288408A (en) 1987-05-20 1987-05-20 Production of composite magnetic head

Publications (1)

Publication Number Publication Date
JPS63288408A true JPS63288408A (en) 1988-11-25

Family

ID=14852374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12310887A Pending JPS63288408A (en) 1987-05-20 1987-05-20 Production of composite magnetic head

Country Status (1)

Country Link
JP (1) JPS63288408A (en)

Similar Documents

Publication Publication Date Title
JPS63288408A (en) Production of composite magnetic head
JPH0475564B2 (en)
JPS63288409A (en) Production of composite type magnetic head
JP3025990B2 (en) Manufacturing method of magnetic head
JPS63311607A (en) Composite type magnetic head and its production
JPS63311608A (en) Composite type magnetic head and its production
JPS63225904A (en) Composite type magnetic head and its production
JPS59203210A (en) Magnetic core and its production
JPS63104208A (en) Composite magnetic head and its manufacture
JP2887204B2 (en) Method of manufacturing narrow track magnetic head
JPS6220113A (en) Composite type magnetic head and its manufacture
JPS63102007A (en) Magnetic head
JPS63308710A (en) Composite magnetic head and its manufacture
JPS63104209A (en) Composite magnetic head and its manufacture
JPS63308711A (en) Composite magnetic head and its manufacture
JPS62146411A (en) Composite magnetic head and its production
JPS6374104A (en) Composite type magnetic head and its production
JPS6050608A (en) Magnetic head and its production
JPH0354704A (en) Magnetic head and its manufacture
JPS63279406A (en) Magnetic head
JPH0833980B2 (en) Method of manufacturing magnetic head
JPS63103405A (en) Composite type magnetic head and its production
JPH01235011A (en) Production of magnetic head
JPS61267908A (en) Magnetic head and its production
JPS6226607A (en) Magnetic head and its manufacture