JPS63287807A - Photodetector made of two-input optical fiber - Google Patents

Photodetector made of two-input optical fiber

Info

Publication number
JPS63287807A
JPS63287807A JP12280487A JP12280487A JPS63287807A JP S63287807 A JPS63287807 A JP S63287807A JP 12280487 A JP12280487 A JP 12280487A JP 12280487 A JP12280487 A JP 12280487A JP S63287807 A JPS63287807 A JP S63287807A
Authority
JP
Japan
Prior art keywords
optical fiber
light
optical fibers
axes
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12280487A
Other languages
Japanese (ja)
Inventor
Toshio Oya
大矢 利夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP12280487A priority Critical patent/JPS63287807A/en
Publication of JPS63287807A publication Critical patent/JPS63287807A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the accuracy of mounting a photodetecting element and to provide a stable high-reliability device by receiving the two input signals from two optical fibers in the same element and sloping the end faces of the optical fibers relative to optical fiber axes with a photodetecting device made of two-input optical fibers. CONSTITUTION:The optical fibers 1, 2 are fixed at the end parts to a ferrule 12 by bringing the respective optical fiber axes 3, 4 into parallel tight contact with each other. The end face 10 thereof is so worked integrally as to be perpendicular to the plane constituted of two pieces of the optical fiber axes 3, 4 and to be flush diagonally at phi angle with the optical fiber axes 3, 4. Central axes 5, 6 of the exit beam light refracted by the end face 10 of the optical fibers 1, 2 are refracted at the theta angle with the optical fiber axes 3, 4 and the spacing thereof is made smaller than the spacing between the optical fiber axes 3 and 4. Such beam light is condensed to a small photodetecting area of the photodetecting element 9 and is superposedly received therein. The position of a holder B22 inserted into a metallic fitting 23 is adjusted while the amt. of tolerance is adjusted; thereafter, the outside circumferential part of the holder B22 is welded and fixed to the fitting 23 at the time of assembly. The amt. of tolerance is thereby increased and the safe photodetecting device having the high reliability is obtd.

Description

【発明の詳細な説明】 〔概 要〕 本発明は2本の光ファイバからの二人力信号を同一素子
で受光し、電気信号に変換出力させ゛る二入力光ファイ
バ受光装置で、光ファイバの端面を光ファイバ軸に対し
て斜面とさせたもので、端面で出射ビーム光が屈折し、
光フアイバ軸間距離が縮小した効果が得られ、以降の集
光受光系に良好な作用をなし、特に受光素子の取付精度
の向上に寄与し、安定で高信頼度の受光装置が得られ、
また装置のより高速度化が図れるものである。
[Detailed Description of the Invention] [Summary] The present invention is a two-input optical fiber light receiving device that receives two-power signals from two optical fibers using the same element, converts them into electrical signals, and outputs them. The end face is sloped with respect to the optical fiber axis, and the emitted beam light is refracted at the end face.
The effect of reducing the distance between the optical fiber axes is obtained, which has a good effect on the subsequent condensing light receiving system, and particularly contributes to improving the mounting accuracy of the light receiving element, resulting in a stable and highly reliable light receiving device.
Furthermore, the speed of the device can be increased.

〔産業上の利用分野〕[Industrial application field]

本発明は2本の光ファイバからの人力信号を同一素子で
受光し、電気信号に変換出力させる受光装置に係り、安
定、高信頼度に受光させた二入力光ファイバ受光装置に
関す。
The present invention relates to a light receiving device that receives human input signals from two optical fibers with the same element, converts them into electrical signals, and outputs them, and relates to a two-input optical fiber light receiving device that receives light stably and with high reliability.

光フアイバケーブルの実用化により、これを用いた光通
信システムが急速な勢いで開発、実用化され、高速度化
、大容量化、長距離化が図られ、従来の同軸ケーブル方
式を凌駕する段階である。
With the commercialization of optical fiber cables, optical communication systems using them have been developed and put into practical use at a rapid pace, achieving higher speeds, larger capacities, and longer distances, and reaching a stage where they surpass the conventional coaxial cable system. It is.

この光通信システムで光ファイバから光信号を受光し、
電気信号に変換する受光装置は、光受信部の要の装置で
あり、高信頼度が要求されている。
This optical communication system receives optical signals from optical fibers,
A light receiving device that converts into an electrical signal is a key device of an optical receiving section, and is required to have high reliability.

〔従来の技術〕[Conventional technology]

第3図に従来の一例の二人力受光装置の光学系構成図、
第4図(alにA位置の受光面上のビーム光拡大図、同
図(blにB位置の同図、第5図(alにA位置のトレ
ランス特性、同図(b)にB位置の同特性を示す。
Figure 3 shows a diagram of the optical system configuration of a conventional two-person light receiving device.
Figure 4 (al is an enlarged view of the beam light on the light receiving surface at the A position, the same figure (bl is the same diagram at the B position, Figure 5 (al is the tolerance characteristic at the A position, the same figure (b) is an enlarged view of the beam light on the light receiving surface at the B position) Shows the same characteristics.

複数本の光ファイバの光信号を重畳受信する方法として
、夫々の光フアイバ毎に受光装置を接続させて、その出
力の電気信号を重畳する方法が一般的であるが、光受信
部を複数個要し、特性も揃えたものが必要となり経済性
、信顛性から好ましくなく、4本以下では、複数の光フ
ァイバの出力光を集光させて、同一受光素子に重畳受光
させる受光装置があり、−例として2本の光ファイバの
入力受光装置を第3図に示す。
A common method for receiving optical signals from multiple optical fibers in a superimposed manner is to connect a light receiving device to each optical fiber and superimpose the output electrical signals. Therefore, it is necessary to have the same characteristics, which is not desirable from an economical and reliability standpoint.If there are fewer than four optical fibers, there is a light receiving device that condenses the output light of multiple optical fibers and receives the light in a superimposed manner on the same light receiving element. , - As an example, an input light receiving device with two optical fibers is shown in FIG.

2本の夫々独立した一芯光フアイハケープルは、外層の
保護被覆を除去したコアとクラッド層からなる光ファイ
バ1.2が、互いの光ファイバ軸3.4を平行、密着さ
せて端部が固定され、端面11は光ファイバ軸3,4に
垂直な同一平面に一体に加工されている。
In two independent single-core optical fiber cables, the optical fibers 1.2 are made up of a core and a cladding layer from which the outer protective coating has been removed, and the optical fiber axes 3.4 are parallel to each other, and the ends are fixed in close contact with each other. The end face 11 is integrally processed into the same plane perpendicular to the optical fiber axes 3 and 4.

更に、光ファイバ軸3.4間の中心線71の延長線上に
、集光レンズ8と受光素子9とが所定間隔に2軸を揃え
て配設しである。
Furthermore, on the extension of the center line 71 between the optical fiber shafts 3 and 4, a condenser lens 8 and a light receiving element 9 are arranged with the two axes aligned at a predetermined interval.

光ファイバ1,2の端面11からの出射ビーム光は、そ
の光軸は夫々の光ファイバ軸3,4に一致し、光ファイ
バ1.2の開口角度までの拡がりをもったビーム状とな
るので、これを集光レンズ8により集光させ、更に、2
本の出射ビーム光の間隔も屈折。
The light beams emitted from the end faces 11 of the optical fibers 1 and 2 form a beam whose optical axes coincide with the respective optical fiber axes 3 and 4, and whose spread extends to the aperture angle of the optical fibers 1.2. , this is condensed by a condensing lens 8, and further 2
The distance between the light beams emitted by the book is also refracted.

縮小させて、受光素子9の小さな受光面積に集光させ、
重畳受光させている。
The light is reduced and focused on a small light-receiving area of the light-receiving element 9,
Superimposed light reception is performed.

この受光面の中心線71上の位置により入力ビーム光の
大きさ9間隔が変わるので、受光素子9の中心線71上
の距離ずれは微少調整可能としである。
Since the magnitude 9 interval of the input beam light changes depending on the position on the center line 71 of the light receiving surface, the distance deviation on the center line 71 of the light receiving element 9 can be finely adjusted.

この時、円形の受光面上のビーム光は第4図の拡大図の
ようになり、2個のビーム光53.63の中心を結ぶX
軸上を円形の受光面91の中心が移動した時の距離Xと
受光電流Iとの関係は、第5図のトレランス特性のよう
になり、2個のビーム光53゜63の受光特性54 、
64が夫々1(10%受光量の重畳する区間5(7)X
軸距離を以て、トレランス量としている。
At this time, the beam light on the circular light receiving surface becomes as shown in the enlarged view of Figure 4, and the X connecting the centers of the two beam lights 53 and 63
When the center of the circular light-receiving surface 91 moves on the axis, the relationship between the distance X and the light-receiving current I is as shown in the tolerance characteristic in FIG.
64 are each 1 (section 5 (7) where 10% received light amount overlaps
The axial distance is used as the tolerance amount.

このトレランス量は、光学系の組立精度の下限を規定す
ると共に、使用時の温度変動等および経年変化により生
じる光学系の狂いに対応させて、安定、高信転に受光出
来るように定める量である。
This tolerance defines the lower limit of the assembly accuracy of the optical system, and is determined to ensure stable and highly reliable light reception by taking into account deviations in the optical system caused by temperature fluctuations during use and aging. be.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、第3図の中心線71上のAおよびB位置
での受光面におけるビーム光53.63は、第4図(a
) (b)の拡大図に示す如く、A位置ではビーム光の
直径は小さくなり、B位置では直径は大きくなり、間隔
は若干縮まっている。
However, beam light 53.63 on the light receiving surface at positions A and B on the center line 71 in FIG.
) As shown in the enlarged view of (b), the diameter of the beam light becomes small at the A position, and the diameter becomes large at the B position, and the interval is slightly reduced.

一方、このトレランス特性は第5図Tal (blの如
く、A位置の方がB位置に比ベトレランス量Sは大であ
る。
On the other hand, as shown in FIG. 5, the tolerance S is larger at the A position than at the B position.

しかし、光ファイバ1.2の寸法、特性、集光レンズ8
の特性、および受光素子9の受光面積により、最大のト
レランス量は一義的に決まる。
However, the dimensions and characteristics of the optical fiber 1.2, the condenser lens 8
The maximum tolerance amount is uniquely determined by the characteristics of and the light-receiving area of the light-receiving element 9.

この他、加工寸法精度、組立精度により実物のトレラン
ス量は更に減量されたものとなる。
In addition, the actual tolerance amount is further reduced due to processing dimensional accuracy and assembly accuracy.

従って、それ以上のトレランス量が要求される時には、
構成部品のより高性能化と寸法の高精度化をせざるを得
ない。
Therefore, when greater tolerance is required,
There is no choice but to improve the performance and precision of component parts.

しかし、光ファイバ1.2の小径化をこのために行える
ものではなく、その他のものも、全て最高性能を有した
ものでなされ、それ以上とすることは困難であった。
However, it is not possible to reduce the diameter of the optical fiber 1.2 for this purpose, and all other fibers have been made with the highest performance, and it has been difficult to make the diameter larger than that.

また、より高速度化に伴い受光素子の受光面は小形化の
方向にあり、かような素子を用いても従来並のトレラン
ス量を確保する要望もあり、かような高速度化に制約を
与えていた。
In addition, as speeds increase, the light-receiving surface of light-receiving elements tends to become smaller, and there is also a desire to maintain the same amount of tolerance as conventional devices even when using such elements, which limits the ability to achieve higher speeds. was giving.

本発明はかかる問題に鑑み、構成部品を変えずに、更に
トレランス量を向上させる、新二人力光ファイバ受光装
置を提供するものである。
In view of this problem, the present invention provides a new two-person optical fiber light receiving device that further improves the tolerance without changing the component parts.

〔問題点を解決するための手段〕[Means for solving problems]

第1図の本発明の原理図に示す如く、上記の問題点は、
夫々独立した2本の光ファイバ1.2の光信号を同一受
光素子にて、同時に受光させる二入力光ファイバ受光装
置において、2本の光ファイバ1.2の端部は光ファイ
バ軸3,4を平行に密着させ、その端面10は、2本の
光ファイバ軸3,4がなす平面に垂直で、且つ光ファイ
バ軸3.4に対して斜めの同一平面になるように一体に
加工され、端面10からの2本の出射ビーム光の中心軸
5.6の中心線7上に集光レンズ8と受光素子9とを配
設させた、本発明の二入力光ファイバ受光装置により解
決される。
As shown in the principle diagram of the present invention in FIG. 1, the above problems are as follows:
In a two-input optical fiber light receiving device in which optical signals from two independent optical fibers 1.2 are simultaneously received by the same light receiving element, the ends of the two optical fibers 1.2 are connected to the optical fiber shafts 3 and 4. are brought into close contact with each other in parallel, and their end faces 10 are integrally processed so that they are in the same plane perpendicular to the plane formed by the two optical fiber axes 3 and 4 and oblique to the optical fiber axis 3.4, This problem is solved by the two-input optical fiber light receiving device of the present invention, in which the condenser lens 8 and the light receiving element 9 are arranged on the center line 7 of the center axis 5.6 of the two beams of light emitted from the end face 10. .

〔作 用〕[For production]

即ち、光ファイバの斜端面でその出射ビーム光は屈折し
、ビーム光軸間は光フアイバ軸間より狭められるので、
以降が同一光学系でもトレランス量が大となり、目的が
達成される。
That is, the emitted beam light is refracted at the oblique end face of the optical fiber, and the distance between the beam optical axes is narrower than the distance between the optical fiber axes.
Even if the optical system is the same thereafter, the amount of tolerance will be large and the objective will be achieved.

光ファイバ1,2の端面10が光ファイバ軸3,4に対
しφ度の斜面としであるので、出射ビーム光ば夫々のビ
ーム光の中心軸5.6が光ファイバ軸3,4に対しθ度
屈折して出射し、光ファイバ軸3.4が平行であったの
で、屈折した中心軸5.6も同じく平行となり、その間
隔は、光ファイバ軸3,4の間隔に対し次式の如く縮小
される。
Since the end surfaces 10 of the optical fibers 1 and 2 are sloped at an angle of φ with respect to the optical fiber axes 3 and 4, the central axes 5 and 6 of each of the output beams are θ with respect to the optical fiber axes 3 and 4. Since the optical fiber axes 3.4 are parallel, the refracted central axes 5.6 are also parallel, and the distance between them is determined by the following equation with respect to the distance between the optical fiber axes 3 and 4. Reduced.

cos (gf−φ+θ) / cos (9f−φ)
ここで、φ〉θであり、φとθとは屈折の法則による一
定の関係があり、端面10の斜面角度φは、端面10で
全反射を生じない範囲で90°から小さくなればなる程
、屈折角度θは大となり、ビーム光の中心軸5.6の間
隔が狭められる。
cos (gf-φ+θ) / cos (9f-φ)
Here, φ>θ, and there is a certain relationship between φ and θ according to the law of refraction, and the slope angle φ of the end face 10 becomes smaller from 90° without causing total reflection at the end face 10. , the refraction angle θ becomes large, and the interval between the central axes 5.6 of the light beams becomes narrower.

かくして、出射ビーム光の中心軸5,6の間隔は縮めら
れ、以下これを集光レンズ8により集光させて、受光素
子9の受光面に重畳受光させるが、この光学系は前述の
従来例と同一品で同精度で構成したものでも、容易にト
レランス量を大とすることが出来る。
In this way, the distance between the central axes 5 and 6 of the emitted beam light is shortened, and the light is then focused by the condenser lens 8 and received in a superimposed manner on the light receiving surface of the light receiving element 9, but this optical system is different from the conventional example described above. Even if it is the same product and configured with the same accuracy, the tolerance can be easily increased.

かくの如く、トレランス量の増大に伴い、安定で高信顛
度の受光装置が得られ、また、装置のより高速度化を図
ることも可能となる。
As described above, as the amount of tolerance increases, a stable and highly reliable light receiving device can be obtained, and it is also possible to increase the speed of the device.

に説明する。Explain.

全図を通し同一符合は同一対称物を示す。The same reference numerals indicate the same objects throughout the figures.

第2図に本発明の一実施例の構成図を示す。FIG. 2 shows a configuration diagram of an embodiment of the present invention.

2本の夫々独立した一芯のシングルモード型光ファイバ
ケーブルは、外層の保護被覆を除去したコアとクラッド
層からなる光ファイバ1.2が、互いの光ファイバ軸3
.4を平行、密着させて端部がフェルール12に固定さ
れ、その端面10は、2本の光ファイバ軸3,4がなす
平面に垂直で、且つ光ファイバ軸3,4に対してφ度の
斜めの同一平面になるように一体に加工しである。
In two independent single-core single-mode optical fiber cables, two optical fibers 1.2 each consisting of a core whose outer protective coating is removed and a cladding layer are connected to each other's optical fiber shafts 3.
.. 4 are parallel and in close contact with each other and their ends are fixed to the ferrule 12, and the end surface 10 is perpendicular to the plane formed by the two optical fiber axes 3 and 4, and at an angle of φ degrees with respect to the optical fiber axes 3 and 4. They are machined as one piece so that they are on the same diagonal plane.

光ファイバ1.2の端面10で屈折した出射ビーム光の
中心軸5.6は、光ファイバ軸3.4に対しθ度に屈折
し、光ファイバ1.2の開口角度までの拡がりが多少拡
大されたビーム状となり、この中心軸5.6の中心線7
上に、球形の集光レンズ8と、APD(アパランシェホ
オトダイオード)の受光素子9とを所定間隔に軸を揃え
て配設しである。
The central axis 5.6 of the output beam refracted at the end face 10 of the optical fiber 1.2 is refracted at θ degrees with respect to the optical fiber axis 3.4, and the spread to the opening angle of the optical fiber 1.2 is slightly expanded. The center line 7 of this central axis 5.6
A spherical condenser lens 8 and a light receiving element 9 of an APD (apalanche photodiode) are arranged on the top with their axes aligned at predetermined intervals.

光ファイバ軸3.4が平行なので、屈折した中心軸5.
6も同じく平行となり、その間隔は光ファイバ軸3,4
0間隔よりも縮小されて、受光素子9の小さな受光面積
に集光し、重畳受光させている。
Since the optical fiber axes 3.4 are parallel, the refracted central axis 5.
6 are also parallel, and the distance between them is the same as the optical fiber axes 3 and 4.
The distance is reduced from 0, and the light is focused on a small light-receiving area of the light-receiving element 9, and the light is received in a superimposed manner.

この構成は、先ず、フェルール12がフランジ(=J金
具13の中心部に、コイルスプリング14を介してリン
グナツト15により締着される。 この時フェルール1
2の外周の突起を、フランジ付金具13の内面凹部に嵌
合させて回転止めとしである。
In this configuration, first, the ferrule 12 is fastened to the center of the flange (=J fitting 13) with a ring nut 15 via a coil spring 14.
The protrusion on the outer periphery of 2 is fitted into the inner recess of the flanged metal fitting 13 to prevent rotation.

集光レンズ8の固定は、段付内孔を有し外周を螺刻した
円筒状のレンズホルダ16と、内孔に螺入するリングナ
ツト17と、出射ビーム光の屈折角度に傾斜させた端面
を持ち、螺刻内孔を備えたレンズ金具18とにより構成
され、レンズ金具18の傾斜端面をフランジ付金具13
の端面に当ててねし止めし、レンズホルダ16をレンズ
金具18の内孔に螺入し、端面をフェルール12の先端
に突き当てて螺着させ、集光レンズ8を内孔段部に格納
し、続けてリングナツト17を螺入して締着固定させて
、光ファイバ1,2の端面10と集光レンズ8との傾き
および距離を正確に組立ている。
The condensing lens 8 is fixed using a cylindrical lens holder 16 with a stepped inner hole and a threaded outer periphery, a ring nut 17 that is screwed into the inner hole, and an end surface that is inclined to the refraction angle of the output beam light. The lens fitting 18 has a threaded inner hole, and the inclined end surface of the lens fitting 18 is connected to the flanged fitting 13
The lens holder 16 is screwed into the inner hole of the lens fitting 18, the end surface is butted against the tip of the ferrule 12, and the condenser lens 8 is housed in the inner hole step. Then, the ring nut 17 is screwed in and fastened to assemble the end face 10 of the optical fibers 1, 2 and the condensing lens 8 with an accurate inclination and distance.

最後に受光素子9の固定は、受光素子9を内包し半田付
は固定する、L字形断面の円筒形で外周を螺刻したホル
ダA21と、ホルダA21を内部に螺着させ、後部から
端子リードを出すようにした長円筒のホルダB22と、
ホルダB22を内挿し、レンズ金具18の端面に端面を
当接させて、集光レンズ8と受光素子9との光軸を合わ
せてねし止めする金具23とから構成される。
Finally, the light-receiving element 9 is fixed by using a holder A21, which has a cylindrical shape with an L-shaped cross section and a threaded outer periphery, which encloses the light-receiving element 9 and fixes it by soldering. an elongated cylindrical holder B22 configured to protrude;
It is comprised of a metal fitting 23 into which the holder B22 is inserted, the end surface of which is brought into contact with the end surface of the lens metal fitting 18, and the optical axes of the condenser lens 8 and the light receiving element 9 are aligned and screwed together.

組立の時に、トレランス量を測定しながら金具23に内
挿したホルダB22の位置を調整し、最良点で、ホルダ
B22の外周部を金具23の端部と溶接固定させている
During assembly, the position of the holder B22 inserted into the metal fitting 23 is adjusted while measuring the amount of tolerance, and the outer peripheral part of the holder B22 is welded and fixed to the end of the metal fitting 23 at the best point.

本実施例でφ−55°の時、θ=21°でビーム光の中
心軸5,6間は、前述の従来例に比べ0.678となり
、クラツド径125μmのシングルモード光ファイバで
、1(10μm直径の受光面のAPDを用いて、そのト
レランス量は従来例に比べ1.5倍に増すごとが出来た
In this example, when φ-55° and θ=21°, the distance between the center axes 5 and 6 of the beam light is 0.678 compared to the conventional example, which is 1 ( By using an APD with a light-receiving surface having a diameter of 10 μm, the amount of tolerance could be increased by 1.5 times compared to the conventional example.

上記実施例は一例を示し、光ファイバの種類、集光レン
ズ、受光素子、取付は組立構造は上記のものに限定する
ものではない。
The above embodiment is an example, and the type of optical fiber, condenser lens, light receiving element, mounting, and assembly structure are not limited to those described above.

〔発明の効果〕 以上の如く、構成部品を変えずに、且つ寸法精度も高め
ずに、トレランス量を増大することが出来、安定で高信
転度な受光装置が得られ、また、装置のより高速度化を
図ることも可能となる。
[Effects of the Invention] As described above, the amount of tolerance can be increased without changing the component parts or increasing the dimensional accuracy, and a stable and highly reliable light receiving device can be obtained. It is also possible to achieve higher speeds.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理図、 第2図は本発明の一実施例の構成図、 第3図は従来の一例の二人力受光装置の光学系構成図、 第4図は受光面上のビーム光拡大図、 第5図はトレランス特性である。 図において、 1.2は光ファイバ、 3.4は光ファイバ軸、5.6
は中心軸、   7,71は中心線、8は集光レンズ、
  9は受光素子、 =ミ\ −rミ釦 !加入; ;=+ 、−7Σ も・ 16はレンズホルダ、 18はレンズ金具、21はホル
ダA1  22はホルダB、23は金具、     5
3.63はビーム光、54.64は受光特性、 91は
受光面である。 −−7−い7 ・−−”:で゛ マニ〔5 ジ
Fig. 1 is a diagram of the principle of the present invention, Fig. 2 is a block diagram of an embodiment of the present invention, Fig. 3 is a block diagram of the optical system of a conventional example of a two-person light receiving device, and Fig. 4 is a diagram of the structure of the optical system on the light receiving surface. An enlarged view of the beam light, Figure 5, shows the tolerance characteristics. In the figure, 1.2 is the optical fiber, 3.4 is the optical fiber axis, and 5.6
is the center axis, 7 and 71 are the center lines, 8 is the condenser lens,
9 is the light receiving element, = Mi\ -r Mi button! Addition: ;=+, -7Σ 16 is a lens holder, 18 is a lens fitting, 21 is a holder A1, 22 is a holder B, 23 is a metal fitting, 5
3.63 is the beam light, 54.64 is the light receiving characteristic, and 91 is the light receiving surface. −−7−i7 ・−−”:Demani [5 ji

Claims (1)

【特許請求の範囲】 夫々独立した2本の光ファイバ(1)(2)の光信号を
同一受光素子にて、同時に受光し、電気信号に変換出力
させる二入力光ファイバ受光装置において、2本の該光
ファイバ(1)(2)の端部は光ファイバ軸(3)(4
)を平行に密着させ、 その端面(10)は、2本の該光ファイバ軸(3)(4
)がなす平面に垂直で、且つ該光ファイバ軸(3)(4
)に対して斜めの同一平面をなすように一体に加工され
、該端面(10)からの2本の出射ビーム光の中心軸(
5)(6)間の中心線(7)上に集光レンズ(8)と受
光素子(9)とを配設させたことを特徴とする二入力光
ファイバ受光装置。
[Claims] A two-input optical fiber light receiving device that simultaneously receives optical signals from two independent optical fibers (1) and (2) using the same light receiving element, converts them into electrical signals, and outputs them. The ends of the optical fibers (1) and (2) are connected to the optical fiber shafts (3) and (4).
) are brought into close contact with each other in parallel, and their end surfaces (10) are connected to the two optical fiber shafts (3) (4).
) is perpendicular to the plane formed by the optical fiber axes (3) (4
), and the central axis (
5) A two-input optical fiber light-receiving device characterized in that a condenser lens (8) and a light-receiving element (9) are arranged on the center line (7) between (6) and (6).
JP12280487A 1987-05-20 1987-05-20 Photodetector made of two-input optical fiber Pending JPS63287807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12280487A JPS63287807A (en) 1987-05-20 1987-05-20 Photodetector made of two-input optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12280487A JPS63287807A (en) 1987-05-20 1987-05-20 Photodetector made of two-input optical fiber

Publications (1)

Publication Number Publication Date
JPS63287807A true JPS63287807A (en) 1988-11-24

Family

ID=14845047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12280487A Pending JPS63287807A (en) 1987-05-20 1987-05-20 Photodetector made of two-input optical fiber

Country Status (1)

Country Link
JP (1) JPS63287807A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072628A (en) * 2006-09-15 2008-03-27 Sumitomo Electric Ind Ltd Optical communication system, optical communication device, optical receiving device, and optical repeating device
JP2009003007A (en) * 2007-06-19 2009-01-08 Mitsubishi Electric Corp Light receiving element module
JP2013127651A (en) * 2013-03-27 2013-06-27 Mitsubishi Electric Corp Light receiving module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072628A (en) * 2006-09-15 2008-03-27 Sumitomo Electric Ind Ltd Optical communication system, optical communication device, optical receiving device, and optical repeating device
JP2009003007A (en) * 2007-06-19 2009-01-08 Mitsubishi Electric Corp Light receiving element module
JP2013127651A (en) * 2013-03-27 2013-06-27 Mitsubishi Electric Corp Light receiving module

Similar Documents

Publication Publication Date Title
US4705351A (en) Two lens optical package and method of making same
CN104364689A (en) Coupling device having a structured reflective surface for coupling input/output of an optical fiber
CA1143196A (en) Device for coupling two optical fibres
JPH07218777A (en) Module for optical communication
SE512175C2 (en) Device for optical connection of an optical element to a spherical lens
US4732452A (en) Optical connectors
JPH0763948A (en) Optical fiber receptacle and its production
JPS6318164B2 (en)
US6654518B1 (en) Tap output collimator
JP2836583B2 (en) Optical coupling structure between light receiving element and optical fiber
JPS63287807A (en) Photodetector made of two-input optical fiber
US4684208A (en) Optical branching element
JPS5927884B2 (en) How to connect optical fiber
EP0150860A2 (en) Fiber optic connector
JP4306122B2 (en) Optical coupling device
JPS6338909A (en) Optical fiber with lens
JPH01183605A (en) Photodetecting device
JPS5858644B2 (en) Optical fiber connection terminal
JPS6196424A (en) Optical semiconductor module structure
JPH0524029Y2 (en)
JPS6136980Y2 (en)
JPS61185706A (en) Connector for single mode optical fiber
JPH03291608A (en) Structure of receptacle type optical semiconductor coupler
JPS5913723B2 (en) fiber optic connector
JPS6160595B2 (en)