JPH01183605A - Photodetecting device - Google Patents

Photodetecting device

Info

Publication number
JPH01183605A
JPH01183605A JP770788A JP770788A JPH01183605A JP H01183605 A JPH01183605 A JP H01183605A JP 770788 A JP770788 A JP 770788A JP 770788 A JP770788 A JP 770788A JP H01183605 A JPH01183605 A JP H01183605A
Authority
JP
Japan
Prior art keywords
optical fiber
light
face
core layer
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP770788A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakamoto
洋 中元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP770788A priority Critical patent/JPH01183605A/en
Publication of JPH01183605A publication Critical patent/JPH01183605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To obtain the photodetecting device having a high optical coupling efficiency, and also, being miniature by sticking a condensing lens to the lower side face of a band-like core layer having an inclined end face which adheres closely and brought to optical coupling to the end face of an optical fiber and reflects the emitted light in the direction of the photodetecting surface of a photodetector. CONSTITUTION:On a circuit board 5 provided in parallel to an optical fiber 10 for transmitting an optical signal, a photodetector 1 whose photodetecting surface 3 has been turned upward is provided so as to photodetect the emitted light of the optical fiber 10. The end face of the optical fiber 10 adheres closely and brought to optical coupling to one end face of an optical waveguide body 20, and the other end face of the waveguide body 20 becomes an inclined end face 22-A. Also, a condensing lens 25 is stuck to the lower side face of a core layer 21 opposed to the inclined end face 22-A, therefore, the emitted light from the optical fiber 10 is reflected by the inclined end face 22-A, and thereafter, condensed to the photodetecting surface 3 by the condensing lens 25. Accordingly, even when the photodetecting surface 3 has been made narrow and small, the optical coupling degree is high, and the device can be miniaturized.

Description

【発明の詳細な説明】 〔概要〕 光ファイバと受光素子とを光結合する受光デバイスに関
し、 光結合効率が高く、且つ小形の受光デバイスを提供する
ことを目的とし、 光信号を伝送する光ファイバと、該光ファイバの出射光
を受光すべく、受光面を上向きにして該光ファイバに並
行した回路基板上に実装する受光素子とを備えたデバイ
スにおいて、■ 一方の端面が該光ファイバの端面に密
着し光結合して、該受光素子の上方に配設され、下側面
に、出射光を該受光面方向に反射すべく他方の端面を斜
傾端面とした帯状のコア層を有する導波路体と、該斜傾
端面に対向する該コア層の下側面に貼着される集光レン
ズとを備えた構成とする。■ 一方の端面が該光ファイ
バの端面に密着し光結合して、該受光素子の上方に配設
され、下側面に該光信号を伝送する帯状のコア層を有す
る導波路体と、該コア層の所望の個所の下面に設けた、
集光グレーティングカプラとを、備えた構成とする。
[Detailed Description of the Invention] [Summary] Regarding a light receiving device that optically couples an optical fiber and a light receiving element, the purpose of the present invention is to provide a light receiving device that has high optical coupling efficiency and is small in size. and a light-receiving element mounted on a circuit board parallel to the optical fiber with its light-receiving surface facing upward in order to receive the light emitted from the optical fiber, wherein one end face is the end face of the optical fiber. a waveguide which is disposed above the light-receiving element in close contact with and optically coupled to the light-receiving element, and has a band-shaped core layer on the lower side surface with the other end face being inclined to reflect the emitted light toward the light-receiving surface; and a condenser lens attached to the lower surface of the core layer opposite to the oblique end surface. (1) A waveguide body having a belt-shaped core layer whose one end face is in close contact with the end face of the optical fiber and optically coupled, disposed above the light receiving element and transmits the optical signal on the lower face; Provided on the bottom surface of the desired location of the layer,
and a condensing grating coupler.

〔産業上の利用分野〕[Industrial application field]

本発明は、光ファイバと受光素子とを光結合する受光デ
バイスに関する。
The present invention relates to a light receiving device that optically couples an optical fiber and a light receiving element.

近年は受信回路等の電気回路と受光素子とを、同一の回
路基板を設けた受光デバイスが提供されている。
In recent years, light receiving devices have been provided in which an electric circuit such as a receiving circuit and a light receiving element are provided on the same circuit board.

この際、光伝送路と電気信号路とが直交していると、デ
バイス全体が大形化する恐れがある。よって、電気信号
路を設けた回路基板と光伝送路とを並行に設置した、所
謂平面実装形の受光デバイスが望ましい。
At this time, if the optical transmission path and the electrical signal path are perpendicular to each other, there is a risk that the entire device will become larger. Therefore, it is desirable to have a so-called flat-mounted light-receiving device in which a circuit board provided with an electrical signal path and an optical transmission path are installed in parallel.

一方、周波数特性改善のため、受光素子の電気容量をで
きるかぎり小さくしている。このことに伴い、受光素子
の受光面が小さくなり、光結合度が低下する。
On the other hand, in order to improve frequency characteristics, the capacitance of the light receiving element is made as small as possible. As a result, the light-receiving surface of the light-receiving element becomes smaller, and the degree of optical coupling decreases.

したがって、光信号が効率良(受光素子に入射するよう
な、受光デバイスが要求されている。
Accordingly, there is a need for a light-receiving device in which an optical signal is efficiently incident on a light-receiving element.

〔従来の技術〕[Conventional technology]

第6図は光ファイバと受光素子とを平面実装形にした従
来例の側断面図である。第6図において、5は表面に所
望の電気回路と、フォトダイオード等の受光素子lとを
実装した、セラミ、クス等よりなる回路基板であって、
基台6の表面に密着するように固着しである。
FIG. 6 is a side sectional view of a conventional example in which an optical fiber and a light receiving element are mounted in a plane-mounted manner. In FIG. 6, reference numeral 5 denotes a circuit board made of ceramic, plastic, etc., on which a desired electric circuit and a light-receiving element l such as a photodiode are mounted.
It is firmly fixed to the surface of the base 6.

受光素子lは、上面に受光面3を設けたチップ型の素子
であって、裏面の全面に電極を設け、その電極を回路基
板5の表面に設けたパターン4Bに密着して接続しであ
る。また、受光面3の周縁にリング形の他方の電極2A
を設け、電極2^を他の電気信号路であるパターン4A
に接続している。
The light-receiving element 1 is a chip-type element having a light-receiving surface 3 on the upper surface, and has an electrode provided on the entire back surface, and the electrode is closely connected to a pattern 4B provided on the surface of the circuit board 5. . Further, the other ring-shaped electrode 2A is provided on the periphery of the light receiving surface 3.
is provided, and the electrode 2^ is connected to the pattern 4A, which is another electrical signal path.
is connected to.

即ち受光素子lは、受光面3が上向きで、回路基板5の
上面に並行した状態で、回路基板5に実装されている。
That is, the light receiving element 1 is mounted on the circuit board 5 with the light receiving surface 3 facing upward and parallel to the upper surface of the circuit board 5.

10は、シングルモードの光ファイバであって、受光素
子1に光信号を入射させる光伝送路である。
Reference numeral 10 denotes a single mode optical fiber, which is an optical transmission line through which an optical signal is input to the light receiving element 1.

光ファイバ10の端面は、軸心に直交する平面ではなく
、軸心に対してほぼ45度傾斜した斜傾端面11に加工
しである。
The end face of the optical fiber 10 is not a plane perpendicular to the axial center, but is processed into an oblique end face 11 that is inclined at approximately 45 degrees with respect to the axial center.

7は、光ファイバ10を水平に支持するように、例えば
V形の溝を設けたファイバ保持台であって、光ファイバ
10の斜傾端面11を上側にして、光ファイバの端末近
傍を溝に挿入し、光ファイバの外周面と溝の内壁とを接
着剤等を用いて接着し、固着しである。
7 is a fiber holding stand provided with, for example, a V-shaped groove so as to horizontally support the optical fiber 10, with the inclined end surface 11 of the optical fiber 10 facing upward, and the vicinity of the end of the optical fiber being placed in the groove. The optical fiber is inserted, and the outer peripheral surface of the optical fiber and the inner wall of the groove are bonded together using an adhesive or the like.

光ファイバ10の斜傾端面11が、受光素子lの受光面
3に対向するように、ファイバ保持台7を位置調整した
後に、ファイバ保持台7の底面を回路基板5の上面に密
着させ、ファイバ保持台7を回路基板5に固着しである
After adjusting the position of the fiber holder 7 so that the inclined end surface 11 of the optical fiber 10 faces the light-receiving surface 3 of the light-receiving element 1, the bottom surface of the fiber holder 7 is brought into close contact with the upper surface of the circuit board 5, and the fiber The holding stand 7 is fixed to the circuit board 5.

したがって、光ファイバ10を伝搬してきた光信号は、
斜傾端面11で軸心に対してほぼ直交するような下側方
向、即ち受光素子1方向に、はぼ全反射して、斜傾端面
11に対向するクラッド層の外周面から出射し受光面3
に入射する。
Therefore, the optical signal propagated through the optical fiber 10 is
The oblique end surface 11 is almost totally reflected in a downward direction substantially perpendicular to the axis, that is, toward the light receiving element 1, and the light is emitted from the outer circumferential surface of the cladding layer facing the oblique end surface 11, and is emitted from the light receiving surface. 3
incident on .

上述のように従来の受光デバイスは、光ファイバの端面
を斜傾端面にして、光ファイバの軸心を回路基板の上面
に近接して並行に実装したものであって、光ファイバの
軸心を回路基板の表面に垂直に実装した場合に比較して
、受光デバイスの小形化が推進されるという利点がある
As mentioned above, conventional light-receiving devices are devices in which the end face of the optical fiber is inclined, and the axis of the optical fiber is mounted close to and parallel to the top surface of the circuit board. This has the advantage that the light-receiving device can be made more compact than when it is mounted perpendicularly to the surface of the circuit board.

〔発明が解決しようとする課題〕 しかしながら、近年の受光素子は、容量を小さくして周
波数特性を向上させている。即ち、容量の小形化に伴い
、近年の受光素子の受光面は狭小になっている。
[Problems to be Solved by the Invention] However, in recent years, the capacitance of light receiving elements has been reduced to improve frequency characteristics. That is, with the miniaturization of capacitance, the light-receiving surface of recent light-receiving elements has become narrower.

一方、上記従来例の受光デバイスは、光ファイバの端面
が斜傾端面であるので、斜傾端面で反射した出射ビーム
は、光ファイバの軸心方向に長径を有する、はぼ円錐体
状に拡開して、受光面3に投射されている。
On the other hand, in the conventional light-receiving device described above, the end face of the optical fiber is an oblique end face, so the output beam reflected from the oblique end face is expanded into a conical shape with a major axis in the axial direction of the optical fiber. It is opened and projected onto the light receiving surface 3.

したがって、従来の受光デバイスは、受光面の狭小化に
伴い、光結合効率が低(なるという問題点があった。
Therefore, the conventional light-receiving device has a problem in that the optical coupling efficiency becomes low as the light-receiving surface becomes narrower.

また、光結合効率を高くしようと光ファイバを調整する
際に、光ファイバを受光素子に近づけすぎて、受光素子
に衝突させ、受光素子を破壊する恐れがあった。
Furthermore, when adjusting the optical fiber in order to increase the optical coupling efficiency, there is a risk that the optical fiber will be brought too close to the light receiving element, causing the optical fiber to collide with the light receiving element, thereby destroying the light receiving element.

本発明はこのような点に鑑みて創作されたもので、光結
合効率が高く、且つ小形の受光デバイスを提供すること
を目的としている。
The present invention was created in view of the above points, and an object of the present invention is to provide a light-receiving device that has high optical coupling efficiency and is small in size.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために本発明は、光信号を伝送す
る光ファイバ10と、光ファイバ10に並行した回路基
板5上に、光ファイバ10の出射光を受光すべく受光面
3を上向きにして、実装する受光素子1とを備えた受光
デバイスにおいて、第1図に例示したように、光ファイ
バ10と受光素子1との間に、下側面に帯状゛のコア層
21を有する導波路体20を設ける。
In order to achieve the above object, the present invention provides an optical fiber 10 for transmitting an optical signal, and a circuit board 5 that is parallel to the optical fiber 10, with the light receiving surface 3 facing upward to receive the light emitted from the optical fiber 10. In a light-receiving device equipped with a light-receiving element 1 to be mounted, as illustrated in FIG. 20 is provided.

導波路体20の一方の端面を平端面にして、光ファイバ
10の端面に密着させ光結合させる。また、導波路体2
0の端面を斜傾端面22−Aとして、コア層21の出射
光を受光面3方向に反射させるように構成する。支持台
2OAを用いて回路基板5の上方所定の位置に導波路体
20を保持する。
One end surface of the waveguide body 20 is made into a flat end surface, and is brought into close contact with the end surface of the optical fiber 10 for optical coupling. In addition, the waveguide body 2
The end face of the core layer 21 is configured to be an inclined end face 22-A, and the light emitted from the core layer 21 is reflected in the direction of the light receiving surface 3. The waveguide body 20 is held at a predetermined position above the circuit board 5 using the support stand 2OA.

そして、斜傾端面22−Aに対向するコア層21の下側
面に凸レンズ、或いはフレネルレンズのような集光レン
ズ25を貼着した構成とする。
A condensing lens 25 such as a convex lens or a Fresnel lens is attached to the lower surface of the core layer 21 facing the inclined end surface 22-A.

他の手段として、第2図に例示したように、光ファイバ
10と受光素子1との間に、下側面に帯状のコア層21
を有する導波路体20を設ける。
As another means, as illustrated in FIG.
A waveguide body 20 is provided.

導波路体20の一方の端面を平端面にして、光ファイバ
10の端面に密着させ光結合させ、支持台20Aを用い
て回路基板5の上方所定の位置に、導波路体20を保持
する。
One end face of the waveguide body 20 is made into a flat end face, and the waveguide body 20 is brought into close contact with the end face of the optical fiber 10 for optical coupling, and the waveguide body 20 is held at a predetermined position above the circuit board 5 using the support stand 20A.

そして、コア層21の所望の個所の下面に、受光面3に
集光するように、集光グレーティングカプラ35を設け
る構成とする。
A condensing grating coupler 35 is provided on the lower surface of the core layer 21 at a desired location so as to condense the light onto the light receiving surface 3.

〔作用〕[Effect]

上記第1項のよれば、光ファイバの出射側端面ば、光信
号を受光面3方向に反射するように、斜傾端面22−A
となっており、且つ斜傾端面22−Aに対向するコア層
21の下側面に集光レンズ25を貼着しである。
According to the above item 1, the output side end face of the optical fiber is configured such that the inclined end face 22-A reflects the optical signal in the direction of the light receiving surface 3.
In addition, a condenser lens 25 is attached to the lower surface of the core layer 21 facing the oblique end surface 22-A.

したがって、斜傾端面22−八で拡開するように反射し
た光ビームは、集光レンズ25により受光面3に集光す
る。よって、受光面3を狭小にした場合においても、光
結合度が高い。
Therefore, the light beam reflected so as to expand on the inclined end surface 22-8 is focused on the light receiving surface 3 by the condensing lens 25. Therefore, even when the light receiving surface 3 is made narrow, the degree of optical coupling is high.

上記第2項によれば、光信号が伝搬するコア層21の所
望の個所の下面に、はぼ半月状の集光グレーティングカ
プラ35を設けであるので、コア層21を進行した光は
、集光グレーティングカプラ35の領域で屈折して、コ
ア層21より受光素子1方向に飛び出し、受光面3上で
集光する。
According to item 2 above, since the semicircular condensing grating coupler 35 is provided on the lower surface of the desired portion of the core layer 21 through which the optical signal propagates, the light traveling through the core layer 21 is condensed. The light is refracted in the region of the optical grating coupler 35, projects from the core layer 21 toward the light receiving element 1, and is focused on the light receiving surface 3.

よって、受光面3を狭小にした場合においても光結合度
が高い。また、集光機能を備えているので光結合が最適
となる位置で、受光素子と集光グレーティングカプラと
の間に、ある程度の間隔がある。よって調整時に受光素
子を損傷する恐れがない。
Therefore, even when the light receiving surface 3 is made narrow, the degree of optical coupling is high. Furthermore, since it has a light collecting function, there is a certain distance between the light receiving element and the light collecting grating coupler at a position where optical coupling is optimal. Therefore, there is no risk of damaging the light receiving element during adjustment.

〔実施例〕〔Example〕

以下図を参照しながら、本発明を具体的に説明する。な
お、全図を通じて同一符号は同一対象物を示す。
The present invention will be specifically described below with reference to the drawings. Note that the same reference numerals indicate the same objects throughout the figures.

第1図は第1項の実施例の断面図、 第2図は第2項の実施例の断面図、 第3図は第1項の他の実施例の斜視図、第4図は第2項
の他の実施例の、斜視図、第5図の(al、 (bl、
 (C1は、第2項の要部を示す図である。
Figure 1 is a sectional view of the embodiment described in item 1, Figure 2 is a sectional view of the example described in item 2, Figure 3 is a perspective view of another example described in item 1, and Figure 4 is a sectional view of the example described in item 2. Perspective views of other embodiments of Section 5, (al, (bl,
(C1 is a diagram showing the main part of the second term.

第1図において、基台6の表面に密着するように装着し
た、セラミックス等よりなる回路基板5の表面に、受信
回路等の電気回路と、フォトダイオード等の受光素子1
とを実装しである。
In FIG. 1, an electrical circuit such as a receiving circuit and a light receiving element 1 such as a photodiode are mounted on the surface of a circuit board 5 made of ceramics or the like, which is mounted in close contact with the surface of a base 6.
This is implemented.

光信号を受信する受光素子1は、電気容量が小さく、表
面側に狭小の受光面3を有するチップ型の素子であって
、裏面の全面に設けた電極(図示せず)をパターン4B
に密着して接続し、表面のり 。
The light-receiving element 1 that receives an optical signal is a chip-type element having a small capacitance and a narrow light-receiving surface 3 on the front side, and has an electrode (not shown) provided on the entire back surface in a pattern 4B.
Connect closely to surface glue.

フグ形の電極2Aを、回路基板5の表面に設けたパター
ン4Aの端末に、ワイヤーボンデングして接続しである
。即ち、受光面3が上向きになるように、受光素子lを
回路基板5に実装しである。
The pufferfish-shaped electrode 2A is connected to the terminal of the pattern 4A provided on the surface of the circuit board 5 by wire bonding. That is, the light receiving element 1 is mounted on the circuit board 5 so that the light receiving surface 3 faces upward.

10は、例えばシングルモード光ファイバであって、受
光素子1に光信号を入力する光伝送路である。
10 is, for example, a single mode optical fiber, and is an optical transmission line through which an optical signal is input to the light receiving element 1.

20は、ニオブ酸リチウム等よりなる板状の導波路体で
あって、下側面の中心線に沿って、チタン等を拡散させ
屈折率を大きくして、帯状のコア層21を設けである。
20 is a plate-shaped waveguide body made of lithium niobate or the like, and a belt-shaped core layer 21 is provided along the center line of the lower surface by diffusing titanium or the like to increase the refractive index.

コア層21の深さ、及び幅は、それぞれ光ファイバ10
のコアの直径にほぼ等しく、10μ閣程度である。
The depth and width of the core layer 21 are the same as those of the optical fiber 10.
It is approximately equal to the diameter of the core of , which is about 10 μm.

導波路体20の一方の端面を垂直面にし、他方の端面を
コア層21の下面側が鋭角、例えば45度の角度で傾斜
した斜傾端面22−Aとしである。
One end surface of the waveguide body 20 is a vertical surface, and the other end surface is an inclined end surface 22-A in which the lower surface side of the core layer 21 is inclined at an acute angle, for example, at an angle of 45 degrees.

導波路体20の光ファイバ10を当接する側の下面に、
導波路体20と同材料よりなる、直方体状の支持台20
Aを接着しである。この支持台2OAは、支持台の側壁
と導波路体20の端面とが、同一平面になるように、固
着するものとする。
On the lower surface of the waveguide body 20 on the side that contacts the optical fiber 10,
A rectangular parallelepiped support stand 20 made of the same material as the waveguide body 20
Glue A on. This support stand 2OA shall be fixed so that the side wall of the support stand and the end face of the waveguide body 20 are on the same plane.

光ファイバ10の先端を、ルビー等の支持板15の中心
孔に嵌挿する。そして、光ファイバ10の端面をコア層
21の端面に当接した状態で、支持板15と導波路体2
0の端面とを、接着剤16を用いて接着して、光ファイ
バ10とコア層21とを光学的に接続している。
The tip of the optical fiber 10 is inserted into the center hole of a support plate 15 made of ruby or the like. Then, with the end surface of the optical fiber 10 in contact with the end surface of the core layer 21, the support plate 15 and the waveguide body 2 are
0 using an adhesive 16 to optically connect the optical fiber 10 and the core layer 21.

25は、はぼ半球状の凸レンズ、或いは円板形のフレネ
ルレンズのような集光レンズであって、その直径は、コ
ア層21の幅よりも所望に大きい。集光レンズ25の平
坦面を、斜傾端面22−八に対向するコア層21の下側
面に、光を透過する光学接着剤を用いて貼着しである。
25 is a condensing lens such as a semi-hemispherical convex lens or a disc-shaped Fresnel lens, and its diameter is desirably larger than the width of the core layer 21. The flat surface of the condenser lens 25 is attached to the lower surface of the core layer 21 facing the oblique end surface 22-8 using an optical adhesive that transmits light.

なお、集光レンズ25は、斜傾端面22−Aで反射した
光が受光面3に集光するといった、所望の焦点距離を備
えたレンズとする。
Note that the condensing lens 25 is a lens having a desired focal length such that the light reflected by the inclined end surface 22-A is condensed onto the light receiving surface 3.

上述のように、集光レンズ25と光ファイバ10とを装
着した導波路体20を、支持台20Aの集光レンズ25
例の側壁を回路基板5の側縁に当接した状態で、支持台
20Aの底面を、接着剤を用いて基台6に固着している
。なお、支持台20Aの高さは、受光素子lに集光レン
ズ25が衝突する恐れのないような所望の高さとする。
As described above, the waveguide body 20 equipped with the condensing lens 25 and the optical fiber 10 is placed on the condensing lens 25 of the support base 20A.
With the side wall of the example in contact with the side edge of the circuit board 5, the bottom surface of the support stand 20A is fixed to the base 6 using an adhesive. The height of the support base 20A is set to a desired height such that there is no possibility that the condenser lens 25 will collide with the light receiving element l.

したがって、光ファイバ10を伝搬してきた光は、コア
層21を進行して斜傾端面22−Aに達し、斜傾端面j
2−aで受光素子1方向に反射する。その反射光は、集
光レンズ25により集束され受光面3に集光する。
Therefore, the light propagating through the optical fiber 10 travels through the core layer 21, reaches the inclined end surface 22-A, and reaches the inclined end surface j.
It is reflected in the direction of the light receiving element 2-a. The reflected light is focused by a condensing lens 25 and focused on the light receiving surface 3.

即ち、受光面3を狭小にした場合でも、光結合効率が高
い。
That is, even when the light-receiving surface 3 is made narrow, the optical coupling efficiency is high.

なお、光ファイバ10及び導波路体20の軸心が、回路
基板5に近接して平行しているので、光ファイバの軸心
を回路基板の表面に垂直に実装した場合に比較して、実
装作業が容易であり、且つ、受光デバイスが小形となる
Note that since the axes of the optical fiber 10 and the waveguide body 20 are close to and parallel to the circuit board 5, the mounting speed is lower than when the axes of the optical fibers are mounted perpendicularly to the surface of the circuit board. The work is easy and the light receiving device is small.

第2図に示す導波路体20は、両端面を垂直面としたこ
と以外は、第1′図に示した導波路体と全く同じであっ
て、一方の端面に光ファイバ10を接続し、また、コア
層21を下側にして、支持台20Aを介して回路基板5
の上方に装着することも、第1図に示したものと同じで
ある。
The waveguide body 20 shown in FIG. 2 is completely the same as the waveguide body shown in FIG. 1' except that both end surfaces are vertical surfaces, and the optical fiber 10 is connected to one end surface. Also, with the core layer 21 facing downward, the circuit board 5 is placed through the support stand 20A.
It is also the same as shown in FIG.

コア層21の所望の個所の下面に、受光面3に集光する
ように、集光グレーティングカブラ35を、イオンビー
ムエツチング手段により形成しである。
A condensing grating cover 35 is formed on the lower surface of a desired portion of the core layer 21 by ion beam etching means so as to condense light onto the light receiving surface 3.

この集光グレーティングカプラ35は、詳細を第5図に
示すように設けである。
The condensing grating coupler 35 is provided as shown in detail in FIG.

第5図(a)は、導波路体20を裏返しにした斜視図で
あって、導波路体20に設けたコア層21の一方の端面
に、光ファイバ10の端面を当接して、光ファイバ10
とコア層21とを光学的に接続しである。
FIG. 5(a) is a perspective view of the waveguide body 20 turned over, in which the end face of the optical fiber 10 is brought into contact with one end face of the core layer 21 provided on the waveguide body 20, and the optical fiber is 10
and the core layer 21 are optically connected.

そして、コア層21の所望の表面に光フアイバ10方向
に中心を有するほぼ半月状の格子凸部と格子溝とよりな
る回折格子を、多数条設けて、集光グレーティングカプ
ラ35としである。
Then, a large number of diffraction gratings each consisting of a substantially half-moon-shaped grating convex portion and grating grooves centered in the direction of the optical fiber 10 are provided on a desired surface of the core layer 21 to form a condensing grating coupler 35 .

したがって、光ファイバ10よりコア121に入射した
光は、シングルモードでコアJ!21を進行して、集光
グレーティングカプラ35に達する。そして、集光グレ
ーティングカブラ35を通過中に、つぎつぎに屈折して
、コア層21より受光素子方向(第5図では斜め上方)
に飛び出し、受光面(第5図の点P)に集光する。
Therefore, the light incident on the core 121 from the optical fiber 10 is in a single mode and is in the core J! 21 and reaches the condensing grating coupler 35. While passing through the condensing grating coupler 35, the light is refracted one after another and is directed from the core layer 21 toward the light receiving element (diagonally upward in FIG. 5).
The light jumps out and converges on the light receiving surface (point P in Fig. 5).

この集光グレーティングカブラ35には、第5図(b)
に示すブレーズ状の回折格子のものと、第5図(C1に
示す矩形の凹凸の回折格子のものとがあり、いずれの形
状のものでも良いが、ブレーズ状の回折格子の方が集光
する光量がより多い。
This condensing grating cover 35 has the following features as shown in FIG. 5(b).
There are two types of diffraction gratings: the blazed diffraction grating shown in Figure 5 (C1) and the rectangular uneven diffraction grating shown in Figure 5 (C1).Although any shape may be used, the blazed diffraction grating focuses light better. More light.

第5図(b)において、導波路体20に設けたコア層2
1の表面に、格子凸部36−1と格子溝36−2とで鋸
刃状の断面を持つブレーズ状の回折格子を、はぼ半月状
に多数条設けである。
In FIG. 5(b), the core layer 2 provided in the waveguide body 20
A large number of blaze-like diffraction gratings each having a sawtooth cross section formed by grating protrusions 36-1 and grating grooves 36-2 are provided on the surface of the grating 1 in a semicircular shape.

この格子凸部36−1のピンチとその頂点角度(ブレー
ズ角)は、光ファイバ(図示せず)から離れるにしたが
って、一定の法則に基づき変化させである。したがって
、光ファイバよりコア層21に入射した光は、シングル
モードでコア層21を進行する。そして、集光グレーテ
ィングカブラ35に達すると、次々に異なる角度で屈折
し、斜め上方1図示の点Pに集光する。
The pinch of this grating convex portion 36-1 and its apex angle (blaze angle) are changed based on a certain law as the distance from the optical fiber (not shown) increases. Therefore, the light incident on the core layer 21 from the optical fiber travels through the core layer 21 in a single mode. When the light reaches the condensing grating lens 35, the light is refracted one after another at different angles and is focused diagonally upward at a point P shown in the figure.

第5図(C1において、導波路体20に設けたコア層2
1の表面に、格子凸部37−1と格子溝36−2とで矩
形状の断面を備えた回折格子を、はぼ半月状に多数条設
けである。
FIG. 5 (In C1, the core layer 2 provided in the waveguide body 20
1, a large number of diffraction gratings each having a rectangular cross section formed by grating convex portions 37-1 and grating grooves 36-2 are provided in a semicircular shape.

この格子凸部37−1のピッチと幅は、光ファイバ(図
示せず)から離れるにしたがって、一定の法則に基づき
変化させである。したがって、光ファイバよりコア層2
1に入射した光は、シングルモードでコア層21を進行
する。そして、集光グレーティングカブラ35に達する
と、次々に異なる角度で屈折し、斜め上方3図示の点P
に集光する。
The pitch and width of the grating protrusions 37-1 are changed based on a certain rule as the distance from the optical fiber (not shown) increases. Therefore, the core layer 2
The light incident on the core layer 1 travels through the core layer 21 in a single mode. When it reaches the condensing grating coupler 35, it is refracted one after another at different angles, and the point P shown diagonally upward three.
The light is focused on.

第3図、及び第4図は、光フアイバアレイと受光素子ア
レイとを光結合させた実施例である。
FIGS. 3 and 4 show examples in which an optical fiber array and a light receiving element array are optically coupled.

第3図において、基台6の表面に密着するよう装着した
回路基板5の表面には、複数個(図では3個)の受光素
子lを近接して、等ピッチで配設して、受光素子プレイ
としである。
In FIG. 3, on the surface of the circuit board 5 mounted in close contact with the surface of the base 6, a plurality (three in the figure) of light-receiving elements l are arranged in close proximity at equal pitches to receive light. This is an element play.

それぞれの受光素子1は、電気容量が小さ(、表面側に
狭小の受光面を有するチップ型であって、裏面の全面に
設けた電極(図示せず)をパターン4Bに密着して接続
し、表面のリング形の電極(図示せず)を、回路基板5
上に並行に設けたパターン4Aの、それぞれの端末にワ
イヤーボンデングして接続しである。
Each light-receiving element 1 has a small capacitance (i.e., it is a chip type having a narrow light-receiving surface on the front side, and an electrode (not shown) provided on the entire back surface is closely connected to the pattern 4B. The ring-shaped electrode (not shown) on the surface is connected to the circuit board 5.
Each terminal of the pattern 4A provided in parallel above is connected by wire bonding.

導波路プレイの熱膨張係数に等しいか、それに近い、熱
膨張係数の材料(例えばニオブ酸リチウムそのもの)よ
りなる矩形板に、光ファイバ10の外径に等しい内径の
孔を等ピッチ(受光素子lの配列ピッチに等しいピッチ
)で配列し、それぞれの孔に光ファイバ10の端末を嵌
着して、光フアイバアレイ150としである。
Holes with an inner diameter equal to the outer diameter of the optical fiber 10 are formed at equal pitches (light-receiving elements The optical fibers 10 are arranged at a pitch equal to the arrangement pitch of , and the ends of the optical fibers 10 are fitted into each hole to form an optical fiber array 150.

導波路アレイ200は、ニオブ酸リチウム等よりなる板
状である。そして下側面に、光フアイバアレイ150の
光ファイバ10の配列ピッチに対応して、複数の帯状の
コア層21を設けである。
The waveguide array 200 has a plate shape made of lithium niobate or the like. A plurality of belt-shaped core layers 21 are provided on the lower surface corresponding to the arrangement pitch of the optical fibers 10 of the optical fiber array 150.

導波路アレイ200の一方の端面を垂直面に、他方の端
面をコア層21の下面側が鋭角、例えば45度の角度で
傾斜した斜傾端面220−Aとしである。
One end surface of the waveguide array 200 is a vertical surface, and the other end surface is an inclined end surface 220-A in which the lower surface side of the core layer 21 is inclined at an acute angle, for example, at an angle of 45 degrees.

導波路アレイ200の光フアイバアレイ150を当接す
る側の下面に、導波路アレイ200と同材料よりなる、
直方体状の支持台20〇八を接着しである。
The lower surface of the waveguide array 200 on the side that contacts the optical fiber array 150 is made of the same material as the waveguide array 200.
A rectangular parallelepiped support stand 2008 is glued.

そして、光ファイバ10のそれぞれの端面を、導波路ア
レイ200の対応するコア層21の端面に当接した状態
で、光フアイバアレイ150を導波路アレイ200端面
に、接着剤を用いて接着し、それぞれの光ファイバ10
とそれぞれのコア層21とを、光学的に接続している。
Then, with each end face of the optical fiber 10 in contact with the end face of the corresponding core layer 21 of the waveguide array 200, the optical fiber array 150 is bonded to the end face of the waveguide array 200 using an adhesive, each optical fiber 10
and each core layer 21 are optically connected.

斜傾端面220−Aに対向するコア層21のそれぞれの
下側面に、光を透過する光学接着剤を用いて集光レンズ
25を貼着しである。
A condenser lens 25 is attached to each lower surface of the core layer 21 facing the inclined end surface 220-A using an optical adhesive that transmits light.

上述のように、集光レンズ25と光フアイバアレイ15
0とを装着した導波路アレイ200は、支持台20〇へ
の底面を、接着剤を用いて基台6に固着するようになっ
ている。
As mentioned above, the condenser lens 25 and the optical fiber array 15
The bottom surface of the waveguide array 200 with the support base 200 attached thereto is fixed to the base 6 using an adhesive.

上述の光フアイバアレイ150の光ファイバの配列ピツ
チ、及び導波路アレイ200のコア層の配列ピッチは、
リソグラフィー手段等により、高精度に配列することが
できる。
The arrangement pitch of the optical fibers of the optical fiber array 150 and the arrangement pitch of the core layer of the waveguide array 200 are as follows:
It is possible to arrange them with high precision using lithography means or the like.

したがって、それぞれの光ファイバ10を伝搬してきた
光は、対応するコア層21を進行してそれぞれの斜傾端
面220−Aに達し、受光素子方向に反射し、集光レン
ズ25により集束され対応する受光素子の受光面3に集
光する。
Therefore, the light that has propagated through each optical fiber 10 travels through the corresponding core layer 21, reaches each inclined end surface 220-A, is reflected toward the light receiving element, and is focused by the condenser lens 25 to form the corresponding one. The light is focused on the light receiving surface 3 of the light receiving element.

第4図において、導波路アレイ200の下側面には、光
フアイバアレイ150の光ファイバの配列ピンチに対応
して、複数の帯状のコア層21を設けである。
In FIG. 4, a plurality of belt-shaped core layers 21 are provided on the lower side of the waveguide array 200 in correspondence with the arrangement pinches of the optical fibers of the optical fiber array 150.

導波路アレイ2000両端面は、コア層21に垂直な面
である。なお、導波路アレイ200の光フアイバアレイ
150例の下面に、導波路アレイ200と同材料よりな
る、直方体状の支持台(図示せず)を接着する。
Both end surfaces of the waveguide array 2000 are surfaces perpendicular to the core layer 21. Note that a rectangular parallelepiped support (not shown) made of the same material as the waveguide array 200 is bonded to the lower surface of the 150 optical fiber arrays of the waveguide array 200.

そして、それぞれのコア層21の下面で、光フアイバア
レイ150側の端面より等距離の個所に、同形状のほぼ
半月状の集光グレーティングカブラ35を設けである。
Then, on the lower surface of each core layer 21, at a position equidistant from the end surface on the optical fiber array 150 side, a converging grating coverr 35 having the same shape and approximately a half-moon shape is provided.

このようなに集光グレーティングカブラ35を形成した
導波路アレイ200を用いることにより、光フアイバア
レイ150のそれぞれの光ファイバを伝搬して、コア層
21に入射した光は、集光グレーティングカブラ35で
受光素子lの受光面に集光する。
By using the waveguide array 200 in which the condensing grating coupler 35 is formed in this way, the light that propagates through each optical fiber of the optical fiber array 150 and enters the core layer 21 is transmitted by the condensing grating coupler 35. The light is focused on the light receiving surface of the light receiving element l.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、導波路体、或いは導波路
アレイのコア層に、集光レンズを貼着するか、或いは半
月状の集光グレーティングカブラを設けたもので、狭小
な受光面の受光素子、及び受光素子アレイに適用して、
光ファイバと受光素子との光結合効率が高く、また実装
作業が容易で小形で、且つ組み立て時に受光素子を損傷
する恐れがない等、実用上で優れた効果がある。
As explained above, in the present invention, a condensing lens is attached to the core layer of a waveguide body or a waveguide array, or a semi-moon-shaped condensing grating cover is provided. Applied to a light receiving element and a light receiving element array,
It has excellent practical effects, such as high optical coupling efficiency between the optical fiber and the light-receiving element, easy mounting work, small size, and no risk of damaging the light-receiving element during assembly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1項の実施例の断面図、 第2図は第2項の実施例の断面図、 第3図は第1項の他の実施例の斜視図、第4図は第2項
の他の実施例の斜視図、第5図の(a)、 (b)、 
(C)は、第2項の発明の要部を示す図、 第6図は従来例の断面図である。 図において、 lは受光素子、 3は受光面、 4A、 4Bはパターン、 5は回路基板、 10は光ファイバ、 11、22−A、 220−Aは斜傾端面、15は支持
板、 20は導波路体、 2OA 、 200Aは支持台、 21はコア層、 3°5は集光グレーティングカブラ、 150は光フアイバアレイ、 〕 チ1順の兜遍例へ牲力口 早 1 口 1安七千士 早2瑣の光た例の歌鎖2 P 2 ロ 率Iめ他■更七例σ舛祝記 第 3 ■ %θ 牟2功G脅ρ粘七′列の斜視Z 第 4− 撥 (CL) (′F)ン
Figure 1 is a sectional view of the embodiment described in item 1, Figure 2 is a sectional view of the example described in item 2, Figure 3 is a perspective view of another example described in item 1, and Figure 4 is a sectional view of the example described in item 2. Perspective views of other embodiments of Section 5, (a) and (b) of FIG.
(C) is a diagram showing the main parts of the invention of item 2, and FIG. 6 is a sectional view of a conventional example. In the figure, l is a light receiving element, 3 is a light receiving surface, 4A, 4B are patterns, 5 is a circuit board, 10 is an optical fiber, 11, 22-A, 220-A are oblique end faces, 15 is a support plate, 20 is a Waveguide body, 2OA, 200A are support base, 21 is core layer, 3°5 is condensing grating coupler, 150 is optical fiber array,] Shihaya 2 Dong's Shining Examples of Poetry Chains 2 P 2 Ro Rate I et al. CL) ('F)n

Claims (1)

【特許請求の範囲】 1 光信号を伝送する光ファイバ(10)と、該光ファ
イバ(10)の出射光を受光すべく、受光面(3)を上
向きにして該光ファイバ(10)に並行した回路基板(
5)上に実装する受光素子(1)、とを備えたデバイス
において、 一方の端面が該光ファイバ(10)の端面に密着し光結
合して、該受光素子(1)の上方に配設され、下側面に
、出射光を該受光面(3)方向に反射すべく他方の端面
を斜傾端面とした帯状のコア層(21)、を有する導波
路体(20)と、 該斜傾端面に対向する該コア層(21)の下側面に貼着
される集光レンズ(25)とを、備えたことを特徴とす
る受光デバイス。 2 光信号を伝送する光ファイバ(10)と、該光ファ
イバ(10)の出射光を受光すべく、受光面(3)を上
向きにして該光ファイバ(10)に並行した回路基板(
5)上に実装する受光素子(1)、とを備えたデバイス
において、 一方の端面が該光ファイバ(10)の端面に密着し光結
合して、該受光素子(1)の上方に配設され、下側面に
該光信号を伝送する帯状のコア層(21)を有する導波
路体(20)と、 該コア層(21)の所望の個所の下面に設けた、集光グ
レーティングカプラ(35)とを、備えたことを特徴と
する受光デバイス。
[Claims] 1. An optical fiber (10) for transmitting an optical signal, and a light-receiving surface (3) facing upward and parallel to the optical fiber (10) in order to receive the light emitted from the optical fiber (10). circuit board (
5) A device comprising a light receiving element (1) mounted on the optical fiber (10), one end face of which is in close contact with the end face of the optical fiber (10) for optical coupling, and disposed above the light receiving element (1). a waveguide body (20) having a band-shaped core layer (21) on the lower surface thereof, the other end face of which is an inclined end surface to reflect the emitted light toward the light-receiving surface (3); A light-receiving device comprising: a condenser lens (25) attached to the lower surface of the core layer (21) facing the end surface. 2. An optical fiber (10) for transmitting an optical signal, and a circuit board (10) parallel to the optical fiber (10) with the light-receiving surface (3) facing upward in order to receive the light emitted from the optical fiber (10).
5) A device comprising a light receiving element (1) mounted on the optical fiber (10), one end face of which is in close contact with the end face of the optical fiber (10) for optical coupling, and disposed above the light receiving element (1). a waveguide body (20) having a strip-shaped core layer (21) on the lower surface for transmitting the optical signal; and a condensing grating coupler (35) provided on the lower surface at a desired location of the core layer (21). ) and a light-receiving device.
JP770788A 1988-01-18 1988-01-18 Photodetecting device Pending JPH01183605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP770788A JPH01183605A (en) 1988-01-18 1988-01-18 Photodetecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP770788A JPH01183605A (en) 1988-01-18 1988-01-18 Photodetecting device

Publications (1)

Publication Number Publication Date
JPH01183605A true JPH01183605A (en) 1989-07-21

Family

ID=11673215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP770788A Pending JPH01183605A (en) 1988-01-18 1988-01-18 Photodetecting device

Country Status (1)

Country Link
JP (1) JPH01183605A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03180820A (en) * 1989-11-30 1991-08-06 Alcatel Cit Apparatus for applying two optical couplings and manufacture thereof
JPH0926530A (en) * 1995-07-11 1997-01-28 Nec Corp Optical module
US5771322A (en) * 1993-12-27 1998-06-23 Nec Corporation Light-receiving structure for wave-guide type optical devices
JP2000039530A (en) * 1998-07-22 2000-02-08 Sony Corp Optical signal transmission system and its manufacture
US9323004B2 (en) 2013-06-28 2016-04-26 International Business Machines Corporation Optical device
CN114242811A (en) * 2021-12-06 2022-03-25 中国电子科技集团公司第十三研究所 Photoelectric detector chip, photoelectric detector chip circuit and photoelectric detector

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03180820A (en) * 1989-11-30 1991-08-06 Alcatel Cit Apparatus for applying two optical couplings and manufacture thereof
US5771322A (en) * 1993-12-27 1998-06-23 Nec Corporation Light-receiving structure for wave-guide type optical devices
JPH0926530A (en) * 1995-07-11 1997-01-28 Nec Corp Optical module
JP2000039530A (en) * 1998-07-22 2000-02-08 Sony Corp Optical signal transmission system and its manufacture
US9323004B2 (en) 2013-06-28 2016-04-26 International Business Machines Corporation Optical device
US9372312B2 (en) 2013-06-28 2016-06-21 International Business Machines Corporation Optical device
US9753227B2 (en) 2013-06-28 2017-09-05 International Business Machines Corporation Optical device
CN114242811A (en) * 2021-12-06 2022-03-25 中国电子科技集团公司第十三研究所 Photoelectric detector chip, photoelectric detector chip circuit and photoelectric detector

Similar Documents

Publication Publication Date Title
US5479540A (en) Passively aligned bi-directional optoelectronic transceiver module assembly
KR100198460B1 (en) Optical module and its fabrication method having lens aligned on v-groove
JP6150809B2 (en) Optical substrate having a plurality of staggered light redirecting mechanisms on its main surface
JP4012785B2 (en) Optical connection device
JP3134850B2 (en) Optical components, optical module assemblies, and optical networks
JPH0133801B2 (en)
CN101846777B (en) Optical device
JPH07104146A (en) Production of optical parts
JP4008649B2 (en) Optical device
JPH04308804A (en) Optical module
JPH01183605A (en) Photodetecting device
JPH01261601A (en) Nonspherical micro-lens and its manufacture and optical fiber coupler, condensing optical system, optical element, semiconductor laser light source and image device utilizing nonspherical micro-lens
JPH0990177A (en) Optical semiconductor device
JPH01183606A (en) Photodetecting device
JPH09281302A (en) Flat plate microlens array with reflection surface and its production
JPH05273444A (en) Photodetection module
JPH09312407A (en) Optical coupler between monitor diode and laser diode
JP2001021769A (en) Supporting body for attaching photo-electric constitutional member, and manufacture thereof
JPH04288507A (en) Optical fiber two-dimensional array module
JPH05333251A (en) Optical array module and optical array link
JPH02116809A (en) Optical coupler
JPH04283708A (en) Optical module
JP3798408B2 (en) Optical monitor module
JPH02228069A (en) Photodetector array
JPH03263006A (en) Light receiving device