JPS63287125A - Wavelength multiplex bidirectional transmission method - Google Patents

Wavelength multiplex bidirectional transmission method

Info

Publication number
JPS63287125A
JPS63287125A JP62121221A JP12122187A JPS63287125A JP S63287125 A JPS63287125 A JP S63287125A JP 62121221 A JP62121221 A JP 62121221A JP 12122187 A JP12122187 A JP 12122187A JP S63287125 A JPS63287125 A JP S63287125A
Authority
JP
Japan
Prior art keywords
wavelength
optical
light
directional coupler
wavelengths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62121221A
Other languages
Japanese (ja)
Inventor
Katsuyuki Imoto
克之 井本
Hirohisa Sano
博久 佐野
Masaru Miyazaki
勝 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62121221A priority Critical patent/JPS63287125A/en
Publication of JPS63287125A publication Critical patent/JPS63287125A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To realize multiplex bidirectional transmission system with low cost and with excellent optical isolation between wavelengths by using an optical multiplexer/demultiplexer composed of three directional couplers of the same structure and a semiconductor optical element. CONSTITUTION:An optical signal of wavelengths lambda1, lambda3 propagated through an optical fiber 6-1 is demultiplexed by a directional coupler 18-1 and the light of wavelength lambda1 is outputted to a directional coupler 18-2 and the light of wavelength lambda3 is outputted to a directional coupler 18-3. The light of wavelength lambda1 made incident on the coupler 18-2 and the light of wavelength lambda3 incident on the coupler 18-3 are given respectively to light receiving elements 2, 4. The other wavelength components lambda3, lambda1 leaked to the couplers 18-2, 18-3 are demultiplexed to output waveguides 19-5, 19-7, then the inter-channel interference between the wavelengths lambda1, lambda3 are suppressed. Similarly, the optical signals lambda4, lambda2 of the light emitting elements 1, 3 are outputted to the optical fiber 6-2 without being leaked to the light receiving elements 2 and 4 and transmitted to the opposed optical module 8.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、光合分波器を用いた波長多重双方向伝送方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a wavelength multiplexing bidirectional transmission method using an optical multiplexer/demultiplexer.

〔従来の技術〕[Conventional technology]

光ファイバ通信における光波長多重双方向伝送技術は通
信システムの経済化、高機能化などをはかる上で重要で
ある。
Optical wavelength multiplexing bidirectional transmission technology in optical fiber communications is important for making communication systems more economical and highly functional.

従来、双方向伝送方法として、第6図に示すように、2
本の光ファイバを用い、光ファイバの両端に光送信部と
光受信部を接続して情報伝送を行なう方法が用いられて
いた。また、15−1(あるいは15−2)の光送信部
側から複数波長の光信号を光合波器により合波して光波
長多重伝送し、16−1 (あるいは16−2)の光受
信部側で光分波器によりそれぞれの波長の光信号を分波
する構想も考えられている。
Conventionally, as a two-way transmission method, as shown in FIG.
A method has been used in which an optical fiber is used and an optical transmitter and an optical receiver are connected to both ends of the optical fiber to transmit information. In addition, optical signals of multiple wavelengths are multiplexed from the optical transmitter side of 15-1 (or 15-2) by an optical multiplexer and optically wavelength-multiplexed transmitted, and the optical signals of multiple wavelengths are transmitted from the optical transmitter side of 16-1 (or 16-2) Another idea is to use an optical demultiplexer to separate the optical signals of each wavelength.

一本の光ファイバを用いた光波長多重双方向伝途方法と
してはたとえば、柳井;光通信ハンドブック、朝食書店
、1982年9月発行、pp、490〜493に記載さ
れているように、第7図のような構成が用いられている
。これは局Aおよび局B側共に光合分波器17−1.1
7−2を用い、波長λ工、λ2.λδ、およびλ1の4
つの光信、号を双方向波長多重伝送する方法である。
As an optical wavelength division multiplexing bidirectional transmission method using a single optical fiber, for example, as described in Yanai; Optical Communication Handbook, Shokusen Shoten, September 1982, pp. 490-493, The configuration shown in the figure is used. This is an optical multiplexer/demultiplexer 17-1.1 on both station A and station B sides.
7-2, wavelength λ, λ2. λδ, and 4 of λ1
This is a method of bidirectional wavelength multiplexing transmission of two optical signals.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第7図の光波長多重双方向伝送方法は一本の光ファイバ
を用いているので経済的である。しかし、この方法では
波長多重数を多くするには、各波長間の干渉の極めて少
ない、すなわち、高アイソレーシヨン特性をもった光合
分波器が必要となり、これを実現することは極めてむず
かしい、したがって、数波長程度が限度である。ただし
、数波長程度でも光合分波器は非常に高価になる。これ
に対して、第6図のように2本の光ファイバを用いわば
、それぞれの光ファイバに同一波長の光信号を伝送させ
ることができるので、半導体光素子を同一のものを使え
、経済的となる。しかし、複数波長の光信号を用いよう
とすると、第7図に示すような光合分波器17−1.1
7−2を局Aおよび局Bにそれぞれ2個ずつ使わなけれ
ばならず、やはり非常に高価となると同時に、高アイソ
レーシヨン特性をもった光合分波器が必要になる。しか
し1.現状ではこのような光合分波器はまだ見い出され
ていない。
The optical wavelength division multiplexing bidirectional transmission method shown in FIG. 7 is economical because it uses one optical fiber. However, in order to increase the number of wavelengths multiplexed with this method, an optical multiplexer/demultiplexer with extremely low interference between each wavelength, that is, with high isolation characteristics, is required, which is extremely difficult to achieve. Therefore, the limit is about several wavelengths. However, an optical multiplexer/demultiplexer is extremely expensive even for just a few wavelengths. On the other hand, if two optical fibers are used as shown in Figure 6, it is possible to transmit optical signals of the same wavelength through each optical fiber, so the same semiconductor optical device can be used, which is economical. becomes. However, when trying to use optical signals of multiple wavelengths, an optical multiplexer/demultiplexer 17-1.1 as shown in FIG.
7-2 must be used for each station A and B, which is still very expensive and requires an optical multiplexer/demultiplexer with high isolation characteristics. But 1. At present, such an optical multiplexer/demultiplexer has not yet been found.

本発明の目的は、2本の光ファイバを用いた光波長多重
双方向伝送方法において、光合分波装置を簡易化して低
コストに実現することと、それぞれの波長の干渉が極め
て少ない高アイソレーシヨン特性を実現させる構成法を
提供することにある。
The purpose of the present invention is to simplify an optical multiplexing/demultiplexing device at low cost in an optical wavelength division multiplexing bidirectional transmission method using two optical fibers, and to provide a high isolator with extremely low interference between each wavelength. The object of the present invention is to provide a construction method that realizes the sion characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、新構成の光合分波装置を局Aおよび局B側
にそれぞれ1個用いることにより達成される。この光合
分波装置は同一の構造の方向性結合器3個と、半導体光
素子とからなる6〔作用〕 光ファイバ6−1内を伝搬してきた波長λl。
The above object is achieved by using one newly configured optical multiplexing/demultiplexing device on each of the station A and station B sides. This optical multiplexing/demultiplexing device consists of three directional couplers of the same structure and a semiconductor optical element. 6 [Operation] The wavelength λl propagated in the optical fiber 6-1.

λ8(λ1とλ8の波長間隔は十分に離れている。)の
光信号は方向性結合器18−1の入力導波路19−1に
入射する。そして、方向性結合器18−1により光信号
が分波され、波長λ1は方向性結合器18−2の入力導
波路に入射される。波長λ♂は方向性結合器18−3の
入力導波路に入射される。方向性結合器18−2に入射
した波長λ1の光信号は方向性結合器18−2で分波さ
れて受光素子2に入力される。波長λ8の光信号は方向
性結合器18−3で分波されて受光素子4に入力される
。ここで、18−2に漏洩した非希望光λ8は18−2
で分波されて出力導波路19−5に分波されるため、受
光素子2には波長λ8の非希望光は受信されない。また
18−3に漏洩した非希望光λ1は出力導波路19−7
に分波されるので、受光素子4には波長λ1の光信号の
みが受信され、波長λ1と18間のチャネル間干渉を大
幅に抑圧できる。同様に発光素子1の光信号λ4 (λ
4はλ8に近接した波長)と発光素子3の光信号λ2 
(λ2はλlに近接した波長)も受光素子2および4に
漏洩することなく、光ファイバ6−2内を矢印7−2方
向に伝搬していく。
The optical signal of λ8 (the wavelength interval between λ1 and λ8 is sufficiently far apart) is incident on the input waveguide 19-1 of the directional coupler 18-1. The optical signal is then demultiplexed by the directional coupler 18-1, and the wavelength λ1 is input to the input waveguide of the directional coupler 18-2. The wavelength λ♂ is input to the input waveguide of the directional coupler 18-3. The optical signal of wavelength λ1 incident on the directional coupler 18-2 is demultiplexed by the directional coupler 18-2 and input to the light receiving element 2. The optical signal of wavelength λ8 is demultiplexed by the directional coupler 18-3 and input to the light receiving element 4. Here, the undesired light λ8 leaked to 18-2 is 18-2
Since the undesired light having the wavelength λ8 is not received by the light receiving element 2, it is demultiplexed by the output waveguide 19-5. In addition, the undesired light λ1 leaked to the output waveguide 19-7
Since only the optical signal of wavelength λ1 is received by the light receiving element 4, inter-channel interference between wavelengths λ1 and 18 can be significantly suppressed. Similarly, the optical signal λ4 (λ
4 is a wavelength close to λ8) and the optical signal λ2 of the light emitting element 3
(λ2 is a wavelength close to λl) also propagates in the direction of arrow 7-2 within the optical fiber 6-2 without leaking to the light receiving elements 2 and 4.

(実施例〕 第1図に本発明の波長多重双方向伝送方法の実施例を示
す、これは局Aまたは局Bの構成を示したものである。
(Embodiment) FIG. 1 shows an embodiment of the wavelength division multiplexing bidirectional transmission method of the present invention, which shows the configuration of station A or station B.

8は導波路型構造の光合分波モジュールであり、埋込み
型、リッジ型、装荷型などの導波路構造からなる。5−
1.5−2.5−3は方向性結合器であり、同−構造の
ものである。
Reference numeral 8 denotes an optical multiplexing/demultiplexing module having a waveguide type structure, and includes a buried type, ridge type, loaded type, etc. waveguide structure. 5-
1.5-2.5-3 is a directional coupler having the same structure.

そして、第2図に示すような波長特性を有している。な
お、第2図の波長特性の帯域特性は結合部18−1.1
8−2.18−3の結合長、結合間隔を調節することに
よって制御することができる。
It has wavelength characteristics as shown in FIG. Note that the band characteristics of the wavelength characteristics in FIG.
It can be controlled by adjusting the bond length and bond spacing of 8-2.18-3.

したがって、波長λlとλ2.λ8とλ番を通過域にす
ることは容易に設定することができる。たとえば、結合
長が短いと通過帯域幅は広くなり、逆に結合長が長いと
通過帯域幅は狭くなる。すなわち、波長λ8.λ番の光
信号は結合部18−1.18−2.18−3で結合して
もう一つの導波路に分波され、波長λl、λ2の光信号
は分波されずにそのまま出力側の導波路に伝搬していく
特性である。
Therefore, the wavelengths λl and λ2. It is easy to set λ8 and λ number as the passband. For example, the shorter the coupling length, the wider the passband width, and conversely, the longer the coupling length, the narrower the passband width. That is, the wavelength λ8. The optical signal number λ is coupled at the coupling part 18-1.18-2.18-3 and demultiplexed to another waveguide, and the optical signals with wavelengths λl and λ2 are not demultiplexed and are directly sent to the output side. This is a characteristic of propagation in a waveguide.

ここで、波長λ工とλ2は極めて接近しているか、ある
いは等しくしてもよい。また波長λ3と1番も極めて接
近しているか、あるいは等しくてもよい。
Here, the wavelengths λ and λ2 may be very close to each other or may be equal. Further, the wavelength λ3 and the wavelength 1 may be very close to each other or may be equal to each other.

そして、光ファイバ6−1には波長λ1とλ3の光信号
が、光ファイバ6−2には波長λ2と1番の光信号が伝
搬するように構成されている。
The optical fiber 6-1 is configured so that optical signals with wavelengths λ1 and λ3 are propagated, and the optical fiber 6-2 is configured such that an optical signal with wavelength λ2 and number 1 is propagated.

第1図の動作について述べる。光ファイバ6−1内を矢
印7−1方向から波長λ1とλ2の光信号が伝搬して光
合分波モジュール8の導波路19−1に入射する。そし
て方向性結合器5−1により、波長λ8の光信号は分波
されて導波路19−2内を伝搬する。波長λ1の光信号
は分波されず、そのまま導波路19−1内を伝搬してい
く、そして方向性結合器5−2に入射する。しかし波長
λ1の光信号は分波されず、そのまま導波路19−1内
を伝搬し、受光素子2内に入り、受光される。
The operation shown in FIG. 1 will be described. Optical signals of wavelengths λ1 and λ2 propagate in the optical fiber 6-1 from the direction of arrow 7-1 and enter the waveguide 19-1 of the optical multiplexing/demultiplexing module 8. The optical signal of wavelength λ8 is then demultiplexed by the directional coupler 5-1 and propagated within the waveguide 19-2. The optical signal with the wavelength λ1 is not demultiplexed and propagates through the waveguide 19-1 as it is, and then enters the directional coupler 5-2. However, the optical signal of wavelength λ1 is not demultiplexed, propagates through the waveguide 19-1 as it is, enters the light receiving element 2, and is received.

導波路19−2に分波された波長λδの光信号は方向性
結合器5−3内に入り、ここでふたたび分波されて導波
路19−4内を伝搬し、受光素子4内に入り、受光され
る。半導体発光素子1からの発光波長λ番の光信号は、
方向性結合器5−2に入射し、ここで分波されて導波路
19−1内を伝搬していく、そして方向性結合器5−1
内に入り、ふたたび分波されて導波路19−2内を伝搬
し、光ファイバ6−2内を通って矢印7−2方向に伝搬
していく、半導体発光素子3からの発光波長λ2の光信
号は、方向性結合器5−3に入射するが、ここで分波さ
れず導波路19−2内を伝搬し次の方向性結合器5−1
に入射する。そしてこの方向性結合器5−1でも分波さ
れず、そのまま導波路19−2内を伝搬し、光ファイバ
6−2内に入って矢印7−2の方向に波長1番の光信号
と共に伝搬していく、この構成での波長間のアイソレー
ション特性について説明する。矢印7−1方向に伝搬し
てきた波長λlと12間のアイソレーションを考えると
、方向性結合器5−1で波長λ3の光信号の一部が、た
とえば導波路19−2に完全な分波されずに、導波路1
9−1内を伝搬したとしても、次の方向性結合器5−2
で、波長λみの光信号は導波路19−3に分波されてし
まい、受光素子2内には波長λ1の光信号のみが入射す
ることになる。逆に、波長λ1の光信号の一部が導波路
19−2内に分波されたとしても、次の方向性結合器5
−3で導波路19−2内をそのまま伝搬していくために
、受光素子4内には波長λlの光信号はもれてこない。
The optical signal of wavelength λδ that has been demultiplexed into the waveguide 19-2 enters the directional coupler 5-3, where it is demultiplexed again, propagates through the waveguide 19-4, and enters the light receiving element 4. , the light is received. The optical signal with the emission wavelength λ from the semiconductor light emitting device 1 is
The signal enters the directional coupler 5-2, is split here, and propagates within the waveguide 19-1, and then passes through the directional coupler 5-1.
The light with the emission wavelength λ2 from the semiconductor light emitting element 3 enters the interior, is split again, propagates within the waveguide 19-2, and propagates in the direction of arrow 7-2 through the optical fiber 6-2. The signal enters the directional coupler 5-3, but is not split here and propagates within the waveguide 19-2 to the next directional coupler 5-1.
incident on . It is not demultiplexed by this directional coupler 5-1, but propagates as it is in the waveguide 19-2, enters the optical fiber 6-2, and propagates along with the optical signal of wavelength 1 in the direction of arrow 7-2. The isolation characteristics between wavelengths in this configuration will now be explained. Considering the isolation between wavelengths λl and 12 that have propagated in the direction of arrow 7-1, a part of the optical signal with wavelength λ3 in directional coupler 5-1 is completely demultiplexed into waveguide 19-2, for example. waveguide 1 without being
9-1, the next directional coupler 5-2
Therefore, the optical signal with the wavelength λ is split into the waveguide 19-3, and only the optical signal with the wavelength λ1 enters the light receiving element 2. Conversely, even if a part of the optical signal with wavelength λ1 is demultiplexed into the waveguide 19-2, the next directional coupler 5
-3, the optical signal with the wavelength λl does not leak into the light receiving element 4 because it propagates in the waveguide 19-2 as it is.

すなわち、波長λ1とλ3のアイソレーション特性は極
めて良好な構成であることがわかる。同様に、波長λ2
とλ4のアイソレーション特性も良好である。また、同
一構造寸法の方向性結合器3個で構成されているので、
−個の方向性結合器のマスクを作っておいて、転写露光
するだけで簡単に作れる。そのため、マスク費用が大幅
に安くなる。また、−個の方向性結合器のマスクだけで
よいので、小面積マスクとなり、マスクの寸法精度を高
精度化でき、それによって高性能の方向性結合器を実現
することができる。
That is, it can be seen that the configuration has extremely good isolation characteristics for wavelengths λ1 and λ3. Similarly, the wavelength λ2
The isolation characteristics of λ4 and λ4 are also good. In addition, since it is composed of three directional couplers with the same structural dimensions,
- It can be easily made by making masks for individual directional couplers and performing transfer exposure. Therefore, the mask cost will be significantly reduced. Furthermore, since only - masks for directional couplers are required, the area of the mask is small and the dimensional accuracy of the mask can be improved, thereby realizing a high-performance directional coupler.

さらに、光合分波装置を一枚の基板上にモノリシック構
造に実現することができるので、量産による大幅な低コ
スト化が可能である。さらに、光モジュール8は対称な
構造であるので、温度変動による結合部18−1.18
−2.18−3、導波路19−1.19−2.19−3
ののびちぢみが同じであり、光学特性の劣化を緩和する
ことができる。
Furthermore, since the optical multiplexing/demultiplexing device can be realized in a monolithic structure on a single substrate, it is possible to significantly reduce costs through mass production. Furthermore, since the optical module 8 has a symmetrical structure, the coupling portion 18-1.18 due to temperature fluctuations.
-2.18-3, waveguide 19-1.19-2.19-3
The expansion and shrinkage are the same, and deterioration of optical characteristics can be alleviated.

第3図は本発明の波長多重双方向伝送方法の別の実施例
を示したものである。これは、光ファイバ6−1内を矢
印28−1方向に波長λ1の光信号を、矢印28−2方
向に波長λ8の光信号を伝搬させ、一本の光ファイバ内
を双方向伝搬させである。また光ファイバ6−2内も矢
印28−3方向に波長λ2を、矢印28−3と反対方向
(矢印28−4方向)に波長1番に光信号を双方向伝送
させるようにしたものである。すなわち、各々の光ファ
イバ内を波長多重双方向伝送させるという全く新しい構
成である。
FIG. 3 shows another embodiment of the wavelength multiplexing bidirectional transmission method of the present invention. This allows an optical signal of wavelength λ1 to be propagated in the direction of arrow 28-1 in the optical fiber 6-1, and an optical signal of wavelength λ8 to be propagated in the direction of arrow 28-2, allowing bidirectional propagation in one optical fiber. be. Furthermore, within the optical fiber 6-2, an optical signal is bidirectionally transmitted with wavelength λ2 in the direction of arrow 28-3 and with wavelength 1 in the opposite direction to arrow 28-3 (direction of arrow 28-4). . In other words, this is a completely new configuration in which wavelength multiplexing and bidirectional transmission is performed within each optical fiber.

第4図は本発明の波長多重双方向伝送方法の別の実施例
を示したものである。これは、矢印7−1方向へ光ファ
イバ6−1内を波長λ101 λ11゜・・・、λ1n
g λ30.λql?・・・、λ8.の光信号を伝送さ
せるようにしたものである。ここで、λ101λ11.
・・・、λInは波長λlのごく近傍の波長で、狭スペ
クトル幅の光信号である。またλ301 λδl。
FIG. 4 shows another embodiment of the wavelength multiplexing bidirectional transmission method of the present invention. This causes wavelengths λ101 λ11°..., λ1n
g λ30. λql? ..., λ8. It is designed to transmit optical signals. Here, λ101λ11.
..., λIn has a wavelength very close to the wavelength λl, and is an optical signal with a narrow spectral width. Also λ301 λδl.

・・・、λl1mは波長λ8のごく近傍の波長で、狭ス
ペクトル幅の光信号である。なお、n、mは整数である
。超波長多重伝送方法の実施例である。波長λ109 
λ11.λ12..・・・、λInの光信号は波長選択
素子11に入射する。この゛波長選択素子11は上記波
長の中から希望する波長の光信号を選択的に出力側にと
りだす。そして受光素子2内に入射させる。この波長選
択素子はたとえば、可変波長フィルタで実現することが
できる。波長λ110.λ81゜・・・、18mの光信
号は波長選択素子12に入射する。
..., λl1m has a wavelength very close to the wavelength λ8, and is an optical signal with a narrow spectrum width. Note that n and m are integers. This is an example of a super wavelength multiplexing transmission method. Wavelength λ109
λ11. λ12. .. ..., λIn is incident on the wavelength selection element 11. This wavelength selection element 11 selectively takes out an optical signal of a desired wavelength from among the above-mentioned wavelengths to the output side. Then, the light is made to enter the light receiving element 2. This wavelength selection element can be realized, for example, by a variable wavelength filter. Wavelength λ110. The optical signal of λ81° . . . , 18 m enters the wavelength selection element 12.

そして波長選択素子12では、受信者の希望による波長
、たとえばλ8Bの光信号がとりだされ、受光素子4内
に入射される。
The wavelength selection element 12 extracts an optical signal having a wavelength desired by the receiver, for example, λ8B, and inputs it into the light receiving element 4.

第5図は本発明の波長多重双方向伝送方法の別の実施例
を示したものである。これも超波長多重双方向伝送の一
例である。すなわち、光ファイバ6−2内を矢印7−2
方向に波長λ2と、λaotλ41.λ42.・・・、
1口の光信号を伝送するようにしたものである。光ファ
イバ6−1内は第4図の場合と同じである。これは、複
数個の半導体発光素子1.4−1.14−2.・・・、
14−にの光信号を合波素子13で合波した後、光ファ
イバ6−2内を伝搬させるようにしたものである。ただ
し、kは整数である。
FIG. 5 shows another embodiment of the wavelength multiplexing bidirectional transmission method of the present invention. This is also an example of super wavelength multiplexing bidirectional transmission. In other words, the inside of the optical fiber 6-2 is indicated by the arrow 7-2.
wavelength λ2 in the direction, λaotλ41 . λ42. ...,
It is designed to transmit one optical signal. The interior of the optical fiber 6-1 is the same as that shown in FIG. This includes a plurality of semiconductor light emitting devices 1.4-1.14-2. ...,
14- is multiplexed by the multiplexing element 13, and then propagated through the optical fiber 6-2. However, k is an integer.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、2本の光ファイバを用いた光波長多重
双方向伝送用光合分波装置を非常に簡易な構成で、低コ
ストに実現することができる。しかもそれぞれの波長間
の干渉が極めて少ない高アイソレーシヨン特性を実現す
ることができる。
According to the present invention, an optical multiplexing/demultiplexing device for optical wavelength multiplexing bidirectional transmission using two optical fibers can be realized with a very simple configuration and at low cost. Furthermore, high isolation characteristics with extremely little interference between wavelengths can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第3図、第4図、および第5図はそれぞれ本発
明の光波長多重双方向伝送方法の実施例を示す図、第2
図は本発明に用いる方向性結合器の損失−波長特性図、
第6図は従来の2本の光ファイバを用いた双方向伝送方
法の概略図、第7図は従来の1本の光ファイバを用いた
光波長多重双方向伝送方法の概略図である。 1.3,10.14−1〜14−k・・・発光素子、2
.4.9・・・受光素子、5−1〜5−3・・・方向性
結合器、6−1.6−2・・・光ファイバ、7−1゜7
−2.28−1〜28−4・・・光の伝搬方向を示す矢
印、8・・・光モジュール、11.12・・・波長選択
素子、13・・・合波素子、15−1〜15−4・・・
光送信部、16−1〜16−4・・・光受信部、17−
1.17−2・・・光合分波器、18−1〜18−石 
Z 図 波長 (μ’wt) 心)CE) へ   6q
FIG. 1, FIG. 3, FIG. 4, and FIG. 5 are diagrams showing an embodiment of the optical wavelength multiplexing bidirectional transmission method of the present invention, and FIG.
The figure shows a loss-wavelength characteristic diagram of the directional coupler used in the present invention.
FIG. 6 is a schematic diagram of a conventional bidirectional transmission method using two optical fibers, and FIG. 7 is a schematic diagram of a conventional optical wavelength multiplexing bidirectional transmission method using one optical fiber. 1.3, 10.14-1 to 14-k... light emitting element, 2
.. 4.9... Light receiving element, 5-1 to 5-3... Directional coupler, 6-1.6-2... Optical fiber, 7-1゜7
-2.28-1 to 28-4... Arrow indicating the propagation direction of light, 8... Optical module, 11.12... Wavelength selection element, 13... Multiplexing element, 15-1... 15-4...
Optical transmitter, 16-1 to 16-4... Optical receiver, 17-
1.17-2... Optical multiplexer/demultiplexer, 18-1 to 18-stone
Z diagram wavelength (μ'wt) heart) CE) to 6q

Claims (1)

【特許請求の範囲】 1、2本の導波路を結合させてなる第1方向性結合器の
2つの入力側導波路にそれぞれ光ファイバを接続し、2
つの出力側導波路には、該第1方向性結合器と同一構造
の第2、第3方向性結合器の入力側薄波路の一方を接続
し、該第2、第3方向性結合器の出力側導波路4つに半
導体発光素子または受光素子を接続し、上記2つの光フ
ァイバ内を少なくとも波長の異なる2波の光信号が伝送
されることを特徴とする波長多重双方向伝送方法。 2、特許請求の範囲第1項において、受光素子の前に波
長選択素子を設け、任意の波長の光信号を選択的に受光
素子に受信させるようにした波長多重双方向伝送方法。 3、特許請求の範囲第1又は2項において、半導体発光
素子の前に合波素子を設け、該合波素子に波長の異なる
複数の発光素子の光信号を入力させるようにした波長多
重双方向伝送方法。
[Claims] An optical fiber is connected to each of the two input side waveguides of a first directional coupler formed by coupling one and two waveguides,
One of the input side thin waveguides of the second and third directional couplers having the same structure as the first directional coupler is connected to the two output side waveguides. A wavelength multiplexing bidirectional transmission method characterized in that semiconductor light emitting devices or light receiving devices are connected to four output waveguides, and at least two optical signals having different wavelengths are transmitted within the two optical fibers. 2. The wavelength multiplexing bidirectional transmission method according to claim 1, wherein a wavelength selection element is provided in front of the light receiving element so that the light receiving element selectively receives an optical signal of an arbitrary wavelength. 3. A bidirectional wavelength multiplexing device according to claim 1 or 2, wherein a multiplexing element is provided in front of the semiconductor light emitting element, and optical signals from a plurality of light emitting elements having different wavelengths are input to the multiplexing element. Transmission method.
JP62121221A 1987-05-20 1987-05-20 Wavelength multiplex bidirectional transmission method Pending JPS63287125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62121221A JPS63287125A (en) 1987-05-20 1987-05-20 Wavelength multiplex bidirectional transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62121221A JPS63287125A (en) 1987-05-20 1987-05-20 Wavelength multiplex bidirectional transmission method

Publications (1)

Publication Number Publication Date
JPS63287125A true JPS63287125A (en) 1988-11-24

Family

ID=14805891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62121221A Pending JPS63287125A (en) 1987-05-20 1987-05-20 Wavelength multiplex bidirectional transmission method

Country Status (1)

Country Link
JP (1) JPS63287125A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05289120A (en) * 1992-04-09 1993-11-05 Fujitsu Ltd Optical waveguide device
FR2768567A1 (en) * 1997-09-12 1999-03-19 France Telecom WAVELENGTH-INTEGRATED INTEGRATED OPTICAL SOURCE, MANUFACTURING METHOD THEREFOR, APPLICATION TO TRANSMIT-RECEIVE MODULES AND BIDIRECTIONAL TRANSMISSION SYSTEMS
JP2001230733A (en) * 2000-02-16 2001-08-24 Kddi Corp Bidirectional wavelength multiplex optical communication system
JP2005333264A (en) * 2004-05-18 2005-12-02 Ntt Electornics Corp Single-core bidirectional optical wavelength multiplex transmission system and transceiver

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05289120A (en) * 1992-04-09 1993-11-05 Fujitsu Ltd Optical waveguide device
FR2768567A1 (en) * 1997-09-12 1999-03-19 France Telecom WAVELENGTH-INTEGRATED INTEGRATED OPTICAL SOURCE, MANUFACTURING METHOD THEREFOR, APPLICATION TO TRANSMIT-RECEIVE MODULES AND BIDIRECTIONAL TRANSMISSION SYSTEMS
EP0903818A1 (en) * 1997-09-12 1999-03-24 France Telecom Integrated optical device with wavelength selective switching and method of fabrication
JP2001230733A (en) * 2000-02-16 2001-08-24 Kddi Corp Bidirectional wavelength multiplex optical communication system
JP4507032B2 (en) * 2000-02-16 2010-07-21 Kddi株式会社 Bidirectional wavelength division multiplexing optical communication system
JP2005333264A (en) * 2004-05-18 2005-12-02 Ntt Electornics Corp Single-core bidirectional optical wavelength multiplex transmission system and transceiver
JP4597578B2 (en) * 2004-05-18 2010-12-15 Nttエレクトロニクス株式会社 Single-core bidirectional optical wavelength division multiplexing transmission system and transmitter / receiver

Similar Documents

Publication Publication Date Title
US6185023B1 (en) Optical add-drop multiplexers compatible with very dense WDM optical communication systems
US5748349A (en) Gratings-based optical add-drop multiplexers for WDM optical communication system
US6169828B1 (en) Fiber optic dense wavelength division multiplexer with a phase differential method of wavelength separation utilizing a polarization beam splitter and a nonlinear interferometer
US6118561A (en) Wavelength division multiplexing optical transmitter and wavelength division multiplexing-demultiplexing optical transmission-reception system
JP3448182B2 (en) All-optical fiber optical router
JP2977024B2 (en) Optical circuit for wavelength division multiplexing communication and optical transmission communication system including the same
US6041152A (en) Multi-channel fiber optic communications system and multiplexer/demultiplexer arrangement therefor
JPH10221560A (en) Optical wavelength filter and optical demultiplexer
JPH10153721A (en) Taking-out and inserting device for wavelength-multiplex channel
JP2001215349A (en) Multiplex/de-multiplex system for wavelength multiplex optical signal
US6819481B2 (en) Bidirectional wave division multiplex systems
US6552834B2 (en) Methods and apparatus for preventing deadbands in an optical communication system
JPS63287125A (en) Wavelength multiplex bidirectional transmission method
EP1089097A2 (en) Duplicated-port waveguide grating router having substantially flat passbands
JP2004135331A (en) Optical cross-connect system
JPS60172841A (en) Optical switch
EP1009120A2 (en) Multichannel optical ADD/DROP, multiplexor/demultiplexor
JP2003315570A (en) Optical wavelength multiplexer/demultiplexer
JP3740357B2 (en) Optical multiplexer / demultiplexer with improved group delay characteristics
JP3832742B2 (en) Optical multiplexer / demultiplexer
JP3308148B2 (en) Optical submarine cable branching device for WDM communication system and WDM optical submarine cable network using the same
JPH07212316A (en) Bi-directional light amplifier
JP4238069B2 (en) Optical wavelength multiplexer / demultiplexer
JP3412791B2 (en) Optical frequency multiplexer / demultiplexer
US6453089B1 (en) Fiber optic dense wavelength division multiplexer for separating and combining optical channels utilizing a polarization beam splitter and a nonlinear interferometer