JP4507032B2 - Bidirectional wavelength division multiplexing optical communication system - Google Patents

Bidirectional wavelength division multiplexing optical communication system Download PDF

Info

Publication number
JP4507032B2
JP4507032B2 JP2000037964A JP2000037964A JP4507032B2 JP 4507032 B2 JP4507032 B2 JP 4507032B2 JP 2000037964 A JP2000037964 A JP 2000037964A JP 2000037964 A JP2000037964 A JP 2000037964A JP 4507032 B2 JP4507032 B2 JP 4507032B2
Authority
JP
Japan
Prior art keywords
input
transmission
output
wavelengths
demultiplexer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000037964A
Other languages
Japanese (ja)
Other versions
JP2001230733A (en
Inventor
朋広 大谷
周 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP2000037964A priority Critical patent/JP4507032B2/en
Publication of JP2001230733A publication Critical patent/JP2001230733A/en
Application granted granted Critical
Publication of JP4507032B2 publication Critical patent/JP4507032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数の異なる波長の信号光を多重化し、双方向伝送路または上りおよび下り用の別々の単方向伝送路を介して第1の送受信端と第2の送受信端との間で双方向波長多重通信を行う双方向波長多重光通信システムに関する。
【0002】
【従来の技術】
この種の従来の双方向波長多重光通信システムは、図11に示すように、複数の異なる波長λ1〜λ8の信号光の合分波に複数の合波器および分波器を構成する導波路グレーテング53,54,59,60を使用している。更に詳しくは、双方向伝送路7を介して接続される左側の第1の送受信端と右側の第2の送受信端との間で双方向波長多重光通信を行うために、第1の送受信端においては複数の送信器1a〜1hから出力される波長λ1〜λ8の信号光を導波路グレーテング53で多重化し、サーキュレータ55を介して双方向伝送路7に送出する。この双方向伝送路7に送出された波長λ1〜λ8の信号光は第2の送受信端のサーキュレータ57を介して導波路グレーテング59に入力して分波され、複数の受信器11a〜11hで受信される。
【0003】
また、第2の送受信端において複数の送信器15a〜15hから出力される波長λ1〜λ8の信号光は、導波路グレーテング60で多重化され、サーキュレータ57を介して双方向伝送路7に送出される。その双方向伝送路7に送出された波長λ1〜λ8の信号光は第1の送受信端のサーキュレータ55を介して導波路グレーテング54に入力して分波され、複数の受信器5a〜5hで受信されるというように複数の異なる波長λ1〜λ8の信号光は双方向伝送路7を波長多重されて伝送される。
【0004】
【発明が解決しようとする課題】
上述した従来の双方向波長多重光通信システムでは、複数の波長の異なる信号光の合分波のために、複数、すなわち4個の導波路グレーテングを必要であるため、高価であるという問題があり、合分波器を共通化することが要望されている。
【0005】
本発明は、上記に鑑みてなされたもので、その目的とするところは、送受信において合分波器を共通化して経済化および小型化を図った双方向波長多重光通信システムを提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するため、請求項記載の本発明は、複数の異なる波長の信号光を多重化し、双方向伝送路を介して第1の送受信端と第2の送受信端との間で双方向波長多重通信を行う双方向波長多重光通信システムであって、前記第1および第2の送受信端の各々が、双方向伝送路に接続された第1の入出力ポート、および送信すべき複数の異なる波長の信号光がそれぞれ入力されるとともに、受信した複数の異なる波長の信号光がそれぞれ出力される第2の複数の入出力ポートを備え、該第2の複数の入出力ポートから入力された複数の異なる波長の信号光を多重化して第1の入出力ポートを介して双方向伝送路に送出し、第1の入出力ポートを介して双方向伝送路から受信した複数の異なる波長の多重化信号光を分波して第2の複数の入出力ポートから出力するように作用する共通化合分波器と、該共通化合分波器の第2の複数の入出力ポートにそれぞれ接続された複数の入出力端、送信すべき複数の異なる波長の信号光がそれぞれ入力される複数の入力端、および受信した複数の異なる波長の信号光がそれぞれ出力される複数の出力端を備えた複数のサーキュレータであって、複数の入力端から入力された複数の異なる波長の信号光を複数の入出力端から出力して、前記共通化合分波器の第2の複数の入出力ポートに入力し、共通化合分波器の第1の入出力ポートから双方向伝送路に送出し、該第1の入出力ポートを介して双方向伝送路から受信した複数の異なる波長の信号光を複数の第2の入出力ポートを介して前記複数のサーキュレータの複数の入出力端にそれぞれ入力し、該複数のサーキュレータの複数の出力端から出力する複数のサーキュレータとを有し、第1の送受信端から双方向伝送路を介して第2の送受信端に送信される第1の方向の信号光と第2の送受信端から双方向伝送路を介して第1の送受信端に送信される第2の方向の信号光は波長が同じであることを要旨とする。
【0009】
請求項記載の本発明にあっては、第1の送受信端において送信すべき複数の異なる波長の信号光は複数のサーキュレータの入力端から入出力端を介して共通化合分波器に入力し多重化されて双方向伝送路に送信され、第2の送受信端において共通化合分波器で受信されて分波され、複数のサーキュレータの入出力端から出力端を介して出力され、また第2の送受信端において送信すべき複数の異なる波長の信号光は複数のサーキュレータの入力端から入出力端を介して共通化合分波器に入力し多重化されて双方向伝送路に送信され、第1の送受信端において共通化合分波器で受信されて分波され、複数のサーキュレータの入出力端から出力端を介して出力されるため、共通化合分波器が送受信で共通化され、効率的で経済的な合分波を行うことができるとともに、また送受信で同じ複数の波長を使用することができる。
【0012】
また、請求項記載の本発明は、複数の異なる波長の信号光を多重化し、上りおよび下り用の別々の単方向伝送路を介して第1の送受信端と第2の送受信端との間で双方向波長多重通信を行う双方向波長多重光通信システムであって、前記第1および第2の送受信端の各々が、相手側送受信端に対して信号光を伝送する単方向伝送路に接続された出力端、相手側送受信端からの信号光が伝送されてくる単方向伝送路に接続された入力端、および信号光が入出力する入出力端を備え、入出力端から入力された信号光を出力端から出力し、入力端から入力された信号光を入出力端に出力するように作用する第1のサーキュレータと、該第1のサーキュレータの入出力端に接続された第1の入出力ポート、および送信すべき複数の異なる波長の信号光がそれぞれ入力されるとともに、受信した複数の異なる波長の信号光がそれぞれ出力される第2の複数の入出力ポートを備え、該第2の複数の入出力ポートから入力された複数の異なる波長の信号光を多重化して第1の入出力ポートを介してサーキュレータの入出力端に出力し、サーキュレータの入出力端から出力端を介して相手側送受信端への信号光伝送用の単方向伝送路に送出し、第1の入出力ポートを介してサーキュレータの入出力端から受信した複数の異なる波長の多重化信号光を分波して第2の複数の入出力ポートから出力するように作用する共通化合分波器と、該共通化合分波器の第2の複数の入出力ポートにそれぞれ接続された複数の入出力端、送信すべき複数の異なる波長の信号光がそれぞれ入力される複数の入力端、および受信した複数の異なる波長の信号光がそれぞれ出力される複数の出力端を備えた第2の複数のサーキュレータであって、複数の入力端から入力された複数の異なる波長の信号光を複数の入出力端から出力して、前記共通化合分波器の第2の複数の入出力ポートに入力し、共通化合分波器の第1の入出力ポートから第1のサーキュレータの入出力端に送出し、該第1の入出力ポートを介して第1のサーキュレータの入出力端から受信した複数の異なる波長の多重化信号光を複数の第2の入出力ポートから分波して出力し、前記第2の複数のサーキュレータの複数の入出力端にそれぞれ入力し、該第2の複数のサーキュレータの複数の出力端から出力する第2の複数のサーキュレータとを有し、一方の送受信端から他方の送受信端への信号光伝送用の単方向伝送路を介して他方の送受信端に送信される第1の方向の信号光と他方の送受信端から一方の送受信端への信号光伝送用の単方向伝送路を介して一方の送受信端に送信される第2の方向の信号光は波長が同じであることを要旨とする。
【0013】
請求項記載の本発明にあっては、第1の送受信端において送信すべき複数の異なる波長の信号光は第2の複数のサーキュレータの入力端から入出力端を介して共通化合分波器に入力し多重化されて第1のサーキュレータの入出力端から出力端を介して双方向伝送路に送信され、第2の送受信端において第1のサーキュレータの入力端から入出力端を介して共通化合分波器で受信されて分波され、第2の複数のサーキュレータの入出力端から出力端を介して出力され、また第2の送受信端において送信すべき複数の異なる波長の信号光は第2の複数のサーキュレータの入力端から入出力端を介して共通化合分波器に入力し多重化されて第1のサーキュレータの入出力端から出力端を介して双方向伝送路に送信され、第1の送受信端において第1のサーキュレータの入力端から入出力端を介して共通化合分波器で受信されて分波され、第2の複数のサーキュレータの入出力端から出力端を介して出力されるため、共通化合分波器が送受信で共通化され、効率的で経済的な合分波を行うことができるとともに、また送受信で同じ複数の波長を使用することができる。
【0014】
また、請求項記載の本発明は、複数の異なる波長の信号光を多重化し、上りおよび下り用の別々の単方向伝送路を介して第1の送受信端と第2の送受信端との間で双方向波長多重通信を行う双方向波長多重光通信システムであって、前記第1および第2の送受信端の各々が、第1乃至第nの複数の送受信端側ポートと単方向伝送路にそれぞれ接続される第1および第2の伝送路側ポートを有し、第1乃至第nの複数の波長の多重化信号光が第1の伝送路側ポートから入力されると、該第1乃至第nの複数の波長の多重化信号光は分波されて、第1乃至第nの複数の送受信端側ポートから別々に出力され、第1乃至第nの複数の波長の多重化信号光が第2の伝送路側ポートに入力されると、該第1乃至第nの複数の波長のうち第1乃至第n−1の複数の波長の多重化信号光は分波され1波長ずつずらされて、第2乃至第nの送受信端側ポートから別々に出力され、第1乃至第nの複数の波長の信号光が第1乃至第nの複数の送受信端側ポートに入力されると、該第1乃至第nの複数の波長の信号光は多重化され、第1の伝送路側ポートから出力され、第1乃至第n−1の複数の波長の信号光が第2乃至第nの送受信端側ポートに入力されると、該第1乃至第n−1の複数の波長の信号光は多重化され、第2の伝送路側ポートから出力される共通化合分波器を有し、第1の送受信端においては、共通化合分波器の第1の伝送路側ポートを第2の送受信端に信号光を伝送する一方の単方向伝送路に接続し、共通化合分波器の第2の伝送路側ポートを第2の送受信端から信号光が伝送されてくる他方の単方向伝送路に接続し、第1、第3、…、第n−1の奇数番目の複数の波長の信号光を共通化合分波器の第1、第3、…、第n−1の複数の奇数番目の送受信端側ポートに入力して多重化し、この多重化された第1、第3、…、第n−1の複数の波長の信号光を第1の伝送路側ポートから一方の単方向伝送路に送出し、他方の単方向伝送路から共通化合分波器の第2の伝送路側ポートに入力される第1、第3、…、第n−1の奇数番目の複数の波長の多重化信号光は共通化合分波器で分波され、共通化合分波器の第2、第4、…、第nの偶数番目の複数の送受信端側ポートから別々に出力されて受信され、第2の送受信端においては、共通化合分波器の第1の伝送路側ポートを第1の送受信端から信号光が伝送されてくる一方の単方向伝送路に接続し、共通化合分波器の第2の伝送路側ポートを第1の送受信端に信号光を伝送する他方の単方向伝送路に接続し、第1、第3、…、第n−1の奇数番目の複数の波長の信号光を共通化合分波器の第2、第4、…、第nの複数の偶数番目の送受信端側ポートに入力して多重化し、この多重化された第1、第3、…、第n−1の複数の波長の信号光を第2の伝送路側ポートから他方の単方向伝送路に送出し、一方の単方向伝送路から共通化合分波器の第1の伝送路側ポートに入力される第1、第3、…、第n−1の奇数番目の複数の波長の多重化信号光は共通化合分波器で分波され、共通化合分波器の第1、第3、…、第n−1の奇数番目の複数の送受信端側ポートから別々に出力されて受信されることを要旨とする。
【0015】
請求項記載の本発明にあっては、第1の送受信端において送信すべき複数の異なる波長の信号光は共通化合分波器で多重化されて一方の単方向伝送路に送信されて、第2の送受信端において共通化合分波器で受信され分波されて出力され、また第2の送受信端において送信すべき複数の異なる波長の信号光は共通化合分波器で多重化されて他方の単方向伝送路に送信されて、第1の送受信端において共通化合分波器で受信され分波されて出力されるため、共通化合分波器が送受信で共通化され、効率的で経済的な合分波を行うことができる。
【0016】
更に、請求項記載の本発明は、複数の異なる波長の信号光を多重化し、上りおよび下り用の別々の単方向伝送路を介して第1の送受信端と第2の送受信端との間で双方向波長多重通信を行う双方向波長多重光通信システムであって、第1および第2の送受信端の各々が、第1乃至第n+1の複数の送受信端側ポートと単方向伝送路にそれぞれ接続される第1および第2の伝送路側ポートを有し、第1乃至第nの複数の波長の多重化信号光が第1の伝送路側ポートから入力されると、第1乃至第nの波長は分波されて、それぞれ第1乃至第nの送受信端側ポートから別々に出力され、第1乃至第nの複数の波長がそれぞれ第1乃至第nの複数の送受信端側ポートから入力されると、第1乃至第nの複数の波長は多重化されて第1の伝送路側ポートから出力され、第1乃至第nの複数の波長の多重化信号光が第2の伝送路側ポートから入力されると、第1乃至第nの波長は分波されるとともに、1波長分ずつずれて、それぞれ第2乃至第n+1の送受信端側ポートから別々に出力され、第1乃至第nの複数の波長がそれぞれ第2乃至第n+1の複数の送受信端側ポートから入力されると、第1乃至第nの複数の波長は多重化されて第2の伝送路側ポートから出力される共通化合分波器と、該共通化合分波器の第2乃至第nの送受信端側ポートの各々に入出力端が接続された第2乃至第nの複数のサーキュレータとを有し、第1の送受信端においては、共通化合分波器の第1の伝送路側ポートを第2の送受信端に信号光を伝送する一方の単方向伝送路に接続し、共通化合分波器の第2の伝送路側ポートを第2の送受信端から信号光が伝送されてくる他方の単方向伝送路に接続し、第2の送受信端に送信すべき第1乃至第nの波長の複数の信号光のうち、第1の波長の信号光は共通化合分波器の第1の送受信端側ポートに直接入力され、第2乃至第nの波長の複数の信号光はそれぞれ前記複数のサーキュレータの入力端から入出力端を介して共通化合分波器の第2乃至第nの送受信端側ポートに入力され、第1乃至第nの送受信端側ポートに入力された第1乃至第nの複数の波長は共通化合分波器で多重化されて、第1の伝送路側ポートから一方の単方向伝送路に送出され、他方の単方向伝送路から共通化合分波器の第2の伝送路側ポートに入力する第1乃至第nの波長の複数の多重化信号光は共通化合分波器で分波され、第1乃至第n−1の波長の複数の信号光が第2乃至第nの送受信端側ポートから複数のサーキュレータの入出力端を介して該サーキュレータの出力端から出力されて受信され、第nの信号光が第n+1の送受信端側ポートから直接出力されて受信され、第2の送受信端においては、共通化合分波器の第1の伝送路側ポートを第1の送受信端から信号光が伝送されてくる一方の単方向伝送路に接続し、共通化合分波器の第2の伝送路側ポートを第1の送受信端に信号光を伝送する他方の単方向伝送路に接続し、前記一方の単方向伝送路から共通化合分波器の第1の伝送路側ポートに入力する第1乃至第nの波長の複数の多重化信号光は共通化合分波器で分波され、この分波された複数の信号光のうち第1の波長の信号光は共通化合分波器の第1の送受信端側ポートから直接出力されて受信され、第2乃至第nの波長の複数の信号光はそれぞれ前記複数のサーキュレータの入出力端を介して出力端から出力されて受信され、送信すべき第1乃至第nの波長の複数の信号光のうち、第1乃至第n−1の波長の複数の信号光は前記サーキュレータの入力端から入出力端を介して共通化合分波器の第2乃至第nの送受信端側ポートに入力され、第nの波長の信号光は共通化合分波器の第n+1の送受信側入出力ポートに直接入力し、第2乃至第n+1の送受信端側ポートに入力された第1乃至第nの複数の波長は共通化合分波器で多重化されて、第2の伝送路側ポートから他方の単方向伝送路に送出されることを要旨とする。
【0017】
請求項記載の本発明にあっては、第1の送受信端において送信すべき複数の異なる波長の信号光のうち第1の波長の信号光は共通化合分波器に直列入力され、第2以降の複数の波長の信号光は複数のサーキュレータの入力端から入出力端を介して共通化合分波器に入力されて、多重化され、一方の単方向伝送路に送信され、第2の送受信端において共通化合分波器で受信されて分波され、第1の波長は共通化合分波器の第1の送受信端側ポートから出力されて受信され、第2以降の波長は複数のサーキュレータの入出力端から出力端を介して出力されて受信され、また第2の送受信端において送信すべき複数の異なる波長のうち、最後の波長を除く他の波長の複数の信号光は複数のサーキュレータの入力端から入出力端を介して共通化合分波器に入力され、最後の波長の信号光は共通化合分波器に直接入力されて、多重化され、他方の単方向伝送路に送信され、第1の送受信端において共通化合分波器で受信されて分波され、最後の波長を除く他の波長の複数の信号光は複数のサーキュレータの入出力端から出力端を介して出力され、最後の波長の信号光は共通化合分波器から直接出力されて受信されるため、共通化合分波器が送受信で共通化され、効率的で経済的に合分波を行うことができるとともに、また送受信で同じ複数の波長を使用することができる。
【0018】
請求項記載の本発明は、複数の異なる波長の信号光を多重化し、上りおよび下り用の別々の単方向伝送路を介して第1の送受信端と第2の送受信端との間で双方向波長多重通信を行う双方向波長多重光通信システムであって、前記第1および第2の送受信端の各々が、第1乃至第nの複数の送受信端側ポートと単方向伝送路にそれぞれ接続される第1および第2の伝送路側ポートを有し、第1乃至第nの複数の波長の多重化信号光が第1の伝送路側ポートから入力されると、第1乃至第nの波長は分波されて、この分波された第1乃至第nの波長の複数の信号光はそれぞれ共通化合分波器の第1乃至第nの送受信端側ポートから別々に出力され、第1乃至第nの複数の波長の信号光がそれぞれ第1乃至第nの複数の送受信端側ポートから入力されると、第1乃至第nの複数の波長は多重化されて第1の伝送路側ポートから出力され、第1乃至第nの複数の波長の多重化信号光が第2の伝送路側ポートから入力されると、第1乃至第nの波長は分波されて、この分波された第1乃至第nの波長のうち、第1乃至第n−1の波長の信号光は共通化合分波器の第2乃至第nの送受信端側ポートから別々に出力され、第nの波長の信号光は共通化合分波器の第1の送受信端側ポートから出力され、第1乃至第nの波長のうち第1乃至第n−1の波長の信号光が共通化合分波器の第2乃至第nの複数の送受信端側ポートに入力され、第nの波長の信号光が第1の送受信端側ポートに入力されると、この入力された第1乃至第nの複数の波長は多重化されて第2の伝送路側ポートから出力される共通化合分波器と、該共通化合分波器の第1乃至第nの送受信端側ポートの各々に入出力端が接続された第1乃至第nの複数のサーキュレータとを有し、第1の送受信端においては、共通化合分波器の第1の伝送路側ポートを第2の送受信端に信号光を伝送する一方の単方向伝送路に接続し、共通化合分波器の第2の伝送路側ポートを第2の送受信端から信号光が伝送されてくる他方の単方向伝送路に接続し、第2の送受信端に送信すべき第1乃至第nの波長の複数の信号光はそれぞれ前記第1乃至第nの複数のサーキュレータの入力端から入出力端を介して共通化合分波器の第1乃至第nの送受信端側ポートに入力され、共通化合分波器で多重化されて、第1の伝送路側ポートから一方の単方向伝送路に送出され、他方の単方向伝送路から共通化合分波器の第2の伝送路側ポートに入力する第1乃至第nの波長の複数の多重化信号光は共通化合分波器で分波され、第1乃至第n−1の波長の複数の信号光は第2乃至第nの送受信端側ポートから第2乃至第nの複数のサーキュレータの入出力端を介して該サーキュレータの出力端から出力されて受信され、第nの信号光は共通化合分波器の第1の送受信端側ポートから第1のサーキュレータの入出力端を介して該サーキュレータの出力端から出力されて受信され、第2の送受信端においては、共通化合分波器の第1の伝送路側ポートを第1の送受信端から信号光が伝送されてくる一方の単方向伝送路に接続し、共通化合分波器の第2の伝送路側ポートを第1の送受信端に信号光を伝送する他方の単方向伝送路に接続し、前記一方の単方向伝送路から共通化合分波器の第1の伝送路側ポートに入力する第1乃至第nの波長の複数の多重化信号光は共通化合分波器で分波され、この分波された第1乃至第nの複数の波長の信号光は第1乃至第nの送受信端側ポートから第1乃至第nの複数のサーキュレータの入出力端を介して該サーキュレータの出力端から出力されて受信され、送信すべき第1乃至第nの波長の複数の信号光のうち、第1乃至第n−1の波長の複数の信号光はそれぞれ前記第1乃至第nの複数のサーキュレータの入力端から入出力端を介して共通化合分波器の第2乃至第nの送受信端側ポートに入力され、第nの波長の信号光は第nのサーキュレータの入力端から入出力端を介して共通化合分波器の第1の送受信端側ポートに入力し、この入力した第1乃至第nの複数の波長の信号光は共通化合分波器で多重化されて、第2の伝送路側ポートから他方の単方向伝送路に送出されることを要旨とする。
【0019】
請求項記載の本発明にあっては、第1の送受信端において送信すべき複数の異なる波長の信号光は複数のサーキュレータの入力端から入出力端を介して共通化合分波器に入力されて多重化され、一方の単方向伝送路に送信され、第2の送受信端において共通化合分波器で受信されて分波され、複数のサーキュレータの入出力端から出力端を介して出力されて受信され、また第2の送受信端において送信すべき複数の異なる波長の信号光は複数のサーキュレータの入力端から入出力端を介して共通化合分波器に入力されて多重化され、他方の単方向伝送路に送信され、第1の送受信端において共通化合分波器で受信されて分波され、複数のサーキュレータの入出力端から出力端を介して出力されて受信されるため、共通化合分波器が送受信で共通化され、効率的で経済的な合分波を行うことができるとともに、また送受信で同じ複数の波長を使用することができる。
【0020】
また、請求項記載の本発明は、請求項1乃至のいずれかに記載の発明において、前記共通化合分波器が、導波路グレーテングで構成されることを要旨とする。
【0021】
【発明の実施の形態】
以下、図面を用いて本発明の実施の形態を説明する。図1は、本発明の第1の実施形態に係る双方向波長多重光通信システムの構成を示す図である。同図に示す双方向波長多重光通信システムは、左側に位置する第1の送受信端と右側に位置する第2の送受信端との間で光ファイバからなる双方向伝送路7を介して双方向波長多重光通信を行うものであり、第1の送受信端は双方向伝送路7に入出力ポートが接続された共通化合分波器を構成する導波路グレーテング3を有し、この導波路グレーテング3の複数の入力ポートには複数の送信器1a〜1hが接続され、この複数の送信器1a〜1hからそれぞれ出力される複数の異なる波長λ1,λ3,λ5,λ7,λ9,λ11,λ13,λ15の信号光が入力され、また導波路グレーテング3の複数の出力ポートには複数の受信器5a〜5hが接続され、複数の出力ポートからそれぞれ出力される複数の異なる波長λ2,λ4,λ6,λ8,λ10,λ12,λ14,λ16の信号光を受信器5a〜5hで受信するようになっている。
【0022】
また、第2の送受信端も同様に双方向伝送路7に入出力ポートが接続された共通化合分波器を構成する導波路グレーテング9を有し、この導波路グレーテング9の複数の入力ポートには複数の送信器15a〜15hが接続され、この複数の送信器15a〜15hからそれぞれ出力される複数の異なる波長λ2,λ4,λ6,λ8,λ10,λ12,λ14,λ16の信号光が入力され、また導波路グレーテング3の複数の出力ポートには複数の受信器11a〜11hが接続され、複数の出力ポートからそれぞれ出力される複数の異なる波長λ1,λ3,λ5,λ7,λ9,λ11,λ13,λ15の信号光を送信器15a〜15hで受信するようになっている。
【0023】
このように構成される双方向波長多重光通信システムにおいては、一方の送受信端から他方の送受信端に伝送される上りの波長λ1,λ3,λ5,λ7,λ9,λ11,λ13,λ15と他方の送受信端から一方の送受信端に伝送される下りの波長λ2,λ4,λ6,λ8,λ10,λ12,λ14,λ16とは、異なるように設定されているとともに、また上りの波長間隔と下りの波長間隔は同じに設定されている。そして、この場合に、各導波路グレーテング3,9の波長間隔は伝送信号の波長間隔に対して半分の周期を有するように設定されている。そして、一方の送受信端においては、導波路グレーテング3の奇数チャネルに送信信号を割り当て、偶数チャネルに受信信号を割り当て、他方の送受信端においては、逆に導波路グレーテング9の奇数チャネルに受信信号を割り当て、偶数チャネルに送信信号を割り当てるように設定している。このように上り、下りの波長、波長間隔、奇数、偶数チャネルへの送受信信号の割り当てを行うとともに、図1に示すように構成することにより、送受信において共通化された従来に比較して少ない2個の導波路グレーテング3,9を使用して、第1の送受信端と第2の送受信端との間で双方向伝送路7を介して双方向波長多重光通信を行うことができる。
【0024】
図2は、本発明の第2の実施形態に係る双方向波長多重光通信システムの構成を示す図である。同図に示す双方向波長多重光通信システムは、上りおよび下り用の波長が同じ場合のものであり、サーキュレータ12a〜12hおよび20a〜20hを使用して、送信信号を共通化合分波器である導波路グレーテング13,19に供給し、受信信号を導波路グレーテング13,19から取り出すようにしているものである。
【0025】
更に詳しくは、第1の送受信端において、導波路グレーテング13の第1の入出力ポートが双方向伝送路7に接続され、導波路グレーテング13の第2の複数の入出力ポートがサーキュレータ12a〜12hの複数の入出力端に接続されている。また、複数の異なる波長λ1〜λ8の信号光を送信する複数の送信器1a〜1hはサーキュレータ12a〜12hの複数の入力端に接続され、送信器1a〜1hからの複数の信号光はサーキュレータ12a〜12hの入力端から入出力端を介して導波路グレーテング13の第2の複数の入出力ポートに入力され、導波路グレーテング13の第1の入出力ポートから双方向伝送路7に送出され、第2の送受信端で受信されるようになっている。更に、サーキュレータ12a〜12hの複数の出力端には複数の異なる波長λ1〜λ8の信号光を受信する受信器5a〜5hが接続されている。
【0026】
また、第2の送受信端においては、導波路グレーテング19の第1の入出力ポートが双方向伝送路7に接続され、導波路グレーテング19の第2の複数の入出力ポートがサーキュレータ20a〜20hの複数の入出力端に接続されている。また、複数の異なる波長λ1〜λ8の信号光を送信する複数の送信器15a〜15hはサーキュレータ20a〜20hの複数の入力端に接続され、送信器15a〜15hからの複数の信号光はサーキュレータ20a〜20hの入力端から入出力端を介して導波路グレーテング19の第2の複数の入出力ポートに入力され、導波路グレーテング19の第1の入出力ポートから双方向伝送路7に送出され、第1の送受信端で受信されるようになっている。更に、サーキュレータ20a〜20hの複数の出力端には複数の異なる波長λ1〜λ8の信号光を受信する受信器11a〜11hが接続されている。
【0027】
このように構成される双方向波長多重光通信システムでは、第1の送受信端の複数の送信器1a〜1hから送出された波長λ1〜λ8の信号光は、サーキュレータ12a〜12hを介して導波路グレーテング13に入力され多重化されて、双方向伝送路7に送出され、双方向伝送路7から第2の送受信端に送信される。第2の送受信端では、第1の送受信端から双方向伝送路7に送信された波長λ1〜λ8の信号光を導波路グレーテング19で受信して、各波長λ1〜λ8の信号光に分波し、この分波された波長λ1〜λ8の信号光はそれぞれサーキュレータ20a〜20hを介して受信器11a〜11hで受信される。
【0028】
また同様に、第2の送受信端の複数の送信器15a〜15hから送出された波長λ1〜λ8の信号光は、サーキュレータ20a〜20hを介して導波路グレーテング19に入力され多重化されて、双方向伝送路7に送出され、双方向伝送路7から第1の送受信端に送信される。第1の送受信端では、第2の送受信端から双方向伝送路7に送信された波長λ1〜λ8の信号光を導波路グレーテング13で受信して、各波長λ1〜λ8の信号光に分波し、この分波された波長λ1〜λ8の信号光はそれぞれサーキュレータ12a〜12hを介して受信器5a〜5hで受信される。
【0029】
図3は、本発明の第3の実施形態に係る双方向波長多重光通信システムの構成を示す図である。同図に示す双方向波長多重光通信システムは、図1に示した双方向波長多重光通信システムにおいて双方向伝送路7の代わりに同様に光ファイバからなる上りおよび下り用の別々の単方向伝送路17a,17bを使用するとともに、そのために伝送路と導波路グレーテング3,9の間にサーキュレータ18a,18bを使用している点が異なるものであり、その他の構成および作用は同じである。
【0030】
すなわち、第1の送受信端において複数の送信器1a〜1hから送出される送信信号は、導波路グレーテング3で多重化され、導波路グレーテング3からサーキュレータ18aを介して上り単方向伝送路17aに送出される。この上り単方向伝送路17aに送出された送信信号は、第2の送受信端において上り単方向伝送路17aから第2の送受信端のサーキュレータ18bを介して導波路グレーテング9で受信され分波されて、各受信器11a〜11hで受信される。
【0031】
また、第2の送受信端において複数の送信器15a〜15hから送出された送信信号は、導波路グレーテング9で多重化され、導波路グレーテング9からサーキュレータ18bを介して下り単方向伝送路17bに送出される。この下り単方向伝送路17bに送出された送信信号は、第1の送受信端において下り単方向伝送路17bから第1の送受信端のサーキュレータ18aを介して導波路グレーテング3で受信され分波されて、各受信器5a〜5hで受信される。
【0032】
図4は、本発明の第4の実施形態に係る双方向波長多重光通信システムの構成を示す図である。同図に示す双方向波長多重光通信システムは、図2に示した双方向波長多重光通信システムにおいて双方向伝送路7の代わりに上りおよび下り用の別々の単方向伝送路17a,17bを使用するとともに、そのために伝送路と導波路グレーテング13,19の間にサーキュレータ18a,18bを使用している点が異なるものであり、その他の構成および作用は同じである。
【0033】
すなわち、第1の送受信端において複数の送信器1a〜1hから送出された送信信号は、複数のサーキュレータ12a〜12hを介して導波路グレーテング13に入力されて多重化され、導波路グレーテング13からサーキュレータ18aを介して上り単方向伝送路17aに送出される。この上り単方向伝送路17aに送出された送信信号は、第2の送受信端において上り単方向伝送路17aからサーキュレータ18bを介して導波路グレーテング19で受信されて分波されて、各受信器11a〜11hで受信される。
【0034】
また、第2の送受信端において複数の送信器15a〜15hから送出された送信信号は、複数のサーキュレータ20a〜20hを介して導波路グレーテング19に入力されて多重化され、導波路グレーテング19からサーキュレータ18bを介して下り単方向伝送路17bに送出される。この下り単方向伝送路17bに送出された送信信号は、第1の送受信端において下り単方向伝送路17bからサーキュレータ18aを介して導波路グレーテング13で受信されて分波されて、各受信器5a〜5hで受信される。
【0035】
図5は、本発明の第5の実施形態に係る双方向波長多重光通信システムの構成を示す図である。同図に示す双方向波長多重光通信システムは、第1の送受信端と第2の送受信端との間で上りおよび下り用の別々の単方向伝送路17a,17bを使用して双方向波長多重光通信を行うものであるが、共通化合分波器として1波長分ずつずれる周期的特性を有する周期性導波路グレーテング23,29を使用しているものである。
【0036】
図5に示す双方向波長多重光通信システムに使用されている周期性導波路グレーテング23,29は、図6に示すようなチャネル関係を有し、伝送路側の2ポートからの入力のうち一方に対して他方が1波長ずつずれるような周期的特性を有するものである。
【0037】
すなわち、第1および第2の送受信端にそれぞれ使用されている周期性導波路グレーテング23,29は、複数の送信器1a〜1hおよび受信器5a〜5hが接続された第1乃至第16の複数の送受信端側ポートと上り単方向伝送路17aに接続された第1の伝送路側ポートおよび下り単方向伝送路17bに接続される2の伝送路側ポートを有する。
【0038】
周期性導波路グレーテング23,29は、それぞれλ1〜λ16の複数の波長の多重化信号光が第1の伝送路側ポートから周期性導波路グレーテング23,29に入力されると、該λ1〜λ16の複数の波長の多重化信号光は周期性導波路グレーテング23,29で分波され、第1乃至第16の複数の送受信端側ポートから別々に出力されるように機能する。また、λ1〜λ16の複数の波長の多重化信号光が周期性導波路グレーテング23,29の第2の伝送路側ポートに入力されると、図6のチャネル関係図に示すように、λ1〜λ16の複数の波長のうちλ1〜λ15の複数の波長の多重化信号光が分波され1波長ずつずらされて、第2乃至第16の送受信端側ポートから別々に出力されるように機能する。
【0039】
更に、周期性導波路グレーテング23,29は、λ1〜λ16の複数の波長の信号光が周期性導波路グレーテング23,29の第1乃至第16の複数の送受信端側ポートに入力されると、該λ1〜λ16の複数の波長の信号光は周期性導波路グレーテング23,29で多重化され、第1の伝送路側ポートから出力され、λ1〜λ15の複数の波長の信号光が第2乃至第16の送受信端側ポートに入力されると、該λ1〜λ15の複数の波長の信号光は多重化され、第2の伝送路側ポートから出力されるように機能する。
【0040】
上述したように機能する周期性導波路グレーテング23,29を第1および第2の送受信端にそれぞれ使用した双方向波長多重光通信システムにおいて、第1の送受信端では、周期性導波路グレーテング23の第1の伝送路側ポートを第2の送受信端に信号光を伝送する上り単方向伝送路17aに接続し、周期性導波路グレーテング23の第2の伝送路側ポートを第2の送受信端から信号光が伝送されてくる下り単方向伝送路17bに接続する。また、第2の送受信端では、周期性導波路グレーテング29の第1の伝送路側ポートを第1の送受信端から信号光が伝送されてくる上り単方向伝送路17aに接続し、周期性導波路グレーテング29の第2の伝送路側ポートを第1の送受信端に信号光を伝送する下り単方向伝送路17bに接続する。
【0041】
また、第1の送受信端において、λ1,λ3,λ5〜λ15の複数の波長をそれぞれ送信する複数の送信器1a〜1hを周期性導波路グレーテング23の第1、第3、…、第15の奇数番目の送受信端側ポートに接続し、λ1,λ3,λ5〜λ15の複数の波長をそれぞれ受信する複数の受信器5a〜5hを周期性導波路グレーテング23の第2、第4、…、第16の偶数番目の送受信端側ポートに接続する。第2の送受信端においては、λ1,λ3,λ5〜λ15の複数の波長をそれぞれ受信する複数の受信器11a〜11hを周期性導波路グレーテング29の第1、第3、…、第15の奇数番目の送受信端側ポートに接続し、λ1,λ3,λ5〜λ15の複数の波長をそれぞれ送信する複数の送信器15a〜15hを周期性導波路グレーテング29の第2、第4、…、第16の偶数番目の送受信端側ポートに接続する。
【0042】
上述したように接続した双方向波長多重光通信システムにおいて、第1の送受信端の複数の送信器1a〜1hからλ1,λ3,λ5〜λ15の奇数番目の複数の波長の信号光が周期性導波路グレーテング23の第1、第3、…、第15の複数の奇数番目の送受信端側ポートに入力されると、該複数の波長の信号光は周期性導波路グレーテング23で多重化され、この多重化されたλ1,λ3,λ5〜λ15の複数の波長の信号光は周期性導波路グレーテング23の第1の伝送路側ポートから上り単方向伝送路17aに送出される。
【0043】
この上り単方向伝送路17aに送出されたλ1,λ3,λ5〜λ15の複数の波長の多重化信号光は、第2の送受信端の周期性導波路グレーテング29の第1の伝送路側ポートに入力して、周期性導波路グレーテング29で分波され、周期性導波路グレーテング29の第1、第3、…、第15の奇数番目の複数の送受信端側ポートから別々に出力され、複数の受信器11a〜11hで受信される。
【0044】
また、第2の送受信端の複数の送信器15a〜15hからλ1,λ3,λ5〜λ15の奇数番目の複数の波長の信号光が周期性導波路グレーテング29の第2、第4、…、第16の複数の偶数番目の送受信端側ポートに入力されると、該複数の波長の信号光は周期性導波路グレーテング29で多重化され、この多重化されたλ1,λ3,λ5〜λ15の複数の波長の信号光は周期性導波路グレーテング29の第2の伝送路側ポートから下り単方向伝送路17bに送出される。
【0045】
この下り単方向伝送路17bに送出されたλ1,λ3,λ5〜λ15の複数の波長の多重化信号光は、第1の送受信端の周期性導波路グレーテング23の第2の伝送路側ポートに入力し、周期性導波路グレーテング23で分波され、周期性導波路グレーテング23の第2、第4、…、第16の偶数番目の複数の送受信端側ポートから別々に出力され、複数の受信器5a〜5hで受信される。
【0046】
図7は、本発明の第6の実施形態に係る双方向波長多重光通信システムの構成を示す図である。同図に示す双方向波長多重光通信システムは、図5に示した第5の実施形態と同様に第1の送受信端と第2の送受信端との間で上りおよび下り用の別々の単方向伝送路17a,17bを使用して双方向波長多重光通信を行うとともに、共通化合分波器として1波長分ずつずれる周期的特性を有する周期性導波路グレーテング33,39を使用することに加えて、一部を除く送受信信号に対してサーキュレータ32b〜32hおよび40b〜40hを使用して、送信信号を周期性導波路グレーテング33,39に供給し、受信信号を周期性導波路グレーテング33,39から取り出すようにして、同一の複数の波長λ1〜λ8を送受信し得るものである。
【0047】
図7に示す双方向波長多重光通信システムに使用されている周期性導波路グレーテング33,39は、図8に示すようなチャネル関係を有し、伝送路側の2ポートからの入力のうち一方に対して波長が1波長ずつずれるような周期的特性を有するものである。
【0048】
すなわち、第1および第2の送受信端にそれぞれ使用されている周期性導波路グレーテング33,39は、送信器1a〜1hまたは15a〜15hおよび受信器5a〜5hまたは受信器11a〜11hが直接またはサーキュレータ32b〜32hまたは40b〜40hを介して接続された第1乃至第9の複数の送受信端側ポートと上り単方向伝送路17aに接続された第1の伝送路側ポートおよび下り単方向伝送路17bに接続される2の伝送路側ポートを有する。
【0049】
周期性導波路グレーテング33,39は、それぞれλ1〜λ8の複数の波長の多重化信号光が第1の伝送路側ポートから入力されると、λ1〜λ8の波長は分波されて、それぞれ第1乃至第8の送受信端側ポートから別々に出力され、λ1〜λ8の複数の波長がそれぞれ第1乃至第8の複数の送受信端側ポートから入力されると、λ1〜λ8の複数の波長は多重化されて第1の伝送路側ポートから出力され、λ1〜λ8の複数の波長の多重化信号光が第2の伝送路側ポートから入力されると、第1乃至第8の波長は分波されるとともに、図8に示すチャネル関係図に示すように、1波長分ずつずれて、それぞれ第2乃至第9の送受信端側ポートから別々に出力され、λ1〜λ8の複数の波長がそれぞれ第2乃至第9の複数の送受信端側ポートから入力されると、λ1〜λ8の複数の波長は多重化されて第2の伝送路側ポートから出力されるように機能する。
【0050】
また、複数、すなわち第2乃至第8のサーキュレータ32b〜32h、および複数、すなわち第2乃至第8のサーキュレータ40b〜40hは、各々の入出力端が周期性導波路グレーテング33,39の第2乃至第8の送受信端側ポートに接続されている。
【0051】
更に、第1の送受信端においては、周期性導波路グレーテング33の第1の伝送路側ポートを第2の送受信端に信号光を伝送する上り単方向伝送路17aに接続し、周期性導波路グレーテング33の第2の伝送路側ポートを第1の送受信端から信号光が伝送されてくる下り単方向伝送路17bに接続する。そして、第2の送受信端に送信すべきλ1〜λ8の波長の複数の信号光のうち、第1の送信器1aからのλ1の波長の信号光は周期性導波路グレーテング33の第1の送受信端側ポートに直接入力され、λ1〜λ8の波長の複数の信号光はそれぞれ第2乃至第8のサーキュレータ32b〜32hの入力端から入出力端を介して周期性導波路グレーテング33の第2乃至第8の送受信端側ポートに入力され、第1乃至第8の送受信端側ポートに入力されたλ1〜λ8の複数の波長は周期性導波路グレーテング33で多重化されて、第1の伝送路側ポートから上り単方向伝送路17aに送出され、下り単方向伝送路17bから周期性導波路グレーテング33の第2の伝送路側ポートに入力するλ1〜λ8の波長の複数の多重化信号光は周期性導波路グレーテング33で分波され、λ1〜λ7の波長の複数の信号光が第2乃至第8の送受信端側ポートから第2乃至第8のサーキュレータ32b〜32hの入出力端を介して該サーキュレータの出力端から出力され、それぞれ受信器5a〜5gで受信され、λ8の波長の信号光は第9の送受信端側ポートから直接出力され、受信器5hで受信される。
【0052】
また、第2の送受信端においては、周期性導波路グレーテング39の第1の伝送路側ポートを第1の送受信端から信号光が伝送されてくる上り単方向伝送路17aに接続し、周期性導波路グレーテング39の第2の伝送路側ポートを第1の送受信端に信号光を伝送する下り単方向伝送路17bに接続する。そして、上り単方向伝送路17aから周期性導波路グレーテング39の第1の伝送路側ポートに入力するλ1〜λ8の波長の複数の多重化信号光は周期性導波路グレーテング39で分波され、この分波された複数の信号光のうちλ1の波長の信号光は周期性導波路グレーテング39の第1の送受信端側ポートから直接出力され、第1の受信器11aで受信され、λ2〜λ8の波長の複数の信号光はそれぞれ第2乃至第8のサーキュレータ40b〜40hの入出力端を介して出力端から出力され、第2乃至第8の受信器11a〜11hで受信される。
【0053】
また、複数の送信器15a〜15hから第1の送受信端に送信すべきλ1〜λ8の波長の複数の信号光のうち、λ1〜λ7の波長の複数の信号光は第2乃至第8のサーキュレータ40b〜40hの入力端から入出力端を介して周期性導波路グレーテング39の第2乃至第8の送受信端側ポートに入力され、λ8の波長の信号光は周期性導波路グレーテング39の第9の送受信側入出力ポートに直接入力し、第2乃至第9の送受信端側ポートに入力されたλ1〜λ8の複数の波長は周期性導波路グレーテング39で多重化されて、第2の伝送路側ポートから下り単方向伝送路17bに送出される。
【0054】
図9は、本発明の第7の実施形態に係る双方向波長多重光通信システムの構成を示す図である。同図に示す双方向波長多重光通信システムは、図7に示した第6の実施形態の双方向波長多重光通信システムにおいて周期性導波路グレーテング33,39の代わりに第1乃至第8の送受信端側ポートと第1および第2の伝送路側ポートを有する周期性導波路グレーテング43,49を使用するとともに、第6の実施形態の周期性導波路グレーテング33,39において波長が1波長ずつずれて第9の送受信端側ポートから出力されていた第8番目の波長を図10のチャネル関係図に示すように第1の送受信端側ポートから出力されるように周期性導波路グレーテング43,49を構成し、かつ第1のサーキュレータ32aを追加し、この第1のサーキュレータ32aの入出力端を周期性導波路グレーテング43,49の第1の送受信端側ポートに接続するように構成した点が異なるものであり、その他の構成および作用は同じである。
【0055】
すなわち、第1および第2の送受信端にそれぞれ使用されている周期性導波路グレーテング43,49は、第1乃至第8の複数の送受信端側ポートと単方向伝送路にそれぞれ接続される第1および第2の伝送路側ポートを有し、λ1〜λ8の複数の波長の多重化信号光が第1の伝送路側ポートから入力されると、λ1〜λ8の波長は分波されて、この分波されたλ1〜λ8の波長の複数の信号光はそれぞれ周期性導波路グレーテング43,49の第1乃至第8の送受信端側ポートから別々に出力され、λ1〜λ8の複数の波長の信号光がそれぞれ第1乃至第8の複数の送受信端側ポートから入力されると、λ1〜λ8の複数の波長は多重化されて第1の伝送路側ポートから出力され、λ1〜λ8の複数の波長の多重化信号光が第2の伝送路側ポートから入力されると、λ1〜λ8の波長は分波されて、この分波されたλ1〜λ8の波長のうち、λ1〜λ7の波長の信号光は周期性導波路グレーテング43,49の第2乃至第8の送受信端側ポートから別々に出力され、第8の波長の信号光は周期性導波路グレーテング43,49の第1の送受信端側ポートから出力され、λ1〜λ7の波長の信号光が周期性導波路グレーテング43,49の第2乃至第8の複数の送受信端側ポートに入力され、第8の波長の信号光が第1の送受信端側ポートに入力されると、この入力されたλ1〜λ8の複数の波長は多重化されて第2の伝送路側ポートから出力されるように機能する。
【0056】
また、第1の送受信端において第1乃至第8のサーキュレータ32a〜32hは、入出力端が周期性導波路グレーテング43の第1乃至第8の送受信端側ポートに接続され、入力端が送信器1a〜1hの出力に接続され、出力端が受信器5h,5a〜5gに接続されている。また同様に、第2の送受信端において第1乃至第8のサーキュレータ40a〜40hは、入出力端が周期性導波路グレーテング49の第1乃至第8の送受信端側ポートに接続され、出力端が受信器11a〜11hの入力に接続され、入力端が送信器15h,15a〜15gに接続されている。
【0057】
そして、第1の送受信端においては、周期性導波路グレーテング43の第1の伝送路側ポートを第2の送受信端に信号光を伝送する上り単方向伝送路17aに接続し、周期性導波路グレーテング43の第2の伝送路側ポートを第2の送受信端から信号光が伝送されてくる下り単方向伝送路17bに接続する。また、第2の送受信端においては、周期性導波路グレーテング49の第1の伝送路側ポートを第1の送受信端から信号光が伝送されてくる上り単方向伝送路17aに接続し、周期性導波路グレーテング49の第2の伝送路側ポートを第1の送受信端に信号光を伝送する下り単方向伝送路17bに接続する。
【0058】
第1の送受信端において、送信器1a〜1hから出力される第2の送受信端に送信すべきλ1〜λ8の波長の複数の信号光は、それぞれ第1乃至第8のサーキュレータ32a〜32hの入力端から入出力端を介して周期性導波路グレーテング43の第1乃至第8の送受信端側ポートに入力され、周期性導波路グレーテング43で多重化されて、第1の伝送路側ポートから上り単方向伝送路17aに送出される。この上り単方向伝送路17aに送出されたλ1〜λ8の波長の複数の多重化信号光は、第2の送受信端において周期性導波路グレーテング49の第1の伝送路側ポートで受信されて分波され、この分波されたλ1〜λ8の波長の信号光は、周期性導波路グレーテング49の第1乃至第8の送受信端側ポートから第1乃至第8のサーキュレータ40a〜40hの入出力端を介して出力端に出力され、受信器11a〜11hで受信される。
【0059】
また、第2の送受信端において、送信器15a〜15hから出力される送信すべきλ1〜λ8の波長の複数の信号光は、それぞれ第2乃至第8および第1のサーキュレータ40b〜40h,40aの入力端から入出力端を介して周期性導波路グレーテング49の第2乃至第8および第1の送受信端側ポートに入力され、この入力したλ1〜λ8の複数の波長の信号光は周期性導波路グレーテング49で多重化されて、第2の伝送路側ポートから下り単方向伝送路17bに送出される。この下り単方向伝送路17bに送出されたλ1〜λ8の波長の複数の信号光は、第1の送受信端において周期性導波路グレーテング43の第2の伝送路側ポートで受信されて分波され、第2乃至第8および第1の送受信端側ポートから出力され、第2乃至第8および第1のサーキュレータ32b〜32h,32aの入出力端から出力端を介して出力され、受信器5a〜5hで受信される。
【0060】
【発明の効果】
以上説明したように、本発明によれば、第1の送受信端において送信すべき複数の異なる波長の信号光は共通化合分波器で多重化されて双方向伝送路に送信されて、第2の送受信端において共通化合分波器で受信され分波されて出力され、また第2の送受信端において送信すべき複数の異なる波長の信号光は共通化合分波器で多重化されて双方向伝送路に送信されて、第1の送受信端において共通化合分波器で受信され分波されて出力されるので、共通化合分波器が送受信で共通化され、効率的で経済的な合分波を行うことができる。
【0061】
また、本発明によれば、第1の送受信端において送信すべき複数の異なる波長の信号光は複数のサーキュレータの入力端から入出力端を介して共通化合分波器に入力し多重化されて双方向伝送路に送信され、第2の送受信端において共通化合分波器で受信されて分波され、複数のサーキュレータの入出力端から出力端を介して出力され、また第2の送受信端において送信すべき複数の異なる波長の信号光は複数のサーキュレータの入力端から入出力端を介して共通化合分波器に入力し多重化されて双方向伝送路に送信され、第1の送受信端において共通化合分波器で受信されて分波され、複数のサーキュレータの入出力端から出力端を介して出力されるので、共通化合分波器が送受信で共通化され、効率的で経済的な合分波を行うことができるとともに、また送受信で同じ複数の波長を使用することができる。
【0062】
更に、本発明によれば、第1の送受信端において送信すべき複数の異なる波長の信号光は共通化合分波器で多重化され、サーキュレータの入出力端から出力端を介して双方向伝送路に送信されて、第2の送受信端においてサーキュレータの入力端から入出力端を介して共通化合分波器で受信され分波されて出力され、また第2の送受信端において送信すべき複数の異なる波長の信号光は共通化合分波器で多重化され、サーキュレータの入出力端から出力端を介して双方向伝送路に送信され、第1の送受信端においてサーキュレータの入力端から入出力端を介して共通化合分波器で受信され分波されて出力されるので、共通化合分波器が送受信で共通化され、効率的で経済的な合分波を行うことができる。
【0063】
本発明によれば、第1の送受信端において送信すべき複数の異なる波長の信号光は第2の複数のサーキュレータの入力端から入出力端を介して共通化合分波器に入力し多重化されて第1のサーキュレータの入出力端から出力端を介して双方向伝送路に送信され、第2の送受信端において第1のサーキュレータの入力端から入出力端を介して共通化合分波器で受信されて分波され、第2の複数のサーキュレータの入出力端から出力端を介して出力され、また第2の送受信端において送信すべき複数の異なる波長の信号光は第2の複数のサーキュレータの入力端から入出力端を介して共通化合分波器に入力し多重化されて第1のサーキュレータの入出力端から出力端を介して双方向伝送路に送信され、第1の送受信端において第1のサーキュレータの入力端から入出力端を介して共通化合分波器で受信されて分波され、第2の複数のサーキュレータの入出力端から出力端を介して出力されるので、共通化合分波器が送受信で共通化され、効率的で経済的な合分波を行うことができるとともに、また送受信で同じ複数の波長を使用することができる。
【0064】
また、本発明によれば、第1の送受信端において送信すべき複数の異なる波長の信号光は共通化合分波器で多重化されて一方の単方向伝送路に送信されて、第2の送受信端において共通化合分波器で受信され分波されて出力され、また第2の送受信端において送信すべき複数の異なる波長の信号光は共通化合分波器で多重化されて他方の単方向伝送路に送信されて、第1の送受信端において共通化合分波器で受信され分波されて出力されるので、共通化合分波器が送受信で共通化され、効率的で経済的な合分波を行うことができる。
【0065】
更に、本発明によれば、第1の送受信端において送信すべき複数の異なる波長の信号光のうち第1の波長の信号光は共通化合分波器に直列入力され、第2以降の複数の波長の信号光は複数のサーキュレータの入力端から入出力端を介して共通化合分波器に入力されて、多重化され、一方の単方向伝送路に送信され、第2の送受信端において共通化合分波器で受信されて分波され、第1の波長は共通化合分波器の第1の送受信端側ポートから出力されて受信され、第2以降の波長は複数のサーキュレータの入出力端から出力端を介して出力されて受信され、また第2の送受信端において送信すべき複数の異なる波長のうち、最後の波長を除く他の波長の複数の信号光は複数のサーキュレータの入力端から入出力端を介して共通化合分波器に入力され、最後の波長の信号光は共通化合分波器に直接入力されて、多重化され、他方の単方向伝送路に送信され、第1の送受信端において共通化合分波器で受信されて分波され、最後の波長を除く他の波長の複数の信号光は複数のサーキュレータの入出力端から出力端を介して出力され、最後の波長の信号光は共通化合分波器から直接出力されて受信されるので、共通化合分波器が送受信で共通化され、効率的で経済的な合分波を行うことができるとともに、また送受信で同じ複数の波長を使用することができる。
【0066】
本発明によれば、第1の送受信端において送信すべき複数の異なる波長の信号光は複数のサーキュレータの入力端から入出力端を介して共通化合分波器に入力されて多重化され、一方の単方向伝送路に送信され、第2の送受信端において共通化合分波器で受信されて分波され、複数のサーキュレータの入出力端から出力端を介して出力されて受信され、また第2の送受信端において送信すべき複数の異なる波長の信号光は複数のサーキュレータの入力端から入出力端を介して共通化合分波器に入力されて多重化され、他方の単方向伝送路に送信され、第1の送受信端において共通化合分波器で受信されて分波され、複数のサーキュレータの入出力端から出力端を介して出力されて受信されるので、共通化合分波器が送受信で共通化され、効率的で経済的な合分波を行うことができるとともに、また送受信で同じ複数の波長を使用することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る双方向波長多重光通信システムの構成を示す図である。
【図2】本発明の第2の実施形態に係る双方向波長多重光通信システムの構成を示す図である。
【図3】本発明の第3の実施形態に係る双方向波長多重光通信システムの構成を示す図である。
【図4】本発明の第4の実施形態に係る双方向波長多重光通信システムの構成を示す図である。
【図5】本発明の第5の実施形態に係る双方向波長多重光通信システムの構成を示す図である。
【図6】図5に示す双方向波長多重光通信システムにおける周期性導波路グレーテングのチャネル関係を示す表である。
【図7】本発明の第6の実施形態に係る双方向波長多重光通信システムの構成を示す図である。
【図8】図7に示す双方向波長多重光通信システムにおける周期性導波路グレーテングのチャネル関係を示す表である。
【図9】本発明の第7の実施形態に係る双方向波長多重光通信システムの構成を示す図である。
【図10】図9に示す双方向波長多重光通信システムにおける周期性導波路グレーテングのチャネル関係を示す表である。
【図11】従来の双方向波長多重光通信システムの構成を示す図である。
【符号の説明】
1a〜1h,15a〜15h 送信器
3,9 導波路グレーテング
5a〜5h,11a〜11h 受信器
7 双方向伝送路
12a〜12h,18a,18b,20a〜20h サーキュレータ
17a,17b 単方向伝送路
23,29,33,39,43,49 周期性導波路グレーテング
[0001]
BACKGROUND OF THE INVENTION
The present invention multiplexes a plurality of signal lights of different wavelengths, both between a first transmission / reception end and a second transmission / reception end via a bidirectional transmission path or separate unidirectional transmission paths for upstream and downstream. The present invention relates to a bidirectional wavelength division multiplexing optical communication system that performs bidirectional wavelength division multiplexing communication.
[0002]
[Prior art]
As shown in FIG. 11, a conventional bidirectional wavelength division multiplexing optical communication system of this type includes a plurality of multiplexers and demultiplexers for multiplexing / demultiplexing signal lights having different wavelengths λ1 to λ8. The gratings 53, 54, 59, 60 are used. More specifically, in order to perform bidirectional wavelength division multiplexing optical communication between the first transmission / reception terminal on the left side and the second transmission / reception terminal on the right side connected via the bidirectional transmission path 7, the first transmission / reception terminal 1, signal lights of wavelengths λ 1 to λ 8 output from the plurality of transmitters 1 a to 1 h are multiplexed by the waveguide grating 53 and sent to the bidirectional transmission path 7 via the circulator 55. The signal light having the wavelengths λ1 to λ8 sent to the bidirectional transmission path 7 is input to the waveguide grating 59 via the circulator 57 at the second transmission / reception end and demultiplexed, and is received by the plurality of receivers 11a to 11h. Received.
[0003]
In addition, the signal light having the wavelengths λ1 to λ8 output from the plurality of transmitters 15a to 15h at the second transmission / reception end is multiplexed by the waveguide grating 60 and transmitted to the bidirectional transmission path 7 via the circulator 57. Is done. The signal light having the wavelengths λ1 to λ8 sent to the bidirectional transmission path 7 is input to the waveguide grating 54 via the circulator 55 at the first transmission / reception end and demultiplexed, and is received by the plurality of receivers 5a to 5h. As received, signal light having a plurality of different wavelengths λ1 to λ8 is wavelength-multiplexed through the bidirectional transmission path 7 and transmitted.
[0004]
[Problems to be solved by the invention]
In the conventional bidirectional wavelength division multiplexing optical communication system described above, a plurality of, that is, four waveguide gratings are required for multiplexing / demultiplexing a plurality of signal lights having different wavelengths. There is a demand for a common multiplexer / demultiplexer.
[0005]
The present invention has been made in view of the above, and an object of the present invention is to provide a bidirectional wavelength division multiplexing optical communication system in which a multiplexer / demultiplexer is shared in transmission and reception to achieve economy and miniaturization. is there.
[0008]
[Means for Solving the Problems]
To achieve the above objective,Claim1The present invention described herein is bidirectional wavelength multiplexing in which a plurality of signal lights having different wavelengths are multiplexed, and bidirectional wavelength multiplexing communication is performed between the first transmission / reception end and the second transmission / reception end via the bidirectional transmission path. In the optical communication system, each of the first and second transmission / reception ends receives a first input / output port connected to a bi-directional transmission line and a plurality of signal lights having different wavelengths to be transmitted. And a plurality of second input / output ports from which a plurality of received signal lights having different wavelengths are output, and a plurality of signal lights having different wavelengths input from the plurality of second input / output ports are multiplexed. And sent to the bidirectional transmission path via the first input / output port, and demultiplexed the multiplexed signal lights of different wavelengths received from the bidirectional transmission path via the first input / output port. 2 Output from multiple I / O ports Common multiplexer / demultiplexers, a plurality of input / output terminals respectively connected to the second plurality of input / output ports of the common multiplexer / demultiplexers, and a plurality of signal lights having different wavelengths to be transmitted respectively. And a plurality of circulators having a plurality of output ends from which a plurality of received signal lights having different wavelengths are respectively output, and a plurality of signal lights having a plurality of different wavelengths inputted from the plurality of input ends. Output from the input / output terminal of the common multiplexer / demultiplexer, input to the second plurality of input / output ports of the common multiplexer / demultiplexer, and sent from the first input / output port of the common multiplexer / demultiplexer to the bidirectional transmission line, A plurality of signal lights having different wavelengths received from the bidirectional transmission path via the first input / output port are respectively input to the plurality of input / output terminals of the plurality of circulators via the plurality of second input / output ports; Multiple circulators A first direction signal light transmitted from the first transmission / reception end to the second transmission / reception end via the bidirectional transmission path and the second transmission / reception end. The gist is that the signal light in the second direction transmitted to the first transmission / reception end via the bidirectional transmission path has the same wavelength.
[0009]
  Claim1In the present invention described, signal light of a plurality of different wavelengths to be transmitted at the first transmission / reception end is input to the common multiplexer / demultiplexer from the input end of the plurality of circulators via the input / output ends and multiplexed. Transmitted to the bidirectional transmission path, received by the common multiplexer / demultiplexer at the second transmission / reception end, demultiplexed, output from the input / output ends of the plurality of circulators via the output end, and the second transmission / reception end A plurality of signal lights having different wavelengths to be transmitted are input to the common multiplexer / demultiplexer from the input ends of the plurality of circulators via the input / output ends, multiplexed, and transmitted to the bidirectional transmission path. Is received and demultiplexed by the common multiplexer / demultiplexer, and is output from the input / output ends of the plurality of circulators via the output end. Therefore, the common multiplexer / demultiplexer is shared in transmission and reception, and is efficient and economical. Can be combined and demultiplexed Rutotomoni, also can use the same multiple wavelengths in transmission and reception.
[0012]
  Also,Claim2In the described invention, a plurality of signal lights having different wavelengths are multiplexed, and bidirectional wavelength multiplexing is performed between the first transmission / reception end and the second transmission / reception end via separate unidirectional transmission paths for upstream and downstream. A bidirectional wavelength division multiplexing optical communication system for performing communication, wherein each of the first and second transmission / reception ends is connected to a unidirectional transmission path for transmitting signal light to the counterpart transmission / reception end, It has an input end connected to a unidirectional transmission path through which signal light from the other side transmission / reception end is transmitted, and an input / output end for signal light input / output, and the signal light input from the input / output end is output from the output end. A first circulator that outputs and outputs signal light input from the input end to the input / output end, a first input / output port connected to the input / output end of the first circulator, and transmission Multiple signal lights of different wavelengths And a plurality of second input / output ports from which a plurality of received signal lights having different wavelengths are respectively output, and a plurality of signal lights having different wavelengths input from the second plurality of input / output ports. Multiplexed and output to the input / output end of the circulator via the first input / output port, and sent to the unidirectional transmission path for signal light transmission from the input / output end of the circulator to the other transmission / reception end via the output end , A common combination that acts to demultiplex a plurality of multiplexed signal lights having different wavelengths received from the input / output end of the circulator via the first input / output port and to output them from the second plurality of input / output ports A plurality of input / output ends respectively connected to the second plurality of input / output ports of the common multiplexer / demultiplexer, a plurality of input ends to which signal lights having different wavelengths to be transmitted are respectively input, And received duplicates A plurality of second circulators having a plurality of output ends from which signal lights having different wavelengths are respectively output, and a plurality of signal lights having different wavelengths input from a plurality of input ends are output from a plurality of input / output ends. Output to the second plurality of input / output ports of the common multiplexer / demultiplexer, and output from the first input / output port of the common multiplexer / demultiplexer to the input / output terminal of the first circulator. Multiplexed signal lights of different wavelengths received from the input / output terminal of the first circulator via one input / output port are demultiplexed from the plurality of second input / output ports and output, and the second plurality A plurality of second circulators that respectively input to a plurality of input / output ends of the circulator and output from a plurality of output ends of the second plurality of circulators, and from one transmitting / receiving end to the other transmitting / receiving end Unidirectional transmission for signal light transmission Transmitted to one transmission / reception end via a unidirectional transmission path for signal light transmitted from the other transmission / reception end to one transmission / reception end and transmitted from the other transmission / reception end to the other transmission / reception end via the transmission path The gist of the second direction signal light is that the wavelengths are the same.
[0013]
  Claim2In the described invention, signal light having a plurality of different wavelengths to be transmitted at the first transmitting / receiving end is input to the common multiplexing / demultiplexing device from the input ends of the second plurality of circulators via the input / output ends. Multiplexed and transmitted from the input / output end of the first circulator to the bidirectional transmission path via the output end, and at the second transmission / reception end, the common multiplexing / demultiplexing from the input end of the first circulator via the input / output end The signal light having different wavelengths to be transmitted from the input / output terminals of the second plurality of circulators through the output terminal and to be transmitted at the second transmitting / receiving terminal is received by the second plurality of circulators. The first circulator is input to the common multiplexer / demultiplexer from the input end of the circulator through the input / output end, multiplexed and transmitted from the input / output end of the first circulator to the bidirectional transmission line via the output end, to the first transmission / reception. The first sir at the end Since it is received and demultiplexed by the common multiplexer / demultiplexer from the input end of the regulator through the input / output end, and output from the input / output ends of the second plurality of circulators via the output end, the common multiplexer / demultiplexer Can be shared in transmission and reception, and efficient and economical multiplexing / demultiplexing can be performed, and the same plurality of wavelengths can be used in transmission and reception.
[0014]
  Claims3In the described invention, a plurality of signal lights having different wavelengths are multiplexed, and bidirectional wavelength multiplexing is performed between the first transmission / reception end and the second transmission / reception end via separate unidirectional transmission paths for upstream and downstream. A bidirectional wavelength division multiplexing optical communication system for performing communication, wherein each of the first and second transmission / reception ends is connected to a plurality of first to nth transmission / reception end side ports and a unidirectional transmission path, respectively. 1 and a second transmission path side port, and when multiplexed signal light having a plurality of first to nth wavelengths is input from the first transmission path side port, the first to nth plurality of wavelengths. The multiplexed signal light is demultiplexed and output separately from the first to nth transmission / reception end side ports, and the multiplexed signal light of the first to nth plurality of wavelengths is sent to the second transmission line side port. When input, the first to n-1th wavelengths among the first to nth wavelengths. The multiplexed signal light is demultiplexed and shifted by one wavelength and output separately from the second to nth transmission / reception end side ports, and the first to nth plurality of wavelength signal lights are output to the first to nth signals. When input to a plurality of transmission / reception end side ports, the signal light of the first to nth plurality of wavelengths is multiplexed and output from the first transmission path side port, and the plurality of first to n−1th plurality of wavelengths are output. When signal light having a wavelength is input to the second to nth transmission / reception end side ports, the signal light having a plurality of wavelengths from the first to the (n-1) th is multiplexed and output from the second transmission path side port. The first transmission / reception end connects the first transmission path side port of the common multiplexing / demultiplexing to one unidirectional transmission path that transmits the signal light to the second transmission / reception end. The second transmission line side port of the common multiplexer / demultiplexer is connected to the other single unit from which the signal light is transmitted from the second transmission / reception end. , And n-1 odd-numbered signal lights having a plurality of odd-numbered wavelengths, the first, third,..., N-1th plurality of common multiplexers / demultiplexers. Are input to the odd-numbered transmission / reception end side ports and multiplexed, and the multiplexed signal lights of the first, third,..., N−1th wavelengths are transmitted from the first transmission path side port to one single unit. Of the first, third,..., N−1 odd-numbered wavelengths that are sent to the direction transmission line and input from the other unidirectional transmission line to the second transmission line side port of the common multiplexer / demultiplexer. The multiplexed signal light is demultiplexed by the common multiplexer / demultiplexer, and is separately output and received from the second, fourth,..., Nth even-number ports of the common multiplexer / demultiplexer, At the second transmitting / receiving end, the first transmission path side port of the common multiplexer / demultiplexer is connected to one unidirectional transmission path from which signal light is transmitted from the first transmitting / receiving end. Then, the second transmission path side port of the common multiplexer / demultiplexer is connected to the other unidirectional transmission path that transmits the signal light to the first transmission / reception end, and the first, third,. The odd-numbered signal lights having a plurality of wavelengths are input to the second, fourth,..., N-th even-number transmission / reception end side ports of the common multiplexer / demultiplexer and multiplexed. , 3,..., Signal light having a plurality of wavelengths of (n−1) th is sent from the second transmission path side port to the other unidirectional transmission path, and the first of the common multiplexer / demultiplexer is transmitted from the one unidirectional transmission path. .., N−1 odd-numbered multiplexed signal lights having a plurality of odd wavelengths are demultiplexed by a common multiplexer / demultiplexer. The gist is that they are separately output and received from a plurality of odd-numbered transmission / reception end side ports of the first, third,.
[0015]
  Claim3In the described invention, a plurality of signal lights having different wavelengths to be transmitted at the first transmitting / receiving end are multiplexed by the common multiplexer / demultiplexer and transmitted to one of the unidirectional transmission lines. A signal is received and demultiplexed by the common multiplexer / demultiplexer at the transmission / reception end, and is output after being demultiplexed, and a plurality of signal lights having different wavelengths to be transmitted at the second transmission / reception end are multiplexed by the common multiplexer / demultiplexer Since it is transmitted to the transmission line, received by the common multiplexer / demultiplexer at the first transmission / reception end, demultiplexed and output, the common multiplexer / demultiplexer is shared by transmission / reception, and efficient and economical multiplexing / demultiplexing. Can do waves.
[0016]
  Further claims4In the described invention, a plurality of signal lights having different wavelengths are multiplexed, and bidirectional wavelength multiplexing is performed between the first transmission / reception end and the second transmission / reception end via separate unidirectional transmission paths for upstream and downstream. A bidirectional wavelength division multiplexing optical communication system for performing communication, wherein each of first and second transmission / reception ends is connected to a plurality of first to (n + 1) th transmission / reception end-side ports and a unidirectional transmission path, respectively. And the second transmission path side port, and when multiplexed signal light having a plurality of first to nth wavelengths is input from the first transmission path side port, the first to nth wavelengths are demultiplexed. Are output separately from the first to nth transmission / reception end ports, and the first to nth plurality of wavelengths are input from the first to nth transmission / reception end ports, respectively. The nth plurality of wavelengths are multiplexed and output from the first transmission line side port. , When multiplexed signal light of a plurality of first to nth wavelengths is input from the second transmission line side port, the first to nth wavelengths are demultiplexed and shifted by one wavelength, respectively. When the second to (n + 1) th transmission / reception end side ports are separately output and the first to nth plurality of wavelengths are respectively input from the second to (n + 1) th transmission / reception end side ports, the first to nth And a common multiplexer / demultiplexer that is multiplexed and output from the second transmission line side port, and an input / output terminal for each of the second to nth transmission / reception end side ports of the common multiplexer / demultiplexer. A first transmission / reception end that transmits signal light to the second transmission / reception end through the first transmission path side port of the common multiplexer / demultiplexer. The second transmission line side port of the common multiplexer / demultiplexer Connected to the other unidirectional transmission path through which signal light is transmitted from the second transmission / reception end, the first of the plurality of signal lights having the first to nth wavelengths to be transmitted to the second transmission / reception end The signal light having the wavelength is directly input to the first transmission / reception end side port of the common multiplexer / demultiplexer, and the plurality of signal lights having the second to nth wavelengths are respectively input from the input ends of the plurality of circulators through the input / output ends. The first to nth wavelengths inputted to the second to nth transmission / reception end side ports of the common multiplexing / demultiplexing unit and the first to nth transmission / reception end side ports are common multiplexing / demultiplexing units. Multiplexed from the first transmission path side port to one unidirectional transmission path and input from the other unidirectional transmission path to the second transmission path side port of the common multiplexer / demultiplexer. Are multiplexed by a common multiplexer / demultiplexer, and the first to (n-1) th waves are multiplexed. A plurality of long signal lights are output and received from the output terminals of the circulators via the input / output terminals of the plurality of circulators from the second to nth transmission / reception terminal side ports, and the nth signal light is transmitted to the (n + 1) th transmission / reception terminal. One unidirectional transmission in which signal light is transmitted from the first transmission / reception end through the first transmission path side port of the common multiplexer / demultiplexer at the second transmission / reception end at the second transmission / reception end. A second transmission path side port of the common multiplexer / demultiplexer is connected to the other unidirectional transmission path that transmits the signal light to the first transmission / reception end, and the common multiplex / demultiplex is connected to the one unidirectional transmission path. A plurality of multiplexed signal lights having the first to nth wavelengths input to the first transmission path side port of the duplexer are demultiplexed by the common multiplexer / demultiplexer, and the first of the plurality of demultiplexed signal lights. Is the signal light of the wavelength of the first transmission / reception end side port of the common multiplexer / demultiplexer? The plurality of signal lights having the second to nth wavelengths are directly output and received, and the first to nth signals to be transmitted are output and received from the output terminals via the input / output terminals of the plurality of circulators, respectively. Among the plurality of signal lights having wavelengths, the plurality of signal lights having the first to n-1 wavelengths are transmitted from the input end of the circulator to the second to nth transmission / reception ends of the common multiplexer / demultiplexer via the input / output ends. The signal light of the nth wavelength input to the side port is directly input to the (n + 1) th transmission / reception side input / output port of the common multiplexer / demultiplexer, and is input to the second to (n + 1) th transmission / reception end side ports. The gist of the present invention is that the nth plurality of wavelengths are multiplexed by the common multiplexer / demultiplexer and transmitted from the second transmission path side port to the other unidirectional transmission path.
[0017]
  Claim4In the described invention, the signal light of the first wavelength among the signal lights of different wavelengths to be transmitted at the first transmitting / receiving end is input in series to the common multiplexer / demultiplexer, and the second and subsequent plural Is input to the common multiplexer / demultiplexer from the input ends of the plurality of circulators via the input / output ends, multiplexed, transmitted to one unidirectional transmission path, and shared by the second transmission / reception ends. The first wavelength is output and received from the first transmission / reception end side port of the common multiplexing / demultiplexing unit, and the second and subsequent wavelengths are input / output ends of a plurality of circulators. From the plurality of different wavelengths to be transmitted at the second transmission / reception end and from the plurality of different wavelengths other than the last wavelength are transmitted from the input ends of the plurality of circulators. Enter the common multiplexer / demultiplexer via the input / output terminals. The signal light of the last wavelength is directly input to the common multiplexer / demultiplexer, multiplexed, transmitted to the other unidirectional transmission path, and received by the common multiplexer / demultiplexer at the first transmission / reception end. A plurality of signal lights of other wavelengths excluding the last wavelength are output from the input / output terminals of the plurality of circulators via the output terminal, and the signal light of the last wavelength is directly output from the common multiplexer / demultiplexer. Since it is received, the common multiplexer / demultiplexer is shared by transmission / reception, and can perform multiplexing / demultiplexing efficiently and economically, and the same plurality of wavelengths can be used for transmission / reception.
[0018]
  Claim5In the described invention, a plurality of signal lights having different wavelengths are multiplexed, and bidirectional wavelength multiplexing is performed between the first transmission / reception end and the second transmission / reception end via separate unidirectional transmission paths for upstream and downstream. A bidirectional wavelength division multiplexing optical communication system for performing communication, wherein each of the first and second transmission / reception ends is connected to a plurality of first to nth transmission / reception end side ports and a unidirectional transmission path, respectively. 1 and second transmission path side ports, and when multiplexed signal light of a plurality of first to nth wavelengths is input from the first transmission path side port, the first to nth wavelengths are demultiplexed. Thus, the demultiplexed signal lights having the first to nth wavelengths are separately output from the first to nth transmission / reception end side ports of the common multiplexer / demultiplexer, respectively. Are input from a plurality of first to nth transmission / reception end side ports. The first to nth wavelengths are multiplexed and output from the first transmission path side port, and the multiplexed signal light of the first to nth wavelengths is input from the second transmission path side port. The first to nth wavelengths are demultiplexed, and among the demultiplexed first to nth wavelengths, the signal light of the first to n−1th wavelengths is the number of the common multiplexer / demultiplexer. The nth wavelength signal light is output separately from the 2nd to nth transmission / reception end side ports, and the nth wavelength signal light is output from the first transmission / reception end side port of the common multiplexer / demultiplexer. The signal light of the 1st to n-1 wavelengths is input to the second to nth transmission / reception end side ports of the common multiplexer / demultiplexer, and the signal light of the nth wavelength is input to the first transmission / reception end side port. When inputted, the inputted first to n-th plurality of wavelengths are multiplexed and outputted from the second transmission line side port. A first transmission / reception unit having a duplexer and first to nth circulators each having an input / output terminal connected to each of the first to nth transmission / reception end side ports of the common multiplexer / demultiplexer; At the end, the first transmission path side port of the common multiplexer / demultiplexer is connected to one unidirectional transmission path that transmits the signal light to the second transmission / reception end, and the second transmission path side port of the common multiplexer / demultiplexer Are connected to the other unidirectional transmission path through which the signal light is transmitted from the second transmission / reception end, and the plurality of signal lights having the first to nth wavelengths to be transmitted to the second transmission / reception end are respectively Through the input / output terminals of the plurality of n th circulators to the first to n th transmission / reception end ports of the common multiplexer / demultiplexer, multiplexed by the common multiplexer / demultiplexer, Sent from one transmission line side port to one unidirectional transmission line and shared from the other unidirectional transmission line A plurality of multiplexed signal lights having the first to nth wavelengths input to the second transmission line side port of the duplexer are demultiplexed by the common multiplexer / demultiplexer, and a plurality of multiplexed signal lights having the first to n−1 wavelengths are provided. The signal light is output and received from the output terminals of the circulators through the input / output terminals of the second to nth circulators from the second to nth transmission / reception end side ports, and the nth signal light is shared. It is output from the output terminal of the circulator via the input / output terminal of the first circulator and received from the first transmission / reception terminal side port of the demultiplexer. One transmission path side port is connected to one unidirectional transmission path from which signal light is transmitted from the first transmission / reception end, and the second transmission path side port of the common multiplexer / demultiplexer is connected to the first transmission / reception end as signal light. Connected to the other unidirectional transmission line for transmitting the one unidirectional transmission line. A plurality of multiplexed signal lights of first to nth wavelengths input from the path to the first transmission path side port of the common multiplexer / demultiplexer are demultiplexed by the common multiplexer / demultiplexer, and the demultiplexed first to The signal lights of the nth plurality of wavelengths are output from the output terminals of the circulators through the input / output terminals of the first to nth circulators from the first to nth transmission / reception end side ports, and are received and transmitted. Among the plurality of signal lights having the first to nth wavelengths to be transmitted, the plurality of signal lights having the first to n-1th wavelengths are respectively input to and output from the input terminals of the first to nth circulators. The nth wavelength signal light is input from the input end of the nth circulator through the input / output end of the common multiplexer / demultiplexer. To the first transmission / reception end side port of the first and nth input terminals. The signal light wavelengths are multiplexed in a common compound demultiplexer, and summarized in that transmitted from the second transmission line side ports in the other unidirectional transmission path.
[0019]
  Claim5In the present invention described, signal light having a plurality of different wavelengths to be transmitted at the first transmitting / receiving end is input to the common multiplexer / demultiplexer from the input ends of the plurality of circulators via the input / output ends, and multiplexed. Transmitted to one unidirectional transmission line, received and demultiplexed by the common multiplexer / demultiplexer at the second transmission / reception end, output from the input / output ends of the plurality of circulators and received via the output end, A plurality of signal lights having different wavelengths to be transmitted at the second transmitting / receiving end are input to the common multiplexer / demultiplexer from the input ends of the plurality of circulators via the input / output ends, and are multiplexed, and the other unidirectional transmission path Are received by the common multiplexer / demultiplexer at the first transmission / reception end, demultiplexed, output from the input / output ends of the plurality of circulators and received via the output end, and the common multiplexer / demultiplexer Common for sending and receiving , It is possible to perform efficient and economical demultiplexing, also can use the same multiple wavelengths in transmission and reception.
[0020]
  Claims6The present invention as described in claims 1 to5The gist of the invention described in any of the above is that the common multiplexer / demultiplexer includes a waveguide grating.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a configuration of a bidirectional wavelength division multiplexing optical communication system according to the first embodiment of the present invention. The bidirectional wavelength division multiplexing optical communication system shown in FIG. 1 is bidirectional between a first transmission / reception end located on the left side and a second transmission / reception end located on the right side via a bidirectional transmission path 7 made of an optical fiber. The first transmission / reception end has a waveguide grating 3 constituting a common multiplexer / demultiplexer having an input / output port connected to the bidirectional transmission path 7, and performs the wavelength division multiplexing optical communication. A plurality of transmitters 1a to 1h are connected to a plurality of input ports of the prong 3 and a plurality of different wavelengths λ1, λ3, λ5, λ7, λ9, λ11, and λ13 respectively output from the plurality of transmitters 1a to 1h. , Λ15 signal light is input, and a plurality of receivers 5a to 5h are connected to a plurality of output ports of the waveguide grating 3, and a plurality of different wavelengths λ2, λ4, respectively output from the plurality of output ports. λ6, λ8, λ10 λ12, λ14, adapted to receive at the receiver 5a~5h signal light .lambda.16.
[0022]
Similarly, the second transmission / reception end also has a waveguide grating 9 constituting a common multiplexer / demultiplexer in which an input / output port is connected to the bidirectional transmission path 7, and a plurality of inputs of the waveguide grating 9 are provided. A plurality of transmitters 15a to 15h are connected to the port, and signal lights of different wavelengths λ2, λ4, λ6, λ8, λ10, λ12, λ14, and λ16 output from the plurality of transmitters 15a to 15h, respectively. A plurality of receivers 11a to 11h are connected to a plurality of output ports of the waveguide grating 3 and a plurality of different wavelengths λ1, λ3, λ5, λ7, λ9, respectively output from the plurality of output ports. Signal light of λ11, λ13, and λ15 is received by the transmitters 15a to 15h.
[0023]
In the bidirectional wavelength division multiplexing optical communication system configured in this way, the upstream wavelengths λ1, λ3, λ5, λ7, λ9, λ11, λ13, and λ15 transmitted from one transmitting / receiving end to the other transmitting / receiving end are transmitted. The downstream wavelengths λ2, λ4, λ6, λ8, λ10, λ12, λ14, and λ16 transmitted from the transmitting / receiving end to one transmitting / receiving end are set differently, and the upstream wavelength interval and the downstream wavelength are also set. The interval is set to be the same. In this case, the wavelength interval between the waveguide gratings 3 and 9 is set to have a half period with respect to the wavelength interval of the transmission signal. At one transmission / reception end, a transmission signal is assigned to the odd channel of the waveguide grating 3 and a reception signal is assigned to the even channel. On the other hand, at the other transmission / reception end, reception is performed on the odd channel of the waveguide grating 9. Signals are assigned and transmission signals are assigned to even channels. In this way, transmission / reception signals are assigned to upstream and downstream wavelengths, wavelength intervals, odd-numbered and even-numbered channels, and by configuring as shown in FIG. Using the waveguide gratings 3 and 9, bidirectional wavelength division multiplexing optical communication can be performed between the first transmission / reception end and the second transmission / reception end via the bidirectional transmission path 7.
[0024]
FIG. 2 is a diagram showing a configuration of a bidirectional wavelength division multiplexing optical communication system according to the second embodiment of the present invention. The bi-directional wavelength division multiplexing optical communication system shown in the figure is for the case where the upstream and downstream wavelengths are the same, and the circulators 12a to 12h and 20a to 20h are used to share the transmission signal as a common multiplexer / demultiplexer. The signals are supplied to the waveguide gratings 13 and 19 and the received signals are taken out from the waveguide gratings 13 and 19.
[0025]
More specifically, the first input / output port of the waveguide grating 13 is connected to the bidirectional transmission path 7 at the first transmission / reception end, and the second plurality of input / output ports of the waveguide grating 13 are connected to the circulator 12a. It is connected to a plurality of input / output terminals of ˜12h. Further, a plurality of transmitters 1a to 1h for transmitting signal lights having a plurality of different wavelengths λ1 to λ8 are connected to a plurality of input terminals of the circulators 12a to 12h, and a plurality of signal lights from the transmitters 1a to 1h are connected to the circulator 12a. Are input to the second plurality of input / output ports of the waveguide grating 13 through the input / output terminals from the input terminal to 12 h, and sent to the bidirectional transmission line 7 from the first input / output port of the waveguide grating 13. And is received by the second transmitting / receiving terminal. Furthermore, receivers 5a to 5h for receiving signal lights having different wavelengths λ1 to λ8 are connected to a plurality of output ends of the circulators 12a to 12h.
[0026]
At the second transmission / reception end, the first input / output port of the waveguide grating 19 is connected to the bidirectional transmission line 7, and the second plurality of input / output ports of the waveguide grating 19 are connected to the circulators 20a to 20c. It is connected to a plurality of input / output terminals 20h. A plurality of transmitters 15a to 15h that transmit signal lights having a plurality of different wavelengths λ1 to λ8 are connected to a plurality of input ends of the circulators 20a to 20h, and a plurality of signal lights from the transmitters 15a to 15h are connected to the circulator 20a. Are input to the second plurality of input / output ports of the waveguide grating 19 via the input / output terminals from the input end of ˜20h, and sent to the bidirectional transmission path 7 from the first input / output port of the waveguide grating 19. And is received by the first transmitting / receiving end. Furthermore, receivers 11a to 11h for receiving signal lights having different wavelengths λ1 to λ8 are connected to a plurality of output ends of the circulators 20a to 20h.
[0027]
In the bidirectional wavelength division multiplexing optical communication system configured as described above, the signal lights having the wavelengths λ1 to λ8 transmitted from the plurality of transmitters 1a to 1h at the first transmitting / receiving end are guided through the circulators 12a to 12h. The signals are input to the grating 13, multiplexed, sent to the bidirectional transmission path 7, and transmitted from the bidirectional transmission path 7 to the second transmission / reception end. At the second transmission / reception end, the signal light having the wavelengths λ1 to λ8 transmitted from the first transmission / reception end to the bidirectional transmission path 7 is received by the waveguide grating 19 and separated into the signal lights having the wavelengths λ1 to λ8. The signal lights having the wavelengths λ1 to λ8 are received by the receivers 11a to 11h via the circulators 20a to 20h, respectively.
[0028]
Similarly, the signal lights having the wavelengths λ1 to λ8 transmitted from the plurality of transmitters 15a to 15h at the second transmitting / receiving end are input to the waveguide grating 19 through the circulators 20a to 20h and multiplexed. The data is sent to the bidirectional transmission path 7 and transmitted from the bidirectional transmission path 7 to the first transmission / reception end. At the first transmission / reception end, the signal light having the wavelengths λ1 to λ8 transmitted from the second transmission / reception end to the bidirectional transmission path 7 is received by the waveguide grating 13 and separated into the signal lights having the wavelengths λ1 to λ8. The signal lights having the wavelengths λ1 to λ8 are received by the receivers 5a to 5h via the circulators 12a to 12h, respectively.
[0029]
FIG. 3 is a diagram showing a configuration of a bidirectional wavelength division multiplexing optical communication system according to the third embodiment of the present invention. The bi-directional wavelength division multiplexing optical communication system shown in the figure is different from the bi-directional transmission path 7 in the bi-directional wavelength multiplexing optical communication system shown in FIG. The paths 17a and 17b are used, and the circulators 18a and 18b are used between the transmission lines and the waveguide gratings 3 and 9 for that purpose, and the other configurations and operations are the same.
[0030]
That is, the transmission signals transmitted from the plurality of transmitters 1a to 1h at the first transmission / reception end are multiplexed by the waveguide grating 3, and the upstream unidirectional transmission line 17a from the waveguide grating 3 through the circulator 18a. Is sent out. The transmission signal sent to the upstream unidirectional transmission path 17a is received and demultiplexed by the waveguide grating 9 from the upstream unidirectional transmission path 17a via the circulator 18b of the second transmission / reception end at the second transmission / reception end. And received by each of the receivers 11a to 11h.
[0031]
In addition, transmission signals transmitted from the plurality of transmitters 15a to 15h at the second transmission / reception end are multiplexed by the waveguide grating 9 and then transmitted from the waveguide grating 9 to the downstream unidirectional transmission line 17b via the circulator 18b. Is sent out. The transmission signal sent to the downstream unidirectional transmission path 17b is received and demultiplexed by the waveguide grating 3 from the downstream unidirectional transmission path 17b via the circulator 18a of the first transmission / reception end at the first transmission / reception end. And received by each of the receivers 5a to 5h.
[0032]
FIG. 4 is a diagram showing a configuration of a bidirectional wavelength division multiplexing optical communication system according to the fourth embodiment of the present invention. The bidirectional wavelength division multiplexing optical communication system shown in the figure uses separate unidirectional transmission lines 17a and 17b for uplink and downlink instead of the bidirectional transmission line 7 in the bidirectional wavelength division multiplexing optical communication system shown in FIG. For this purpose, the circulators 18a and 18b are used between the transmission line and the waveguide gratings 13 and 19, and the other configurations and operations are the same.
[0033]
That is, transmission signals transmitted from the plurality of transmitters 1a to 1h at the first transmission / reception end are input to the waveguide grating 13 through the plurality of circulators 12a to 12h and multiplexed, and the waveguide grating 13 is multiplexed. To the upstream unidirectional transmission line 17a through the circulator 18a. The transmission signal transmitted to the upstream unidirectional transmission path 17a is received by the waveguide grating 19 from the upstream unidirectional transmission path 17a via the circulator 18b and demultiplexed at the second transmission / reception end, and is received by each receiver. It is received at 11a to 11h.
[0034]
In addition, transmission signals transmitted from the plurality of transmitters 15a to 15h at the second transmission / reception end are input to the waveguide grating 19 through the plurality of circulators 20a to 20h and multiplexed, and the waveguide grating 19 is multiplexed. To the downstream unidirectional transmission line 17b via the circulator 18b. The transmission signal sent to the downstream unidirectional transmission path 17b is received and demultiplexed by the waveguide grating 13 from the downstream unidirectional transmission path 17b via the circulator 18a at the first transmission / reception end. Received at 5a to 5h.
[0035]
FIG. 5 is a diagram showing a configuration of a bidirectional wavelength division multiplexing optical communication system according to the fifth embodiment of the present invention. The bi-directional wavelength division multiplexing optical communication system shown in the figure uses bi-directional wavelength multiplexing using separate unidirectional transmission paths 17a and 17b for upstream and downstream between a first transmitting / receiving end and a second transmitting / receiving end. Although optical communication is performed, periodic waveguide gratings 23 and 29 having periodic characteristics shifted by one wavelength are used as a common multiplexer / demultiplexer.
[0036]
The periodic waveguide gratings 23 and 29 used in the bidirectional wavelength division multiplexing optical communication system shown in FIG. 5 have a channel relationship as shown in FIG. 6, and one of the inputs from the two ports on the transmission line side. The other has a periodic characteristic such that the other is shifted by one wavelength.
[0037]
In other words, the periodic waveguide gratings 23 and 29 used at the first and second transmission / reception terminals respectively include the first to sixteenth to which a plurality of transmitters 1a to 1h and receivers 5a to 5h are connected. A plurality of transmission / reception end side ports, a first transmission path side port connected to the upstream unidirectional transmission path 17a, and two transmission path side ports connected to the downstream unidirectional transmission path 17b.
[0038]
When the multiplexed signal lights having a plurality of wavelengths λ1 to λ16 are input to the periodic waveguide gratings 23 and 29 from the first transmission path side ports, the periodic waveguide gratings 23 and 29 respectively receive the λ1 to λ1. The multiplexed signal light having a plurality of wavelengths of λ16 is demultiplexed by the periodic waveguide gratings 23 and 29, and functions so as to be output separately from the first to sixteen transmission / reception end side ports. When multiplexed signal lights having a plurality of wavelengths λ1 to λ16 are input to the second transmission path side ports of the periodic waveguide gratings 23 and 29, as shown in the channel relation diagram of FIG. The multiplexed signal light having a plurality of wavelengths λ1 to λ15 among the plurality of wavelengths λ16 is demultiplexed and shifted by one wavelength, and is output separately from the second to sixteenth transmission / reception end side ports. .
[0039]
Further, in the periodic waveguide gratings 23 and 29, signal lights having a plurality of wavelengths of λ1 to λ16 are input to the first to sixteenth transmission / reception end side ports of the periodic waveguide gratings 23 and 29. Then, the signal lights having a plurality of wavelengths λ1 to λ16 are multiplexed by the periodic waveguide gratings 23 and 29, output from the first transmission path side port, and the signal lights having a plurality of wavelengths λ1 to λ15 When input to the 2nd to 16th transmission / reception end side ports, the signal lights having a plurality of wavelengths λ1 to λ15 are multiplexed and function to be output from the second transmission path side port.
[0040]
In the bidirectional wavelength division multiplexing optical communication system using the periodic waveguide gratings 23 and 29 functioning as described above at the first and second transmission / reception ends, respectively, the first transmission / reception end has a periodic waveguide grating. The first transmission path side port 23 is connected to the upstream unidirectional transmission path 17a for transmitting the signal light to the second transmission / reception end, and the second transmission path side port of the periodic waveguide grating 23 is connected to the second transmission / reception end. Is connected to a downstream unidirectional transmission line 17b through which signal light is transmitted. At the second transmission / reception end, the first transmission path side port of the periodic waveguide grating 29 is connected to the upstream unidirectional transmission path 17a through which the signal light is transmitted from the first transmission / reception end. The second transmission path side port of the waveguide grating 29 is connected to the downstream unidirectional transmission path 17b that transmits the signal light to the first transmission / reception end.
[0041]
Further, at the first transmission / reception end, a plurality of transmitters 1a to 1h that respectively transmit a plurality of wavelengths λ1, λ3, λ5 to λ15 are connected to the first, third,. Are connected to the odd-numbered transmission / reception end side ports, and a plurality of receivers 5a to 5h that respectively receive a plurality of wavelengths λ1, λ3, λ5 to λ15 are connected to the second, fourth,. , Connected to the 16th even-number transmission / reception end side port. At the second transmission / reception end, a plurality of receivers 11a to 11h that respectively receive a plurality of wavelengths λ1, λ3, λ5 to λ15 are connected to the first, third,. A plurality of transmitters 15a to 15h connected to the odd-numbered transmission / reception end side ports and transmitting a plurality of wavelengths λ1, λ3, λ5 to λ15, respectively, are connected to the second, fourth,. Connect to the 16th even-numbered transmitting / receiving port.
[0042]
In the bidirectional wavelength division multiplexing optical communication system connected as described above, signal light having a plurality of odd-numbered wavelengths λ1, λ3, λ5 to λ15 from the plurality of transmitters 1a to 1h at the first transmitting / receiving end is periodically guided. When input to the first, third,..., Fifteenth odd-number transmission / reception end side ports of the waveguide grating 23, the signal light of the plurality of wavelengths is multiplexed by the periodic waveguide grating 23. The multiplexed signal lights having a plurality of wavelengths of λ1, λ3, λ5 to λ15 are sent from the first transmission path side port of the periodic waveguide grating 23 to the upstream unidirectional transmission path 17a.
[0043]
The multiplexed signal light having a plurality of wavelengths λ1, λ3, λ5 to λ15 transmitted to the upstream unidirectional transmission path 17a is transmitted to the first transmission path side port of the periodic waveguide grating 29 at the second transmission / reception end. Input, demultiplexed by the periodic waveguide grating 29, and separately output from the first, third,..., Fifteenth odd-numbered transmission / reception end ports of the periodic waveguide grating 29, The signals are received by a plurality of receivers 11a to 11h.
[0044]
In addition, the signal light of the odd-numbered plurality of wavelengths λ1, λ3, λ5 to λ15 from the plurality of transmitters 15a to 15h at the second transmission / reception end is sent to the second, fourth,. When input to the sixteenth even-number transmission / reception end side ports, the signal lights of the plurality of wavelengths are multiplexed by the periodic waveguide grating 29, and the multiplexed λ1, λ3, λ5 to λ15 are multiplexed. Are transmitted from the second transmission path side port of the periodic waveguide grating 29 to the downstream unidirectional transmission path 17b.
[0045]
The multiplexed signal light having a plurality of wavelengths λ1, λ3, λ5 to λ15 sent to the downstream unidirectional transmission path 17b is transmitted to the second transmission path side port of the periodic waveguide grating 23 at the first transmission / reception end. Are input and demultiplexed by the periodic waveguide grating 23, and output separately from the second, fourth,..., Sixteenth even-numbered transmission / reception end side ports of the periodic waveguide grating 23. Are received by the receivers 5a to 5h.
[0046]
FIG. 7 is a diagram showing a configuration of a bidirectional wavelength division multiplexing optical communication system according to the sixth embodiment of the present invention. The bi-directional wavelength division multiplexing optical communication system shown in the figure is separate unidirectional for uplink and downlink between the first transmission / reception end and the second transmission / reception end as in the fifth embodiment shown in FIG. In addition to performing bidirectional wavelength division multiplexing optical communication using the transmission lines 17a and 17b and using the periodic waveguide gratings 33 and 39 having periodic characteristics shifted by one wavelength as a common multiplexer / demultiplexer. Then, using the circulators 32b to 32h and 40b to 40h for the transmission / reception signals excluding a part, the transmission signals are supplied to the periodic waveguide gratings 33 and 39, and the reception signals are transmitted to the periodic waveguide grating 33. , 39, the same plurality of wavelengths λ1 to λ8 can be transmitted and received.
[0047]
The periodic waveguide gratings 33 and 39 used in the bidirectional wavelength division multiplexing optical communication system shown in FIG. 7 have a channel relationship as shown in FIG. 8, and one of the inputs from the two ports on the transmission line side. In contrast, it has a periodic characteristic such that the wavelength is shifted by one wavelength.
[0048]
That is, the periodic waveguide gratings 33 and 39 used for the first and second transmission / reception terminals are directly connected to the transmitters 1a to 1h or 15a to 15h and the receivers 5a to 5h or the receivers 11a to 11h, respectively. Or the 1st thru | or 9th transmission / reception end side port connected via the circulators 32b-32h or 40b-40h, the 1st transmission line side port connected to the upstream unidirectional transmission path 17a, and the downstream unidirectional transmission path It has two transmission path side ports connected to 17b.
[0049]
In the periodic waveguide gratings 33 and 39, when multiplexed signal light having a plurality of wavelengths λ1 to λ8 is input from the first transmission path side port, the wavelengths λ1 to λ8 are demultiplexed, respectively. When the plurality of wavelengths λ1 to λ8 are output separately from the first to eighth transmission / reception end ports, and the plurality of wavelengths λ1 to λ8 are input from the first to eighth transmission / reception end ports, respectively, the plurality of wavelengths λ1 to λ8 are When multiplexed signal light having a plurality of wavelengths λ1 to λ8 is input from the second transmission path side port after being multiplexed and output from the first transmission path side port, the first to eighth wavelengths are demultiplexed. In addition, as shown in the channel relationship diagram of FIG. 8, each wavelength is shifted by one wavelength and output separately from the second to ninth transmission / reception end ports, and the plurality of wavelengths λ1 to λ8 are the second wavelengths. To 9th input / output ports When a plurality of wavelengths of λ1~λ8 functions to be output from the second transmission line side ports are multiplexed.
[0050]
In addition, the plurality, that is, the second to eighth circulators 32b to 32h, and the plurality, that is, the second to eighth circulators 40b to 40h, each of the input and output ends of the second periodic waveguide gratings 33 and 39 are second. To the eighth transmission / reception end port.
[0051]
Further, at the first transmission / reception end, the first transmission path side port of the periodic waveguide grating 33 is connected to the upstream unidirectional transmission path 17a that transmits the signal light to the second transmission / reception end. The second transmission path side port of the grating 33 is connected to the downstream unidirectional transmission path 17b through which signal light is transmitted from the first transmission / reception end. Of the plurality of signal lights having the wavelengths λ1 to λ8 to be transmitted to the second transmitting / receiving end, the signal light having the wavelength λ1 from the first transmitter 1a is the first of the periodic waveguide grating 33. A plurality of signal lights having wavelengths of λ1 to λ8 that are directly input to the transmission / reception end side ports are respectively input from the input ends of the second to eighth circulators 32b to 32h through the input / output ends of the periodic waveguide grating 33. The plurality of wavelengths λ1 to λ8 input to the second to eighth transmission / reception end side ports and input to the first to eighth transmission / reception end side ports are multiplexed by the periodic waveguide grating 33, A plurality of multiplexed signals having wavelengths of λ1 to λ8 that are transmitted from the transmission line side port to the upstream unidirectional transmission line 17a and input from the downstream unidirectional transmission line 17b to the second transmission line side port of the periodic waveguide grating 33 Light is periodic waveguide gray A plurality of signal lights having wavelengths λ1 to λ7, which are demultiplexed by the prongs 33, are output from the second to eighth transmission / reception end side ports via the input / output ends of the second to eighth circulators 32b to 32h. The signal light having a wavelength of λ8 is directly output from the ninth transmission / reception end side port and received by the receiver 5h.
[0052]
At the second transmission / reception end, the first transmission path side port of the periodic waveguide grating 39 is connected to the upstream unidirectional transmission path 17a through which signal light is transmitted from the first transmission / reception end. The second transmission path side port of the waveguide grating 39 is connected to the downstream unidirectional transmission path 17b that transmits the signal light to the first transmission / reception end. A plurality of multiplexed signal lights having wavelengths of λ1 to λ8 that are input from the upstream unidirectional transmission path 17a to the first transmission path side port of the periodic waveguide grating 39 are demultiplexed by the periodic waveguide grating 39. Among the plurality of demultiplexed signal lights, the signal light having the wavelength of λ1 is directly output from the first transmission / reception end side port of the periodic waveguide grating 39, received by the first receiver 11a, and λ2 A plurality of signal lights having a wavelength of ˜λ8 are output from the output terminals via the input / output terminals of the second to eighth circulators 40b to 40h, and are received by the second to eighth receivers 11a to 11h.
[0053]
Of the plurality of signal lights having the wavelengths λ1 to λ8 to be transmitted from the plurality of transmitters 15a to 15h to the first transmission / reception end, the plurality of signal lights having the wavelengths λ1 to λ7 are the second to eighth circulators. The signal light having a wavelength of λ8 is input from the input terminals 40 b to 40 h to the second transmission / reception end side ports of the periodic waveguide grating 39 via the input / output terminals. The plurality of wavelengths λ1 to λ8 that are directly input to the ninth transmission / reception side input / output port and input to the second to ninth transmission / reception end side ports are multiplexed by the periodic waveguide grating 39, and the second From the transmission line side port to the downstream unidirectional transmission line 17b.
[0054]
FIG. 9 is a diagram showing a configuration of a bidirectional wavelength division multiplexing optical communication system according to the seventh embodiment of the present invention. The bidirectional wavelength division multiplexing optical communication system shown in the figure is the first to eighth in place of the periodic waveguide gratings 33 and 39 in the bidirectional wavelength division multiplexing optical communication system of the sixth embodiment shown in FIG. The periodic waveguide gratings 43 and 49 having the transmission / reception end side port and the first and second transmission path side ports are used, and the wavelength in the periodic waveguide gratings 33 and 39 of the sixth embodiment is one wavelength. Periodic waveguide grating so that the eighth wavelength output from the ninth transmission / reception end port is shifted from the first transmission / reception end port as shown in the channel relationship diagram of FIG. 43, 49 and a first circulator 32a is added, and the input / output ends of the first circulator 32a are connected to the first transmitting / receiving end side ports of the periodic waveguide gratings 43, 49. Are those points configured to connect to the bets are different, other arrangements and operations are the same.
[0055]
That is, the periodic waveguide gratings 43 and 49 used for the first and second transmission / reception terminals are respectively connected to the first to eighth transmission / reception terminal ports and the unidirectional transmission lines. When multiplexed signal light having a plurality of wavelengths of λ1 to λ8 is input from the first transmission path side port, the wavelengths of λ1 to λ8 are demultiplexed. The plurality of signal lights having the wavelengths λ1 to λ8 are separately output from the first to eighth transmission / reception end side ports of the periodic waveguide gratings 43 and 49, and the signals having the plurality of wavelengths λ1 to λ8 are output. When light is input from the first to eighth transmission / reception end side ports, the wavelengths of λ1 to λ8 are multiplexed and output from the first transmission path side port, and the wavelengths of λ1 to λ8 are multiplexed. Is the multiplexed signal light of the second transmission line side port? When inputted, the wavelengths of λ1 to λ8 are demultiplexed, and among the demultiplexed wavelengths of λ1 to λ8, the signal light of the wavelengths of λ1 to λ7 is the second of the periodic waveguide gratings 43 and 49. Thru | or the 8th transmission / reception end side port separately, and the signal light of the 8th wavelength is output from the 1st transmission / reception end side port of the periodic waveguide gratings 43 and 49, and the signal of the wavelength of (lambda) 1- (lambda) 7 When light is input to the plurality of second to eighth transmission / reception end side ports of the periodic waveguide gratings 43 and 49 and signal light of the eighth wavelength is input to the first transmission / reception end side port, The input wavelengths λ1 to λ8 are multiplexed and output from the second transmission line side port.
[0056]
The first to eighth circulators 32a to 32h at the first transmission / reception end are connected to the first transmission / reception end side ports of the periodic waveguide grating 43 at the input / output ends, and the input ends are transmitted. The outputs are connected to the outputs of the receivers 1a to 1h, and the output ends are connected to the receivers 5h and 5a to 5g. Similarly, at the second transmission / reception end, the first to eighth circulators 40a to 40h have input / output ends connected to the first to eighth transmission / reception end side ports of the periodic waveguide grating 49, and output ends. Are connected to the inputs of the receivers 11a to 11h, and the input ends thereof are connected to the transmitters 15h and 15a to 15g.
[0057]
At the first transmission / reception end, the first transmission path side port of the periodic waveguide grating 43 is connected to the upstream unidirectional transmission path 17a that transmits the signal light to the second transmission / reception end, and the periodic waveguide The second transmission path side port of the grating 43 is connected to the downstream unidirectional transmission path 17b through which signal light is transmitted from the second transmission / reception end. In the second transmission / reception end, the first transmission path side port of the periodic waveguide grating 49 is connected to the upstream unidirectional transmission path 17a through which signal light is transmitted from the first transmission / reception end. The second transmission path side port of the waveguide grating 49 is connected to the downstream unidirectional transmission path 17b that transmits the signal light to the first transmission / reception end.
[0058]
At the first transmission / reception end, a plurality of signal lights having wavelengths λ1 to λ8 to be transmitted to the second transmission / reception ends output from the transmitters 1a to 1h are input to the first to eighth circulators 32a to 32h, respectively. The signal is input from the end to the first to eighth transmission / reception end side ports of the periodic waveguide grating 43 via the input / output end, multiplexed by the periodic waveguide grating 43, and transmitted from the first transmission path side port. It is sent to the upstream unidirectional transmission line 17a. A plurality of multiplexed signal lights having wavelengths of λ1 to λ8 sent to the upstream unidirectional transmission path 17a are received by the first transmission path side port of the periodic waveguide grating 49 at the second transmission / reception end. The signal light having a wavelength of λ1 to λ8 that is demultiplexed is input / output from the first to eighth transmission / reception end side ports of the periodic waveguide grating 49 to the first to eighth circulators 40a to 40h. The signal is output to the output terminal via the terminal and received by the receivers 11a to 11h.
[0059]
Further, at the second transmitting / receiving end, a plurality of signal lights having wavelengths λ1 to λ8 to be transmitted output from the transmitters 15a to 15h are respectively transmitted from the second to eighth and first circulators 40b to 40h and 40a. The signal light having a plurality of wavelengths λ1 to λ8 is input to the second to eighth and first transmission / reception end side ports of the periodic waveguide grating 49 from the input end through the input / output end. The signals are multiplexed by the waveguide grating 49 and sent out from the second transmission path side port to the downstream unidirectional transmission path 17b. A plurality of signal lights having wavelengths λ1 to λ8 sent to the downstream unidirectional transmission path 17b are received and demultiplexed at the second transmission path side port of the periodic waveguide grating 43 at the first transmission / reception end. , Output from the second to eighth and first transmission / reception end side ports, output from the input / output ends of the second to eighth and first circulators 32b to 32h, 32a through the output end, and received by the receivers 5a to 5a. Received in 5h.
[0060]
【The invention's effect】
As described above, according to the present invention, the signal lights having different wavelengths to be transmitted at the first transmitting / receiving end are multiplexed by the common multiplexer / demultiplexer and transmitted to the bidirectional transmission path. At the transmission / reception end, a common multiplexing / demultiplexing unit receives, demultiplexes and outputs, and a plurality of different wavelength signal lights to be transmitted at the second transmitting / receiving end are multiplexed by the common multiplexing / demultiplexing unit and transmitted bidirectionally. Since it is transmitted to the path, received by the common multiplexer / demultiplexer at the first transmission / reception end, demultiplexed and output, the common multiplexer / demultiplexer is shared by transmission / reception, and efficient and economical multiplexing / demultiplexing It can be performed.
[0061]
Further, according to the present invention, signal lights having a plurality of different wavelengths to be transmitted at the first transmitting / receiving end are input to the common multiplexer / demultiplexer from the input ends of the plurality of circulators and multiplexed. It is transmitted to the bidirectional transmission line, received by the common multiplexer / demultiplexer at the second transmission / reception end, demultiplexed, output from the input / output ends of the plurality of circulators via the output end, and at the second transmission / reception end. A plurality of signal lights having different wavelengths to be transmitted are input to the common multiplexer / demultiplexer from the input ends of the plurality of circulators via the input / output ends, multiplexed and transmitted to the bidirectional transmission path. Since it is received and demultiplexed by the common multiplexer / demultiplexer and output from the input / output terminals of the multiple circulators via the output terminal, the common multiplexer / demultiplexer is shared for transmission and reception, making it efficient and economical. Can demultiplex Together, also may use the same plurality of wavelength in transmission and reception.
[0062]
Further, according to the present invention, a plurality of signal lights having different wavelengths to be transmitted at the first transmitting / receiving end are multiplexed by the common multiplexer / demultiplexer, and the bidirectional transmission line is connected from the input / output end of the circulator to the output end. To the second transmission / reception end, received from the input / output end of the circulator via the input / output end, demultiplexed and output, and transmitted to the second transmission / reception end. The wavelength signal light is multiplexed by the common multiplexer / demultiplexer, transmitted from the input / output end of the circulator to the bidirectional transmission line via the output end, and from the input end of the circulator to the input / output end at the first transmission / reception end. Since the signal is received by the common multiplexer / demultiplexer, demultiplexed and output, the common multiplexer / demultiplexer is shared by transmission and reception, and efficient and economical multiplexing / demultiplexing can be performed.
[0063]
According to the present invention, signal lights having different wavelengths to be transmitted at the first transmitting / receiving end are input to the common multiplexer / demultiplexer from the input ends of the second plurality of circulators via the input / output ends, and are multiplexed. Transmitted from the input / output end of the first circulator to the bidirectional transmission line via the output end, and received by the common multiplexer / demultiplexer at the second transmission / reception end from the input end of the first circulator via the input / output end. The signal light having a plurality of different wavelengths to be transmitted from the input / output ends of the second plurality of circulators through the output end and transmitted at the second transmitting / receiving end is transmitted to the second plurality of circulators. The signal is input from the input end to the common multiplexer / demultiplexer via the input / output end, multiplexed and transmitted from the input / output end of the first circulator to the bidirectional transmission line via the output end. 1 circular Is received and demultiplexed by the common multiplexer / demultiplexer from the input end of the second plurality of circulators, and is output from the input / output ends of the second plurality of circulators via the output end. It can be shared in transmission and reception, can perform efficient and economical multiplexing / demultiplexing, and can use the same plurality of wavelengths in transmission and reception.
[0064]
Further, according to the present invention, signal light having a plurality of different wavelengths to be transmitted at the first transmission / reception end is multiplexed by the common multiplexer / demultiplexer and transmitted to one unidirectional transmission path, so that the second transmission / reception is performed. At the end, the signal is demultiplexed and output by the common multiplexer / demultiplexer, and the signal light having a plurality of different wavelengths to be transmitted at the second transmitting / receiving end is multiplexed by the common multiplexer / demultiplexer and transmitted to the other one-way Since it is transmitted to the path, received by the common multiplexer / demultiplexer at the first transmission / reception end, demultiplexed and output, the common multiplexer / demultiplexer is shared by transmission / reception, and efficient and economical multiplexing / demultiplexing It can be performed.
[0065]
Further, according to the present invention, the signal light having the first wavelength among the signal lights having different wavelengths to be transmitted at the first transmitting / receiving end is serially input to the common multiplexer / demultiplexer, Wavelength signal light is input to the common multiplexer / demultiplexer from the input ends of the multiple circulators via the input / output ends, multiplexed, transmitted to one unidirectional transmission path, and shared by the second transmitter / receiver end. The first wavelength is output and received from the first transmission / reception end side port of the common multiplexing / demultiplexing unit, and the second and subsequent wavelengths are received from the input / output ends of the plurality of circulators. Among a plurality of different wavelengths to be output and received via the output end and to be transmitted at the second transmitting / receiving end, a plurality of signal lights other than the last wavelength are input from the input ends of the plurality of circulators. Input to common multiplexer / demultiplexer via output terminal The signal light of the last wavelength is directly input to the common multiplexer / demultiplexer, multiplexed, transmitted to the other unidirectional transmission path, and received by the common multiplexer / demultiplexer at the first transmission / reception end. A plurality of signal lights of other wavelengths excluding the last wavelength are output from the input / output terminals of the plurality of circulators via the output terminal, and the signal light of the last wavelength is directly output from the common multiplexer / demultiplexer. Since it is received, the common multiplexer / demultiplexer is shared by transmission / reception, and efficient and economical multiplexing / demultiplexing can be performed, and the same plurality of wavelengths can be used for transmission / reception.
[0066]
According to the present invention, a plurality of signal lights having different wavelengths to be transmitted at the first transmitting / receiving end are input to the common multiplexer / demultiplexer from the input ends of the plurality of circulators via the input / output ends, and multiplexed. Is transmitted to the unidirectional transmission line, received by the common multiplexer / demultiplexer at the second transmission / reception end, demultiplexed, output from the input / output ends of the plurality of circulators via the output end, and received. A plurality of signal lights having different wavelengths to be transmitted at the transmission / reception end are input to the common multiplexer / demultiplexer from the input ends of the plurality of circulators via the input / output ends, multiplexed, and transmitted to the other unidirectional transmission path. Since the signal is received and demultiplexed by the common multiplexer / demultiplexer at the first transmission / reception end, and is output and received from the input / output ends of the plurality of circulators via the output end, the common multiplexer / demultiplexer is common for transmission / reception. And efficiency In it is possible to perform the economic demultiplexing, also you can use the same multiple wavelengths in transmission and reception.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a bidirectional wavelength division multiplexing optical communication system according to a first embodiment of the present invention.
FIG. 2 is a diagram showing a configuration of a bidirectional wavelength division multiplexing optical communication system according to a second embodiment of the present invention.
FIG. 3 is a diagram showing a configuration of a bidirectional wavelength division multiplexing optical communication system according to a third embodiment of the present invention.
FIG. 4 is a diagram showing a configuration of a bidirectional wavelength division multiplexing optical communication system according to a fourth embodiment of the present invention.
FIG. 5 is a diagram showing a configuration of a bidirectional wavelength division multiplexing optical communication system according to a fifth embodiment of the present invention.
6 is a table showing channel relationships of periodic waveguide gratings in the bidirectional wavelength division multiplexing optical communication system shown in FIG.
FIG. 7 is a diagram showing a configuration of a bidirectional wavelength division multiplexing optical communication system according to a sixth embodiment of the present invention.
8 is a table showing the channel relationship of periodic waveguide grating in the bidirectional wavelength division multiplexing optical communication system shown in FIG.
FIG. 9 is a diagram showing a configuration of a bidirectional wavelength division multiplexing optical communication system according to a seventh embodiment of the present invention.
10 is a table showing the channel relationship of periodic waveguide grating in the bidirectional wavelength division multiplexing optical communication system shown in FIG.
FIG. 11 is a diagram showing a configuration of a conventional bidirectional wavelength division multiplexing optical communication system.
[Explanation of symbols]
1a-1h, 15a-15h Transmitter
3,9 Waveguide grating
5a-5h, 11a-11h Receiver
7 Bidirectional transmission line
12a-12h, 18a, 18b, 20a-20h Circulator
17a, 17b Unidirectional transmission line
23, 29, 33, 39, 43, 49 Periodic waveguide grating

Claims (6)

複数の異なる波長の信号光を多重化し、双方向伝送路を介して第1の送受信端と第2の送受信端との間で双方向波長多重通信を行う双方向波長多重光通信システムであって、
前記第1および第2の送受信端の各々は、
双方向伝送路に接続された第1の入出力ポート、および送信すべき複数の異なる波長の信号光がそれぞれ入力されるとともに、受信した複数の異なる波長の信号光がそれぞれ出力される第2の複数の入出力ポートを備え、該第2の複数の入出力ポートから入力された複数の異なる波長の信号光を多重化して第1の入出力ポートを介して双方向伝送路に送出し、第1の入出力ポートを介して双方向伝送路から受信した複数の異なる波長の多重化信号光を分波して第2の複数の入出力ポートから出力するように作用する共通化合分波器と、
該共通化合分波器の第2の複数の入出力ポートにそれぞれ接続された複数の入出力端、送信すべき複数の異なる波長の信号光がそれぞれ入力される複数の入力端、および受信した複数の異なる波長の信号光がそれぞれ出力される複数の出力端を備えた複数のサーキュレータであって、複数の入力端から入力された複数の異なる波長の信号光を複数の入出力端から出力して、前記共通化合分波器の第2の複数の入出力ポートに入力し、共通化合分波器の第1の入出力ポートから双方向伝送路に送出し、該第1の入出力ポートを介して双方向伝送路から受信した複数の異なる波長の信号光を複数の第2の入出力ポートを介して前記複数のサーキュレータの複数の入出力端にそれぞれ入力し、該複数のサーキュレータの複数の出力端から出力する複数のサーキュレータとを有し、
第1の送受信端から双方向伝送路を介して第2の送受信端に送信される第1の方向の信号光と第2の送受信端から双方向伝送路を介して第1の送受信端に送信される第2の方向の信号光は波長が同じであること
を特徴とする双方向波長多重光通信システム。
A bidirectional wavelength division multiplexing optical communication system that multiplexes a plurality of signal lights having different wavelengths and performs bidirectional wavelength division multiplexing communication between a first transmission / reception end and a second transmission / reception end via a bidirectional transmission path. ,
Each of the first and second transmitting and receiving ends is
A first input / output port connected to the bidirectional transmission path and a plurality of signal lights having different wavelengths to be transmitted are respectively input, and a plurality of received signal lights having different wavelengths are respectively output. A plurality of input / output ports, a plurality of signal lights of different wavelengths input from the second plurality of input / output ports are multiplexed and sent to the bidirectional transmission line via the first input / output port; A common multiplexer / demultiplexer that operates to demultiplex a plurality of multiplexed signal lights having different wavelengths received from a bidirectional transmission path via one input / output port and output the demultiplexed signals from a plurality of second input / output ports; ,
A plurality of input / output terminals respectively connected to the second plurality of input / output ports of the common multiplexer / demultiplexer, a plurality of input terminals to which signal lights having different wavelengths to be transmitted are respectively input, and a plurality of received terminals A plurality of circulators having a plurality of output ends from which signal lights having different wavelengths are output, and outputting a plurality of signal lights having different wavelengths input from a plurality of input ends from a plurality of input / output ends. , Input to the second plurality of input / output ports of the common multiplexer / demultiplexer, and sent from the first input / output port of the common multiplexer / demultiplexer to the bi-directional transmission line, via the first input / output port A plurality of signal lights having different wavelengths received from the bidirectional transmission path are respectively input to a plurality of input / output terminals of the plurality of circulators via a plurality of second input / output ports, and a plurality of outputs of the plurality of circulators are output. Output from the end And a circulator,
Signal light in the first direction transmitted from the first transmission / reception end to the second transmission / reception end via the bidirectional transmission path and transmission from the second transmission / reception end to the first transmission / reception end via the bidirectional transmission path The two-way signal light in the second direction has the same wavelength.
複数の異なる波長の信号光を多重化し、上りおよび下り用の別々の単方向伝送路を介して第1の送受信端と第2の送受信端との間で双方向波長多重通信を行う双方向波長多重光通信システムであって、
前記第1および第2の送受信端の各々は、
相手側送受信端に対して信号光を伝送する単方向伝送路に接続された出力端、相手側送受信端からの信号光が伝送されてくる単方向伝送路に接続された入力端、および信号光が入出力する入出力端を備え、入出力端から入力された信号光を出力端から出力し、入力端から入力された信号光を入出力端に出力するように作用する第1のサーキュレータと、
該第1のサーキュレータの入出力端に接続された第1の入出力ポート、および送信すべき複数の異なる波長の信号光がそれぞれ入力されるとともに、受信した複数の異なる波長の信号光がそれぞれ出力される第2の複数の入出力ポートを備え、該第2の複数の入出力ポートから入力された複数の異なる波長の信号光を多重化して第1の入出力ポートを介してサーキュレータの入出力端に出力し、サーキュレータの入出力端から出力端を介して相手側送受信端への信号光伝送用の単方向伝送路に送出し、第1の入出力ポートを介してサーキュレータの入出力端から受信した複数の異なる波長の多重化信号光を分波して第2の複数の入出力ポートから出力するように作用する共通化合分波器と、
該共通化合分波器の第2の複数の入出力ポートにそれぞれ接続された複数の入出力端、送信すべき複数の異なる波長の信号光がそれぞれ入力される複数の入力端、および受信した複数の異なる波長の信号光がそれぞれ出力される複数の出力端を備えた第2の複数のサーキュレータであって、複数の入力端から入力された複数の異なる波長の信号光を複数の入出力端から出力して、前記共通化合分波器の第2の複数の入出力ポートに入力し、共通化合分波器の第1の入出力ポートから第1のサーキュレータの入出力端に送出し、該第1の入出力ポートを介して第1のサーキュレータの入出力端から受信した複数の異なる波長の多重化信号光を複数の第2の入出力ポートから分波して出力し、前記第2の複数のサーキュレータの複数の入出力端にそれぞれ入力し、該第2の複数のサーキュレータの複数の出力端から出力する第2の複数のサーキュレータとを有し、
一方の送受信端から他方の送受信端への信号光伝送用の単方向伝送路を介して他方の送受信端に送信される第1の方向の信号光と他方の送受信端から一方の送受信端への信号光伝送用の単方向伝送路を介して一方の送受信端に送信される第2の方向の信号光は波長が同じであること
を特徴とする双方向波長多重光通信システム。
Bidirectional wavelength multiplexing two or more different wavelengths of signal light and performing bidirectional wavelength division multiplexing communication between the first transmission / reception end and the second transmission / reception end via separate unidirectional transmission paths for upstream and downstream A multiple optical communication system,
Each of the first and second transmitting and receiving ends is
An output terminal connected to a unidirectional transmission path that transmits signal light to the partner transmission / reception terminal, an input terminal connected to a unidirectional transmission path through which signal light from the partner transmission / reception terminal is transmitted, and signal light A first circulator having an input / output terminal for inputting / outputting, outputting signal light input from the input / output terminal from the output terminal, and outputting signal light input from the input terminal to the input / output terminal; ,
A first input / output port connected to the input / output terminal of the first circulator and a plurality of signal lights having different wavelengths to be transmitted are respectively input, and a plurality of received signal lights having different wavelengths are respectively output. A plurality of input / output ports, and a plurality of signal lights of different wavelengths inputted from the second plurality of input / output ports are multiplexed to input / output the circulator via the first input / output port. Is sent to the unidirectional transmission path for signal light transmission from the input / output end of the circulator to the transmitting / receiving end of the other party via the output end, and from the input / output end of the circulator via the first input / output port. A common multiplexer / demultiplexer that operates to demultiplex a plurality of received multiplexed signal lights having different wavelengths and output the demultiplexed signal lights from a plurality of second input / output ports;
A plurality of input / output terminals respectively connected to the second plurality of input / output ports of the common multiplexer / demultiplexer, a plurality of input terminals to which signal lights having different wavelengths to be transmitted are respectively input, and a plurality of received terminals A plurality of second circulators having a plurality of output ends from which signal lights having different wavelengths are respectively output, and a plurality of signal lights having different wavelengths input from a plurality of input ends are output from a plurality of input / output ends. Output to the second plurality of input / output ports of the common multiplexer / demultiplexer, and output from the first input / output port of the common multiplexer / demultiplexer to the input / output terminal of the first circulator. Multiplexed signal lights of different wavelengths received from the input / output terminal of the first circulator via one input / output port are demultiplexed from the plurality of second input / output ports and output, and the second plurality Multiple input / output ends of circulators And respectively enter, and a second plurality of circulator outputting a plurality of output ends of the plurality of circulators of the second,
A signal light in the first direction transmitted from one transmitting / receiving end to the other transmitting / receiving end via the unidirectional transmission path for signal light from the other transmitting / receiving end to the other transmitting / receiving end. 2. A bidirectional wavelength division multiplexing optical communication system, characterized in that the signal light in the second direction transmitted to one of the transmitting and receiving ends via the unidirectional transmission path for signal light has the same wavelength.
複数の異なる波長の信号光を多重化し、上りおよび下り用の別々の単方向伝送路を介して第1の送受信端と第2の送受信端との間で双方向波長多重通信を行う双方向波長多重光通信システムであって、
前記第1および第2の送受信端の各々は、
第1乃至第nの複数の送受信端側ポートと単方向伝送路にそれぞれ接続される第1および第2の伝送路側ポートを有し、第1乃至第nの複数の波長の多重化信号光が第1の伝送路側ポートから入力されると、該第1乃至第nの複数の波長の多重化信号光は分波されて、第1乃至第nの複数の送受信端側ポートから別々に出力され、第1乃至第nの複数の波長の多重化信号光が第2の伝送路側ポートに入力されると、該第1乃至第nの複数の波長のうち第1乃至第n−1の複数の波長の多重化信号光は分波され1波長ずつずらされて、第2乃至第nの送受信端側ポートから別々に出力され、第1乃至第nの複数の波長の信号光が第1乃至第nの複数の送受信端側ポートに入力されると、該第1乃至第nの複数の波長の信号光は多重化され、第1の伝送路側ポートから出力され、第1乃至第n−1の複数の波長の信号光が第2乃至第nの送受信端側ポートに入力されると、該第1乃至第n−1の複数の波長の信号光は多重化され、第2の伝送路側ポートから出力される共通化合分波器を有し、
第1の送受信端においては、共通化合分波器の第1の伝送路側ポートを第2の送受信端に信号光を伝送する一方の単方向伝送路に接続し、共通化合分波器の第2の伝送路側ポートを第2の送受信端から信号光が伝送されてくる他方の単方向伝送路に接続し、第1、第3、…、第n−1の奇数番目の複数の波長の信号光を共通化合分波器の第1、第3、…、第n−1の複数の奇数番目の送受信端側ポートに入力して多重化し、この多重化された第1、第3、…、第n−1の複数の波長の信号光を第1の伝送路側ポートから一方の単方向伝送路に送出し、他方の単方向伝送路から共通化合分波器の第2の伝送路側ポートに入力される第1、第3、…、第n−1の奇数番目の複数の波長の多重化信号光は共通化合分波器で分波され、共通化合分波器の第2、第4、…、第nの偶数番目の複数の送受信端側ポートから別々に出力されて受信され、
第2の送受信端においては、共通化合分波器の第1の伝送路側ポートを第1の送受信端から信号光が伝送されてくる一方の単方向伝送路に接続し、共通化合分波器の第2の伝送路側ポートを第1の送受信端に信号光を伝送する他方の単方向伝送路に接続し、第1、第3、…、第n−1の奇数番目の複数の波長の信号光を共通化合分波器の第2、第4、…、第nの複数の偶数番目の送受信端側ポートに入力して多重化し、この多重化された第1、第3、…、第n−1の複数の波長の信号光を第2の伝送路側ポートから他方の単方向伝送路に送出し、一方の単方向伝送路から共通化合分波器の第1の伝送路側ポートに入力される第1、第3、…、第n−1の奇数番目の複数の波長の多重化信号光は共通化合分波器で分波され、共通化合分波器の第1、第3、…、第n−1の奇数番目の複数の送受信端側ポートから別々に出力されて受信されること
を特徴とする双方向波長多重光通信システム。
Bidirectional wavelength multiplexing two or more different wavelengths of signal light and performing bidirectional wavelength division multiplexing communication between the first transmission / reception end and the second transmission / reception end via separate unidirectional transmission paths for upstream and downstream A multiple optical communication system,
Each of the first and second transmitting and receiving ends is
1st thru | or nth some transmission / reception end side port and the 1st and 2nd transmission path side port respectively connected to a unidirectional transmission path, The multiplexed signal light of a 1st thru | or nth several wavelength is received When input from the first transmission line side port, the multiplexed signal lights of the first to nth wavelengths are demultiplexed and output separately from the first to nth transmission / reception end side ports. , When multiplexed signal light of a plurality of first to n-th wavelengths is input to the second transmission path side port, a plurality of first to n-1-th plurality of the first to n-th plurality of wavelengths The multiplexed signal light of the wavelengths is demultiplexed and shifted by one wavelength and output separately from the second to nth transmission / reception end side ports, and the first to nth plurality of wavelength signal lights are output from the first to nth wavelengths. When input to a plurality of transmission / reception end side ports of n, the signal lights of the first to nth plurality of wavelengths are multiplexed, and the first When signal light having a plurality of wavelengths from the first to the (n−1) th wavelength is output from the transmission path side port and input to the second to the nth transmission / reception end side ports, the plurality of the first to n−1th wavelengths are provided. Signal light is multiplexed and has a common multiplexer / demultiplexer output from the second transmission line side port,
In the first transmission / reception end, the first transmission path side port of the common multiplexer / demultiplexer is connected to one unidirectional transmission path that transmits the signal light to the second transmission / reception end, and the second of the common multiplexer / demultiplexer is connected. Are connected to the other unidirectional transmission path through which signal light is transmitted from the second transmission / reception end, and the first, third,. , Are input to the first, third,..., N-1 odd-numbered transmission / reception end side ports of the common multiplexer / demultiplexer and multiplexed, and the multiplexed first, third,. Signal light having a plurality of wavelengths of n−1 is sent from the first transmission path side port to one unidirectional transmission path, and is input from the other unidirectional transmission path to the second transmission path side port of the common multiplexer / demultiplexer. The first, third,..., N−1 odd-numbered multiplexed signal lights of a plurality of wavelengths are demultiplexed by a common multiplexer / demultiplexer, and the common multiplexer / demultiplexer Second, fourth, ... it is received are separately output from the even-numbered plurality of transmitting and receiving end port of the n,
In the second transmitting / receiving end, the first transmission path side port of the common multiplexer / demultiplexer is connected to one unidirectional transmission path from which signal light is transmitted from the first transmitting / receiving end, and the common multiplexer / demultiplexer The second transmission path side port is connected to the other unidirectional transmission path that transmits the signal light to the first transmission / reception end, and the first, third,. Are input to the second, fourth,..., Nth even-number transmitting / receiving end side ports of the common multiplexer / demultiplexer and multiplexed, and the multiplexed first, third,. The signal light having a plurality of wavelengths is sent from the second transmission path side port to the other unidirectional transmission path, and input from the one unidirectional transmission path to the first transmission path side port of the common multiplexer / demultiplexer. 1, 3,..., N−1 odd-numbered multiplexed signal lights of a plurality of wavelengths are demultiplexed by the common multiplexer / demultiplexer. , Third, ..., way wavelength-multiplexed optical communication system, characterized in that it is received is output separately from the odd-numbered plurality of transmitting and receiving end port of the first n-1.
複数の異なる波長の信号光を多重化し、上りおよび下り用の別々の単方向伝送路を介して第1の送受信端と第2の送受信端との間で双方向波長多重通信を行う双方向波長多重光通信システムであって、
第1および第2の送受信端の各々は、
第1乃至第n+1の複数の送受信端側ポートと単方向伝送路にそれぞれ接続される第1および第2の伝送路側ポートを有し、第1乃至第nの複数の波長の多重化信号光が第1の伝送路側ポートから入力されると、第1乃至第nの波長は分波されて、それぞれ第1乃至第nの送受信端側ポートから別々に出力され、第1乃至第nの複数の波長がそれぞれ第1乃至第nの複数の送受信端側ポートから入力されると、第1乃至第nの複数の波長は多重化されて第1の伝送路側ポートから出力され、第1乃至第nの複数の波長の多重化信号光が第2の伝送路側ポートから入力されると、第1乃至第nの波長は分波されるとともに、1波長分ずつずれて、それぞれ第2乃至第n+1の送受信端側ポートから別々に出力され、第1乃至第nの複数の波長がそれぞれ第2乃至第n+1の複数の送受信端側ポートから入力されると、第1乃至第nの複数の波長は多重化されて第2の伝送路側ポートから出力される共通化合分波器と、
該共通化合分波器の第2乃至第nの送受信端側ポートの各々に入出力端が接続された第2乃至第nの複数のサーキュレータとを有し、
第1の送受信端においては、共通化合分波器の第1の伝送路側ポートを第2の送受信端に信号光を伝送する一方の単方向伝送路に接続し、共通化合分波器の第2の伝送路側ポートを第2の送受信端から信号光が伝送されてくる他方の単方向伝送路に接続し、第2の送受信端に送信すべき第1乃至第nの波長の複数の信号光のうち、第1の波長の信号光は共通化合分波器の第1の送受信端側ポートに直接入力され、第2乃至第nの波長の複数の信号光はそれぞれ前記複数のサーキュレータの入力端から入出力端を介して共通化合分波器の第2乃至第nの送受信端側ポートに入力され、第1乃至第nの送受信端側ポートに入力された第1乃至第nの複数の波長は共通化合分波器で多重化されて、第1の伝送路側ポートから一方の単方向伝送路に送出され、他方の単方向伝送路から共通化合分波器の第2の伝送路側ポートに入力する第1乃至第nの波長の複数の多重化信号光は共通化合分波器で分波され、第1乃至第n−1の波長の複数の信号光が第2乃至第nの送受信端側ポートから複数のサーキュレータの入出力端を介して該サーキュレータの出力端から出力されて受信され、第nの信号光が第n+1の送受信端側ポートから直接出力されて受信され、
第2の送受信端においては、共通化合分波器の第1の伝送路側ポートを第1の送受信端から信号光が伝送されてくる一方の単方向伝送路に接続し、共通化合分波器の第2の伝送路側ポートを第1の送受信端に信号光を伝送する他方の単方向伝送路に接続し、前記一方の単方向伝送路から共通化合分波器の第1の伝送路側ポートに入力する第1乃至第nの波長の複数の多重化信号光は共通化合分波器で分波され、この分波された複数の信号光のうち第1の波長の信号光は共通化合分波器の第1の送受信端側ポートから直接出力されて受信され、第2乃至第nの波長の複数の信号光はそれぞれ前記複数のサーキュレータの入出力端を介して出力端から出力されて受信され、送信すべき第1乃至第nの波長の複数の信号光のうち、第1乃至第n−1の波長の複数の信号光は前記サーキュレータの入力端から入出力端を介して共通化合分波器の第2乃至第nの送受信端側ポートに入力され、第nの波長の信号光は共通化合分波器の第n+1の送受信側入出力ポートに直接入力し、第2乃至第n+1の送受信端側ポートに入力された第1乃至第nの複数の波長は共通化合分波器で多重化されて、第2の伝送路側ポートから他方の単方向伝送路に送出されること
を特徴とする双方向波長多重光通信システム。
Bidirectional wavelength multiplexing two or more different wavelengths of signal light and performing bidirectional wavelength division multiplexing communication between the first transmission / reception end and the second transmission / reception end via separate unidirectional transmission paths for upstream and downstream A multiple optical communication system,
Each of the first and second transmitting and receiving ends is
1st thru | or n + 1 several transmission / reception end side port and the 1st and 2nd transmission path side port connected to a unidirectional transmission path, respectively, The multiplexed signal light of a 1st thru | or nth several wavelength is received. When input from the first transmission line side port, the first to nth wavelengths are demultiplexed and output separately from the first to nth transmission / reception end side ports, respectively. When wavelengths are respectively input from the first to nth transmission / reception end side ports, the first to nth wavelengths are multiplexed and output from the first transmission path side port, and the first to nth wavelengths are multiplexed. When the multiplexed signal light of a plurality of wavelengths is input from the second transmission line side port, the first to nth wavelengths are demultiplexed and shifted by one wavelength, respectively, and the second to n + 1th Output separately from the transmitting and receiving end side ports, and the first to nth wavelengths are A common multiplexer / demultiplexer that multiplexes the first to nth plurality of wavelengths and outputs them from the second transmission path side port when input from the second to (n + 1) th transmission / reception end side ports. When,
A plurality of second to nth circulators whose input / output terminals are connected to the second to nth transmission / reception end side ports of the common multiplexer / demultiplexer,
In the first transmission / reception end, the first transmission path side port of the common multiplexer / demultiplexer is connected to one unidirectional transmission path that transmits the signal light to the second transmission / reception end, and the second of the common multiplexer / demultiplexer is connected. Is connected to the other unidirectional transmission path through which signal light is transmitted from the second transmission / reception end, and a plurality of signal lights having the first to nth wavelengths to be transmitted to the second transmission / reception end are connected. Of these, the signal light of the first wavelength is directly input to the first transmission / reception end side port of the common multiplexer / demultiplexer, and the plurality of signal lights of the second to nth wavelengths are respectively input from the input ends of the plurality of circulators. The plurality of first to nth wavelengths input to the second to nth transmission / reception end side ports of the common multiplexer / demultiplexer via the input / output ends and input to the first to nth transmission / reception end side ports are: It is multiplexed by the common multiplexer / demultiplexer and sent from the first transmission line side port to one unidirectional transmission line. The plurality of multiplexed signal lights having the first to n-th wavelengths input from the other unidirectional transmission path to the second transmission path side port of the common multiplexer / demultiplexer are demultiplexed by the common multiplexer / demultiplexer, A plurality of signal lights of wavelengths 1 to n−1 are output from the output terminals of the circulators through the input / output terminals of the plurality of circulators from the second to nth transmission / reception end side ports, and received. The signal light is directly output and received from the (n + 1) th transmission / reception end side port,
In the second transmitting / receiving end, the first transmission path side port of the common multiplexer / demultiplexer is connected to one unidirectional transmission path from which signal light is transmitted from the first transmitting / receiving end, and the common multiplexer / demultiplexer The second transmission path side port is connected to the other unidirectional transmission path that transmits the signal light to the first transmission / reception end, and input from the one unidirectional transmission path to the first transmission path side port of the common multiplexer / demultiplexer The plurality of multiplexed signal lights having the first to nth wavelengths are demultiplexed by the common multiplexer / demultiplexer, and the signal light having the first wavelength among the plurality of demultiplexed signal lights is the common multiplexer / demultiplexer. A plurality of signal lights of the second to nth wavelengths are respectively output from the output end and received via the input / output ends of the plurality of circulators, and received. Of the plurality of signal lights of the first to nth wavelengths to be transmitted, the first to n−1th A plurality of signal lights having wavelengths are input from the input end of the circulator to the second to nth transmission / reception end side ports of the common multiplexer / demultiplexer via the input / output ends, and the signal light having the nth wavelength is input to the common integrated / demultiplexer. The first to nth plurality of wavelengths inputted directly to the (n + 1) th transmission / reception side input / output port of the wave filter and inputted to the second to (n + 1) th transmission / reception end side ports are multiplexed by the common multiplexer / demultiplexer. The bi-directional wavelength division multiplexing optical communication system is characterized by being sent from the second transmission path side port to the other unidirectional transmission path.
複数の異なる波長の信号光を多重化し、上りおよび下り用の別々の単方向伝送路を介して第1の送受信端と第2の送受信端との間で双方向波長多重通信を行う双方向波長多重光通信システムであって、
前記第1および第2の送受信端の各々は、
第1乃至第nの複数の送受信端側ポートと単方向伝送路にそれぞれ接続される第1および第2の伝送路側ポートを有し、第1乃至第nの複数の波長の多重化信号光が第1の伝送路側ポートから入力されると、第1乃至第nの波長は分波されて、この分波された第1乃至第nの波長の複数の信号光はそれぞれ共通化合分波器の第1乃至第nの送受信端側ポートから別々に出力され、第1乃至第nの複数の波長の信号光がそれぞれ第1乃至第nの複数の送受信端側ポートから入力されると、第1乃至第nの複数の波長は多重化されて第1の伝送路側ポートから出力され、第1乃至第nの複数の波長の多重化信号光が第2の伝送路側ポートから入力されると、第1乃至第nの波長は分波されて、この分波された第1乃至第nの波長のうち、第1乃至第n−1の波長の信号光は共通化合分波器の第2乃至第nの送受信端側ポートから別々に出力され、第nの波長の信号光は共通化合分波器の第1の送受信端側ポートから出力され、第1乃至第nの波長のうち第1乃至第n−1の波長の信号光が共通化合分波器の第2乃至第nの複数の送受信端側ポートに入力され、第nの波長の信号光が第1の送受信端側ポートに入力されると、この入力された第1乃至第nの複数の波長は多重化されて第2の伝送路側ポートから出力される共通化合分波器と、
該共通化合分波器の第1乃至第nの送受信端側ポートの各々に入出力端が接続された第1乃至第nの複数のサーキュレータとを有し、
第1の送受信端においては、共通化合分波器の第1の伝送路側ポートを第2の送受信端に信号光を伝送する一方の単方向伝送路に接続し、共通化合分波器の第2の伝送路側ポートを第2の送受信端から信号光が伝送されてくる他方の単方向伝送路に接続し、第2の送受信端に送信すべき第1乃至第nの波長の複数の信号光はそれぞれ前記第1乃至第nの複数のサーキュレータの入力端から入出力端を介して共通化合分波器の第1乃至第nの送受信端側ポートに入力され、共通化合分波器で多重化されて、第1の伝送路側ポートから一方の単方向伝送路に送出され、他方の単方向伝送路から共通化合分波器の第2の伝送路側ポートに入力する第1乃至第nの波長の複数の多重化信号光は共通化合分波器で分波され、第1乃至第n−1の波長の複数の信号光は第2乃至第nの送受信端側ポートから第2乃至第nの複数のサーキュレータの入出力端を介して該サーキュレータの出力端から出力されて受信され、第nの波長の信号光は共通化合分波器の第1の送受信端側ポートから第1のサーキュレータの入出力端を介して該サーキュレータの出力端から出力されて受信され、
第2の送受信端においては、共通化合分波器の第1の伝送路側ポートを第1の送受信端から信号光が伝送されてくる一方の単方向伝送路に接続し、共通化合分波器の第2の伝送路側ポートを第1の送受信端に信号光を伝送する他方の単方向伝送路に接続し、前記一方の単方向伝送路から共通化合分波器の第1の伝送路側ポートに入力する第1乃至第nの波長の複数の多重化信号光は共通化合分波器で分波され、この分波された第1乃至第nの複数の波長の信号光は第1乃至第nの送受信端側ポートから第1乃至第nの複数のサーキュレータの入出力端を介して該サーキュレータの出力端から出力されて受信され、送信すべき第1乃至第nの波長の複数の信号光のうち、第1乃至第n−1の波長の複数の信号光はそれぞれ前記第乃至第nの複数のサーキュレータの入力端から入出力端を介して共通化合分波器の第2乃至第nの送受信端側ポートに入力され、第nの波長の信号光は第のサーキュレータの入力端から入出力端を介して共通化合分波器の第1の送受信端側ポートに入力し、この入力した第1乃至第nの複数の波長の信号光は共通化合分波器で多重化されて、第2の伝送路側ポートから他方の単方向伝送路に送出されること
を特徴とする双方向波長多重光通信システム。
Bidirectional wavelength multiplexing two or more different wavelengths of signal light and performing bidirectional wavelength division multiplexing communication between the first transmission / reception end and the second transmission / reception end via separate unidirectional transmission paths for upstream and downstream A multiple optical communication system,
Each of the first and second transmitting and receiving ends is
1st thru | or nth some transmission / reception end side port and the 1st and 2nd transmission path side port respectively connected to a unidirectional transmission path, The multiplexed signal light of a 1st thru | or nth several wavelength is received When input from the first transmission line side port, the first to nth wavelengths are demultiplexed, and the demultiplexed signal lights of the first to nth wavelengths are respectively supplied to the common multiplexer / demultiplexer. When the first to n-th transmission / reception end side ports are separately output, and the first to n-th plurality of wavelength signal lights are respectively input from the first to n-th transmission / reception end-side ports, the first To the nth plurality of wavelengths are multiplexed and output from the first transmission path side port, and when the multiplexed signal light of the first to nth plurality of wavelengths is input from the second transmission path side port, The first to nth wavelengths are demultiplexed, and the first to nth wavelengths among the demultiplexed first to nth wavelengths are the first to nth wavelengths. The signal light of the n-1 wavelength is separately output from the second to nth transmission / reception end side ports of the common multiplexer / demultiplexer, and the signal light of the nth wavelength is the first transmitter / receiver end of the common multiplexer / demultiplexer. Output from the side port, and the signal light of the first to n-1 wavelengths among the first to nth wavelengths are input to the second to nth transmission / reception end side ports of the common multiplexer / demultiplexer, When the signal light of the nth wavelength is input to the first transmission / reception end side port, the input first to nth wavelengths are multiplexed and output from the second transmission path side port. Compound demultiplexer,
A plurality of first to nth circulators having input / output terminals connected to the first to nth transmission / reception end side ports of the common multiplexer / demultiplexer,
In the first transmission / reception end, the first transmission path side port of the common multiplexer / demultiplexer is connected to one unidirectional transmission path that transmits the signal light to the second transmission / reception end, and the second of the common multiplexer / demultiplexer is connected. Are connected to the other unidirectional transmission path through which the signal light is transmitted from the second transmission / reception end, and the plurality of signal lights of the first to nth wavelengths to be transmitted to the second transmission / reception end are The signals are input from the input terminals of the first to nth circulators to the first to nth transmission / reception terminal side ports of the common multiplexer / demultiplexer via the input / output terminals, and multiplexed by the common multiplexer / demultiplexer. A plurality of first to nth wavelengths that are sent from the first transmission path side port to one unidirectional transmission path and input from the other unidirectional transmission path to the second transmission path side port of the common multiplexer / demultiplexer. The multiplexed signal light is demultiplexed by the common multiplexer / demultiplexer, and is multiplexed with the first to n−1 wavelengths. Signal light is received is outputted from the output terminal of the circulator through the input and output ends of the plurality of circulators of second to n from the transmission and reception end port of the second to n, the signal light of the wavelength of the n Is output from the output terminal of the circulator via the input / output terminal of the first circulator and received from the first transmission / reception terminal side port of the common multiplexer / demultiplexer,
In the second transmitting / receiving end, the first transmission path side port of the common multiplexer / demultiplexer is connected to one unidirectional transmission path from which signal light is transmitted from the first transmitting / receiving end, and the common multiplexer / demultiplexer The second transmission path side port is connected to the other unidirectional transmission path that transmits the signal light to the first transmission / reception end, and input from the one unidirectional transmission path to the first transmission path side port of the common multiplexer / demultiplexer The plurality of multiplexed signal lights having the first to nth wavelengths are demultiplexed by the common multiplexer / demultiplexer, and the demultiplexed signal lights having the first to nth wavelengths are the first to nth wavelengths. Out of the plurality of signal lights of the first to nth wavelengths to be transmitted from the transmission / reception end side port through the input / output ends of the first to nth circulators and received from the output end of the circulator the plurality of signal light of the first to the wavelength of the (n-1) each second to n double of Is inputted from the input terminal of the circulator to the second to receive end-side port of the n common compound demultiplexer via the input and output terminals, the signal light of the wavelength of the n input and output from the input terminal of the first circulator The signal is input to the first transmission / reception end side port of the common multiplexer / demultiplexer via the end, and the input signal light of the first to nth wavelengths is multiplexed by the common multiplexer / demultiplexer, The bidirectional wavelength division multiplexing optical communication system is characterized in that it is sent from the transmission path side port to the other unidirectional transmission path.
前記共通化合分波器は、導波路グレーテングで構成されることを特徴とする請求項1乃至のいずれかに記載の双方向波長多重光通信システム。The common compound demultiplexer, bidirectional wavelength multiplexing optical communication system according to any one of claims 1 to 5, characterized in that it is constituted by a waveguide gratings.
JP2000037964A 2000-02-16 2000-02-16 Bidirectional wavelength division multiplexing optical communication system Expired - Fee Related JP4507032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000037964A JP4507032B2 (en) 2000-02-16 2000-02-16 Bidirectional wavelength division multiplexing optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000037964A JP4507032B2 (en) 2000-02-16 2000-02-16 Bidirectional wavelength division multiplexing optical communication system

Publications (2)

Publication Number Publication Date
JP2001230733A JP2001230733A (en) 2001-08-24
JP4507032B2 true JP4507032B2 (en) 2010-07-21

Family

ID=18561777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000037964A Expired - Fee Related JP4507032B2 (en) 2000-02-16 2000-02-16 Bidirectional wavelength division multiplexing optical communication system

Country Status (1)

Country Link
JP (1) JP4507032B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325687B1 (en) 1999-12-21 2002-02-25 윤덕용 A low-cost WDM source with an incoherent light injected Fabry-Perot semiconductor laser diode
KR100496710B1 (en) * 2002-01-21 2005-06-28 노베라옵틱스코리아 주식회사 Bi-directional wavelength-division-multiplexing passive optical network utilizing wavelength-locked light sources by injected incoherent light
KR100955129B1 (en) 2003-05-30 2010-04-28 정보통신연구진흥원 wavelength-division multiple access passive optical network using the incoherent broadband light source
WO2005112308A1 (en) * 2004-04-08 2005-11-24 Cybertron Co., Ltd. Wavelenght division multiplexing passive optical network system
JP4499576B2 (en) * 2005-01-17 2010-07-07 日本電信電話株式会社 Optical wavelength division multiplexing system, optical termination device and optical network unit
KR100698766B1 (en) 2005-09-07 2007-03-23 한국과학기술원 Apparatus for Monitoring Failure Positions in Wavelength Division Multiplexing-Passive Optical Networks and Wavelength Division Multiplexing-Passive Optical Network Systems Having the Apparatus
KR100785436B1 (en) 2005-09-20 2007-12-13 한국과학기술원 Wavelength division multiplexing passive optical network for convergence broadcasting service and communication service
US8571410B2 (en) 2006-10-11 2013-10-29 Novera Optics, Inc. Mutual wavelength locking in WDM-PONS
EP2482472B1 (en) 2011-04-22 2013-09-04 Huawei Technologies Co., Ltd. Self-injection optical transmitting and receiving module and wavelength division multiplexing passive optical network system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287125A (en) * 1987-05-20 1988-11-24 Hitachi Ltd Wavelength multiplex bidirectional transmission method
JPH08242208A (en) * 1995-03-06 1996-09-17 Nippon Telegr & Teleph Corp <Ntt> Hyper cube type interconnection network
JPH09247179A (en) * 1996-03-12 1997-09-19 Nippon Telegr & Teleph Corp <Ntt> Optical receiver and optical network using the same
JPH1048440A (en) * 1996-08-02 1998-02-20 Hitachi Cable Ltd Optical wavelength multiplexer/demuiltiplexer
JPH1084333A (en) * 1996-09-10 1998-03-31 Fujitsu Ltd Wavelength multiplex optical transmitter and wavelength multiplex demultiplex optical transmission/ reception system
JPH1146029A (en) * 1997-05-29 1999-02-16 Nec Corp Wavelength multiplex beam signal relaying and amplifying apparatus and optical level regulator
JPH11119173A (en) * 1997-10-17 1999-04-30 Nippon Telegr & Teleph Corp <Ntt> Light wavelength selective filter and light wavelength tuning type transceiver
JPH11218729A (en) * 1998-01-30 1999-08-10 Fujitsu Ltd Bidirectonal wavelength switch and optical multiplexer/ demultiplexer
JP2000201112A (en) * 1998-10-26 2000-07-18 Nippon Telegr & Teleph Corp <Ntt> Optical wavelength divided multiplex transmission network device
JP2001053760A (en) * 1999-08-13 2001-02-23 Nippon Telegr & Teleph Corp <Ntt> Optical wavelength division/multiplex transmission network device
JP2001203643A (en) * 2000-01-21 2001-07-27 Hitachi Ltd Wavelength stabilizing optical transmission system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161406A (en) * 1986-12-24 1988-07-05 Oki Electric Ind Co Ltd Optical multiplexer/demultiplexer with light emitting and receiving elements juxtaposed
JP3290707B2 (en) * 1992-09-04 2002-06-10 富士通株式会社 Optical amplifier
EP0590379B1 (en) * 1992-09-30 1997-07-02 Siemens Aktiengesellschaft Optical transmission device for the transmission of optical signals in wavelength division multiplexing on a plurality of adjacent optical carrier wavelengths
JP3516425B2 (en) * 1996-01-19 2004-04-05 日本電信電話株式会社 Optical signal processing circuit and network using the same
JP3379683B2 (en) * 1997-01-30 2003-02-24 日本電信電話株式会社 Optical transmission equipment
JPH1146030A (en) * 1997-05-29 1999-02-16 Nec Corp Optical signal relaying and amplifying apparatus and optical level regulator
US6118565A (en) * 1997-09-30 2000-09-12 Lucent Technologies Inc. Coherent optical communication system
JPH11186969A (en) * 1997-12-17 1999-07-09 Nippon Telegr & Teleph Corp <Ntt> Optical transmission system
JPH11261532A (en) * 1998-03-11 1999-09-24 Nippon Telegr & Teleph Corp <Ntt> Wave-length multiplexing transmission system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287125A (en) * 1987-05-20 1988-11-24 Hitachi Ltd Wavelength multiplex bidirectional transmission method
JPH08242208A (en) * 1995-03-06 1996-09-17 Nippon Telegr & Teleph Corp <Ntt> Hyper cube type interconnection network
JPH09247179A (en) * 1996-03-12 1997-09-19 Nippon Telegr & Teleph Corp <Ntt> Optical receiver and optical network using the same
JPH1048440A (en) * 1996-08-02 1998-02-20 Hitachi Cable Ltd Optical wavelength multiplexer/demuiltiplexer
JPH1084333A (en) * 1996-09-10 1998-03-31 Fujitsu Ltd Wavelength multiplex optical transmitter and wavelength multiplex demultiplex optical transmission/ reception system
JPH1146029A (en) * 1997-05-29 1999-02-16 Nec Corp Wavelength multiplex beam signal relaying and amplifying apparatus and optical level regulator
JPH11119173A (en) * 1997-10-17 1999-04-30 Nippon Telegr & Teleph Corp <Ntt> Light wavelength selective filter and light wavelength tuning type transceiver
JPH11218729A (en) * 1998-01-30 1999-08-10 Fujitsu Ltd Bidirectonal wavelength switch and optical multiplexer/ demultiplexer
JP2000201112A (en) * 1998-10-26 2000-07-18 Nippon Telegr & Teleph Corp <Ntt> Optical wavelength divided multiplex transmission network device
JP2001053760A (en) * 1999-08-13 2001-02-23 Nippon Telegr & Teleph Corp <Ntt> Optical wavelength division/multiplex transmission network device
JP2001203643A (en) * 2000-01-21 2001-07-27 Hitachi Ltd Wavelength stabilizing optical transmission system

Also Published As

Publication number Publication date
JP2001230733A (en) 2001-08-24

Similar Documents

Publication Publication Date Title
US9444572B2 (en) Transmission device and transmission method
CN110212985B (en) Optical fiber time frequency and data combined transmission system and method
EP1128585A2 (en) Node apparatus and optical wavelength division multiplexing network, and system switching method
US20060146855A1 (en) Optical wavelength multiplex access system and optical network unit
JPH11503537A (en) Multi-wavelength filtering device using optical fiber Bragg grating
JP2010098545A (en) Optical transmission apparatus
JP2006217599A (en) Wavelength division multiplexed passive optical subscriber network without crosstalk and method for eliminating crosstalk
JP4507032B2 (en) Bidirectional wavelength division multiplexing optical communication system
US20080019696A1 (en) Optical Transmission System of Ring Type
KR100658338B1 (en) Wavelength division multiplexing passive optical network having multiple branch distribution network
US20050013615A1 (en) Optical add-drop apparatus and method
US7577361B2 (en) Optical network system and optical coupling apparatus
US9800342B2 (en) Optical WDM transmission network
US20050259988A1 (en) Bi-directional optical access network
US6313933B1 (en) Bidirectional wavelength division multiplex transmission apparatus
JP3712373B2 (en) Optical transceiver for single fiber bidirectional wavelength division multiplexing transmission system
KR100869356B1 (en) adjacent crosstalk-free bidirectional wavelength division multiplexing passive optical network
JPH09326780A (en) Wavelength multiplex communication system and its method
EP0967752A2 (en) WDM transmission system
KR100584386B1 (en) Bidirectional optical add-drop multiplexer
JP3712372B2 (en) Single fiber bidirectional optical wavelength division multiplexing transmission system
CN218734331U (en) Multiplexing/demultiplexing module and optical transmission device
EP2403170A1 (en) A reconfigurable optical add and drop wavelength multiplexer for an optical network using wavelength division multiplexing
JP5255513B2 (en) Composite optical signal multiplexer / demultiplexer and passive optical subscriber system
KR100434454B1 (en) Daisy chain wavelength division multiplexing device and daisy chain wavelength division multiplexing system and transmission network utilizing the device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070216

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100421

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4507032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160514

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees