JP4499576B2 - Optical wavelength division multiplexing system, optical termination device and optical network unit - Google Patents

Optical wavelength division multiplexing system, optical termination device and optical network unit Download PDF

Info

Publication number
JP4499576B2
JP4499576B2 JP2005009283A JP2005009283A JP4499576B2 JP 4499576 B2 JP4499576 B2 JP 4499576B2 JP 2005009283 A JP2005009283 A JP 2005009283A JP 2005009283 A JP2005009283 A JP 2005009283A JP 4499576 B2 JP4499576 B2 JP 4499576B2
Authority
JP
Japan
Prior art keywords
optical
wavelength
control signal
signal light
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005009283A
Other languages
Japanese (ja)
Other versions
JP2006197489A (en
Inventor
淳一 可児
岩月  勝美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005009283A priority Critical patent/JP4499576B2/en
Publication of JP2006197489A publication Critical patent/JP2006197489A/en
Application granted granted Critical
Publication of JP4499576B2 publication Critical patent/JP4499576B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Description

本発明は、光送受信装置(センタ側)と複数の光送受信装置(ユーザ側)との間で双方向光通信を行う光波長多重システムに関する。また、本発明の光波長多重システムに用いる光終端装置および光ネットワークユニットに関する。
なお、光送受信装置(センタ側)は例えば光終端装置(OLT)と呼ばれ、光送受信装置(ユーザ側)は例えば光ネットワークユニット(ONU)と呼ばれるものであり、以下OLTおよびONUとして説明する。
The present invention relates to an optical wavelength division multiplexing system that performs bidirectional optical communication between an optical transceiver (center side) and a plurality of optical transceivers (user side). The present invention also relates to an optical termination device and an optical network unit used in the optical wavelength multiplexing system of the present invention.
The optical transmission / reception device (center side) is called, for example, an optical termination device (OLT), and the optical transmission / reception device (user side) is called, for example, an optical network unit (ONU), and will be described below as OLT and ONU.

図22は、従来の光波長多重システムの第1の構成例を示す(特許文献1)。図において、OLT50とユーザ1〜n(nは2以上の整数)に対応するONU60−1〜60−nは、光ファイバ伝送路71および光パワースプリッタ(光カプラ)72を介して1:nに接続されている。   FIG. 22 shows a first configuration example of a conventional optical wavelength multiplexing system (Patent Document 1). In the figure, ONUs 60-1 to 60-n corresponding to OLT 50 and users 1 to n (n is an integer of 2 or more) are set to 1: n via optical fiber transmission line 71 and optical power splitter (optical coupler) 72. It is connected.

OLT50は、複数の光送信器51−1〜51−nと波長多重器52から構成される。各光送信器51−1〜51−nは、互いに異なる波長の下り信号光を出力する。波長多重器52は、各光送信器から送信された下り信号光を波長多重し、波長多重信号光として光ファイバ伝送路71に送出する。この波長多重信号光は、光パワースプリッタ72でn分岐して各ONU60に伝送される。ユーザkのONU60−kは、波長選択フィルタ61と光受信器62から構成される。波長選択フィルタ61は、波長多重信号光からユーザkのONU60−kに割り当てられた波長の下り信号光を選択する。光受信器62は、波長選択された下り信号光の受信処理を行う。他のONUにおいてもそれぞれ割り当てられた波長の下り信号光の受信処理を行う。   The OLT 50 includes a plurality of optical transmitters 51-1 to 51-n and a wavelength multiplexer 52. Each of the optical transmitters 51-1 to 51-n outputs downlink signal lights having different wavelengths. The wavelength multiplexer 52 wavelength-multiplexes the downlink signal light transmitted from each optical transmitter, and sends it to the optical fiber transmission line 71 as wavelength multiplexed signal light. The wavelength multiplexed signal light is n-branched by the optical power splitter 72 and transmitted to each ONU 60. The ONU 60-k of the user k includes a wavelength selection filter 61 and an optical receiver 62. The wavelength selection filter 61 selects the downlink signal light having the wavelength assigned to the ONU 60-k of the user k from the wavelength multiplexed signal light. The optical receiver 62 performs a receiving process of the wavelength-selected downlink signal light. The other ONUs also perform reception processing of downstream signal light of the assigned wavelength.

特許文献1には、上り信号光に関する記述はないが、各ONU60が互いに異なる波長の上り信号光を送出するようにすれば、各上り信号光は光パワースプリッタ72で波長多重されてOLT50に到達する。OLT50では、波長多重された各ONUからの上り信号光を波長多重分離し、それぞれ光受信器で受信処理することにより、OLTと各ONU間で双方向通信が可能になる。   Although there is no description regarding upstream signal light in Patent Document 1, if each ONU 60 transmits upstream signal light having a different wavelength, each upstream signal light is wavelength-multiplexed by the optical power splitter 72 and reaches the OLT 50. To do. In the OLT 50, the upstream signal light from each wavelength-multiplexed ONU is wavelength-multiplexed and demultiplexed, and each optical receiver performs reception processing, thereby enabling bidirectional communication between the OLT and each ONU.

図23は、従来の光波長多重システムの第2の構成例を示す(特許文献2)。図において、OLT50と波長合分波器73は多重区間の光ファイバ伝送路71−1,71−2を介して接続され、波長合分波器73とユーザ1〜n(nは2以上の整数)に対応するONU60−1〜60−nは、それぞれアクセス区間の光ファイバ伝送路71−3,71−4を介して接続される。ここでは、OLTからONUへの下り信号用として1つの波長帯Dを割り当て、ONUからOLTへの上り信号用として1つの波長帯U(≠D)を割り当て、さらに波長帯Dの波長λd1〜λdnおよび波長帯Uの波長λu1〜λunをそれぞれ各ONUに割り当てる例を示す。   FIG. 23 shows a second configuration example of a conventional optical wavelength multiplexing system (Patent Document 2). In the figure, the OLT 50 and the wavelength multiplexer / demultiplexer 73 are connected via optical fiber transmission lines 71-1 and 71-2 in multiple sections, and the wavelength multiplexer / demultiplexer 73 and users 1 to n (n is an integer of 2 or more). Are connected via optical fiber transmission lines 71-3 and 71-4 in the access section, respectively. Here, one wavelength band D is allocated for the downstream signal from the OLT to the ONU, one wavelength band U (≠ D) is allocated for the upstream signal from the ONU to the OLT, and the wavelengths λd1 to λdn of the wavelength band D are further allocated. And an example in which the wavelengths λu1 to λun of the wavelength band U are assigned to the respective ONUs.

OLT50の光送信部53は、波長帯D(波長λd1〜λdn)の下り光信号と波長帯U(波長λu1〜λun)の上り用光キャリアを波長多重し、光ファイバ伝送路71−1を介して波長合分波器73へ送信する。波長合分波器73は、波長帯Dの下り光信号と波長帯Uの上り用光キャリアをそれぞれ各波長に分波し、波長λd1〜λdnの下り光信号および波長λu1〜λunの上り用光キャリアの各ペアを、光ファイバ伝送路71−3を介してそれぞれ対応するONU60−1〜60−nへ送信する。   The optical transmitter 53 of the OLT 50 wavelength-multiplexes the downstream optical signal in the wavelength band D (wavelengths λd1 to λdn) and the upstream optical carrier in the wavelength band U (wavelengths λu1 to λun), and passes through the optical fiber transmission line 71-1. To the wavelength multiplexer / demultiplexer 73. The wavelength multiplexer / demultiplexer 73 demultiplexes the downstream optical signal in the wavelength band D and the upstream optical carrier in the wavelength band U into the respective wavelengths, and downstream optical signals in the wavelengths λd1 to λdn and upstream light in the wavelengths λu1 to λun. Each pair of carriers is transmitted to the corresponding ONU 60-1 to 60-n via the optical fiber transmission line 71-3.

ONU60−1は、伝送されてきた波長λd1の下り光信号と波長λu1の上り用光キャリアをWDMカプラ63で分波し、波長λd1の下り光信号を光受信器64で受信し、波長λu1の上り用光キャリアを光変調器(M)65で変調し、上り光信号として光ファイバ伝送路71−4を介して波長合分波器73へ送信する。他のONUについても同様である。各ONUから送信された波長λu1〜λunの上り光信号は波長合分波器73で波長多重され、上りの光ファイバ伝送路71−2を介してOLT50へ伝送され、光受信部54に受信される。   The ONU 60-1 demultiplexes the transmitted downstream optical signal having the wavelength λd1 and the upstream optical carrier having the wavelength λu1 by the WDM coupler 63, receives the downstream optical signal having the wavelength λd1 by the optical receiver 64, and receives the wavelength λu1. The upstream optical carrier is modulated by the optical modulator (M) 65 and transmitted as an upstream optical signal to the wavelength multiplexer / demultiplexer 73 via the optical fiber transmission line 71-4. The same applies to other ONUs. The upstream optical signals of wavelengths λu1 to λun transmitted from each ONU are wavelength multiplexed by the wavelength multiplexer / demultiplexer 73, transmitted to the OLT 50 via the upstream optical fiber transmission line 71-2, and received by the optical receiver 54. The

ここで、下り光信号の波長帯D(波長λd1〜λdn)と、上り光信号(上り用光キャリア)の波長帯U(波長λu1〜λun)は、図23に示すように、波長軸上で重ならないように配置される。波長合分波器73としてアレイ導波路回折格子(AWG)を用いる場合、FSR(フリースペクトルレンジ)間隔の下り信号波長(例えばλd1)と上り信号波長(例えばλu1)を同じポートに分波する機能を有する。各ONUでは、波長帯Dと波長帯Uからそれぞれ1波ずつ分波された下り光信号と上り用光キャリアがペアで入力されるので、図23に示すように波長帯Dと波長帯Uを分離する同一仕様のWDMカプラ63を用いることにより、下り光信号と上り用光キャリアを分離して互いに干渉を引き起こさないようにすることができる。   Here, the wavelength band D (wavelength λd1 to λdn) of the downstream optical signal and the wavelength band U (wavelength λu1 to λun) of the upstream optical signal (upstream optical carrier) are on the wavelength axis as shown in FIG. Arranged so as not to overlap. When an arrayed waveguide grating (AWG) is used as the wavelength multiplexer / demultiplexer 73, a function of demultiplexing a downstream signal wavelength (for example, λd1) and an upstream signal wavelength (for example, λu1) at an FSR (free spectrum range) interval to the same port Have In each ONU, since the downstream optical signal and the upstream optical carrier that are demultiplexed one by one from the wavelength band D and the wavelength band U are input in pairs, the wavelength band D and the wavelength band U are set as shown in FIG. By using the WDM coupler 63 having the same specifications to be separated, it is possible to separate the downstream optical signal and the upstream optical carrier so as not to cause interference with each other.

ところで、このような工夫は、ONU60−1〜60−nの構成要素の共通化(少品種化)を目的としている。すなわち、まずOLT50から各波長の上り用光キャリアを各ONUに供給することにより、各ONUはそれぞれ割り当てられる波長の光源を個々に備える必要がなく、同一仕様の波長帯Uの光変調器65で対応することができる。さらに、各ONUでは、下り光信号と上り用光キャリアを分波するために、波長帯Dと波長帯Uを分離する同一仕様のWDMカプラ63で対応することができる。
特公平3−44701号公報 特開2000−196536号公報
By the way, such a device is aimed at the common use (small product variety) of the components of the ONUs 60-1 to 60-n. That is, by first supplying an upstream optical carrier of each wavelength from the OLT 50 to each ONU, each ONU does not need to be provided with a light source of each assigned wavelength, and the optical modulator 65 in the wavelength band U of the same specification. Can respond. Furthermore, in each ONU, in order to demultiplex the downstream optical signal and the upstream optical carrier, it is possible to cope with the WDM coupler 63 having the same specification that separates the wavelength band D and the wavelength band U.
Japanese Patent Publication No. 3-44701 JP 2000-196536 A

ところで、複数のONUが光パワースプリッタを介して1つのOLTに接続される光波長多重システムでは、各ONUの受信波長および送信波長を予め決めている。したがって、ONUを新たに追加する場合には、ONUを接続した地点で対応する受信波長および送信波長を設定する必要があった。   By the way, in an optical wavelength multiplexing system in which a plurality of ONUs are connected to one OLT via an optical power splitter, the reception wavelength and transmission wavelength of each ONU are determined in advance. Therefore, when a new ONU is added, it is necessary to set the corresponding reception wavelength and transmission wavelength at the point where the ONU is connected.

また、複数のONUが波長合分波器を介して1つのOLTに接続される光波長多重システムでは、各ONUの受信波長および送信波長は接続される地点に応じて決まる。したがって、ONUを新たに追加する場合には、ONUを接続した地点で対応する受信波長および送信波長を設定する必要があった。   Further, in an optical wavelength multiplexing system in which a plurality of ONUs are connected to one OLT via a wavelength multiplexer / demultiplexer, the reception wavelength and transmission wavelength of each ONU are determined according to the point where they are connected. Therefore, when a new ONU is added, it is necessary to set the corresponding reception wavelength and transmission wavelength at the point where the ONU is connected.

さらに、複数のONUが光パワースプリッタまたは波長合分波器を介して1つのOLTに接続される光波長多重システムでは、複数のONUとOLTとの間で、各ONU対応の光損失にばらつきがある。このため、すべてのONUがほぼ同一のパワーで送信しても、OLTの受光パワーにばらつきが生じ、各ONUに対応する上り信号光間でクロストークが発生する問題があった。   Furthermore, in an optical wavelength division multiplexing system in which a plurality of ONUs are connected to one OLT via an optical power splitter or wavelength multiplexer / demultiplexer, the optical loss corresponding to each ONU varies between the plurality of ONUs. is there. For this reason, even if all ONUs transmit with substantially the same power, there is a variation in the light receiving power of the OLT, and there is a problem that crosstalk occurs between upstream signal light corresponding to each ONU.

本発明は、光パワースプリッタまたは波長合分波器を用いた光波長多重システムにおいて、ONUを新たに接続する際に、新設ONUの受信波長、送信波長および送信パワーをOLTからの制御により設定および調整することができる光波長多重システム、光終端装置および光ネットワークユニットを提供することを目的とする。   In an optical wavelength multiplexing system using an optical power splitter or wavelength multiplexer / demultiplexer, the present invention sets and sets the reception wavelength, transmission wavelength and transmission power of a new ONU by control from the OLT when an ONU is newly connected. An object of the present invention is to provide an optical wavelength division multiplexing system, an optical termination device and an optical network unit that can be adjusted.

本発明の第1の波長合分波器を用いた光波長多重システムのOLTは、下り信号光を波長多重し、上り信号光を波長分離する第2の波長合分波器と、新設するONUに設定する上り信号光波長の波長設定情報を含む制御信号を、各ONUに対応する各波長の下り信号光に多重化して送信する制御信号送信手段を備える。新設ONUは、波長合分波器で切り出された所定の波長の下り信号光に多重化された制御信号を受信し、この制御信号に応じて上り信号光波長を設定する制御信号受信手段を備える。 The OLT of the optical wavelength multiplexing system using the first wavelength multiplexer / demultiplexer according to the present invention includes a second wavelength multiplexer / demultiplexer that wavelength-multiplexes downstream signal light and wavelength-separates upstream signal light, and a newly installed ONU. and a control signal transmitting means for transmitting the multiplexed control signals including on Ri wavelength setting information of the signal light wavelength to set the the, the downstream signal light of each wavelength corresponding to each ONU. The new ONU includes a control signal receiving unit that receives a control signal multiplexed with a downlink signal light having a predetermined wavelength cut out by the wavelength multiplexer / demultiplexer, and sets an uplink signal light wavelength according to the control signal. .

本発明の第1の波長合分波器を用いた光波長多重システムのOLTは、下り信号光を波長多重し、上り信号光を波長分離する第2の波長合分波器と、新設するONUに設定する上り信号光波長の波長設定情報を含む制御信号を、新設するONUに対応する所定の波長の下り信号光に多重化して送信する制御信号送信手段を備える。新設ONUは、所定の波長の下り信号光に多重化された制御信号を受信し、この制御信号に応じて上り信号光波長を設定する制御信号受信手段を備える。 The OLT of the optical wavelength multiplexing system using the first wavelength multiplexer / demultiplexer according to the present invention includes a second wavelength multiplexer / demultiplexer that wavelength-multiplexes downstream signal light and wavelength-separates upstream signal light, and a newly installed ONU. and a control signal transmitting means for transmitting the multiplexed control signals including a wavelength setting information of the upper Ri signal light wavelength to set the the, the downstream signal light having a predetermined wavelength corresponding to an ONU newly established. The new ONU includes a control signal receiving unit that receives a control signal multiplexed with a downstream signal light having a predetermined wavelength and sets an upstream signal light wavelength in accordance with the control signal.

本発明の第1の波長合分波器を用いた光波長多重システムのOLTは、下り信号光を波長多重し、上り信号光を波長分離する第2の波長合分波器と、新設するONUに設定する上り信号光波長の波長設定情報を含む制御信号を、各ONUに対応する下り信号光の波長帯に対して、波長合分波器の周期性分だけ離れた広帯域の下り信号光として送信する制御信号送信手段を備える。新設ONUは、広帯域の下り信号光から波長合分波器で切り出された波長の下り信号光から制御信号を受信し、この制御信号に応じて上り信号光波長を設定する制御信号受信手段を備える。
The OLT of the optical wavelength multiplexing system using the first wavelength multiplexer / demultiplexer according to the present invention includes a second wavelength multiplexer / demultiplexer that wavelength-multiplexes downstream signal light and wavelength-separates upstream signal light, and a newly installed ONU. broadband downlink signal the control signal including the wavelength setting information of the upper Ri signal wavelength to be set, with respect to the wavelength band of the downstream signal light corresponding to each ONU, separated by periods nature wavelength demultiplexer in and a control signal transmitting means for transmitting the light. The new ONU includes a control signal receiving unit that receives a control signal from a downstream signal light having a wavelength cut out from a broadband downstream signal light by a wavelength multiplexer / demultiplexer, and sets an upstream signal light wavelength according to the control signal. .

本発明は、複数のONUが光パワースプリッタまたは波長合分波器を介して1つのOLTに接続する光波長多重システムにおいて、ONUを新たに接続する際に、新設ONUの受信波長、送信波長および送信パワーをOLTからの制御により設定および調整することができる。これにより、新設するONUの接続位置で受信波長および送信波長の設定が不要となり、新設時の作業効率を高めることができる。また、複数のONUとOLTとの間で各ONU対応の光損失にばらつきがある場合でも、OLTからの制御により各ONUの最適な送信パワーを調整することができるので、各ONUに対応する上り信号光間でクロストークの発生を回避することができる。   In an optical wavelength multiplexing system in which a plurality of ONUs are connected to one OLT via an optical power splitter or wavelength multiplexer / demultiplexer, when the ONU is newly connected, the reception wavelength, transmission wavelength, and The transmission power can be set and adjusted by control from the OLT. As a result, it is not necessary to set the reception wavelength and the transmission wavelength at the connection position of the newly installed ONU, and the work efficiency at the time of new installation can be improved. Further, even when there is a variation in the optical loss corresponding to each ONU between a plurality of ONUs and the OLT, the optimum transmission power of each ONU can be adjusted by the control from the OLT. The occurrence of crosstalk between signal lights can be avoided.

(第1の実施形態)
図1は、本発明の光波長多重システムの第1の実施形態を示す。図において、OLT10とONU20−k(1≦k≦n)は、光ファイバ伝送路71および光パワースプリッタ(光カプラ)72を介して接続される。
(First embodiment)
FIG. 1 shows a first embodiment of the optical wavelength division multiplexing system of the present invention. In the figure, the OLT 10 and the ONU 20-k (1 ≦ k ≦ n) are connected via an optical fiber transmission line 71 and an optical power splitter (optical coupler) 72.

OLT10は、複数n個の光送信器11−1〜11−n、複数n個の光受信器12−1〜12−n、波長合分波器13、複数の制御信号多重手段14−1〜14−n、処理部15および制御信号分配器16から構成される。各光送信器11−1〜11−nおよび各光受信器12−1〜12−nは、それぞれ対応するONUとの間で互いに異なる波長の下り信号光および上り信号光を送受信する。各ONUに対応する下り信号光の波長をλd1〜λdnとし、上り信号光の波長をλu1〜λunとする。波長合分波器13は、各光送信器11−1〜11−nから送信された波長λd1〜λdnの下り信号光を波長多重し、波長多重信号光として光ファイバ伝送路71に送出する。光ファイバ伝送路71に送出された波長多重信号光は、光パワースプリッタ72を介して各ONU20−1〜20−nに分配される。すなわち、ONU20−kにも波長λd1〜λdnの下り信号光を波長多重した波長多重信号光が入力される。一方、各ONU20−1〜20−nからそれぞれ送信された波長λu1〜λunの上り信号光は、光パワースプリッタ72で波長多重されてOLT10に入力される。OLT10に入力する波長多重信号光は、波長合分波器13で波長λu1〜λunの上り信号光に分離され各光受信器12−1〜12−nに受信する。   The OLT 10 includes a plurality of n optical transmitters 11-1 to 11-n, a plurality of n optical receivers 12-1 to 12-n, a wavelength multiplexer / demultiplexer 13, and a plurality of control signal multiplexing units 14-1 to 14-1. 14-n, a processing unit 15 and a control signal distributor 16. Each of the optical transmitters 11-1 to 11-n and each of the optical receivers 12-1 to 12-n transmits and receives downlink signal light and uplink signal light having different wavelengths from each other with the corresponding ONU. The wavelength of the downstream signal light corresponding to each ONU is λd1 to λdn, and the wavelength of the upstream signal light is λu1 to λun. The wavelength multiplexer / demultiplexer 13 wavelength-multiplexes the downstream signal light having the wavelengths λd1 to λdn transmitted from the optical transmitters 11-1 to 11-n, and sends the wavelength multiplexed signal light to the optical fiber transmission line 71. The wavelength multiplexed signal light transmitted to the optical fiber transmission line 71 is distributed to each ONU 20-1 to 20-n via the optical power splitter 72. That is, wavelength multiplexed signal light obtained by wavelength multiplexing the downstream signal light having the wavelengths λd1 to λdn is also input to the ONU 20-k. On the other hand, the upstream signal light of the wavelengths λu1 to λun transmitted from the ONUs 20-1 to 20-n is wavelength-multiplexed by the optical power splitter 72 and input to the OLT 10. The wavelength multiplexed signal light input to the OLT 10 is separated by the wavelength multiplexer / demultiplexer 13 into upstream signal light having wavelengths λu1 to λun and received by the optical receivers 12-1 to 12-n.

処理部15は、新設ONU20−kのIDと波長設定情報等を含む制御信号を生成し、制御信号分配器16はこの制御信号を各制御信号多重手段14−1〜14−nに分配する。各制御信号多重手段14−1〜14−nは、各ONUに送信する下り主信号に制御信号を多重して各光送信器11−1〜11−nに送出する。各光送信器11−1〜11−nは、それぞれ主信号と制御信号を含む波長λd1〜λdnの下り信号光を生成する。したがって、波長λd1〜λdnの下り信号光を波長多重した波長多重信号光が入力される新設ONU20−kでは、各波長の下り信号光のいずれからも制御信号を抽出することができる。一方、各光受信器12−1〜12−nは、それぞれ受信した上り主信号を出力するとともに、各上り主信号の受信状況(パワーや符号誤り率など)を示すモニタ信号を処理部15に送出する。また、各光送信器11−1〜11−nは、各上り主信号に多重された各ONUからの制御信号を分離して処理部15に送出するようにしてもよい。   The processing unit 15 generates a control signal including the ID of the new ONU 20-k, wavelength setting information, and the like, and the control signal distributor 16 distributes the control signal to the control signal multiplexing units 14-1 to 14-n. Each control signal multiplexing means 14-1 to 14-n multiplexes the control signal with the downlink main signal transmitted to each ONU and sends it to each optical transmitter 11-1 to 11-n. Each of the optical transmitters 11-1 to 11-n generates downlink signal light having wavelengths λd1 to λdn including the main signal and the control signal, respectively. Therefore, in the newly installed ONU 20-k to which the wavelength multiplexed signal light obtained by wavelength multiplexing the downstream signal light having the wavelengths λd1 to λdn is input, the control signal can be extracted from any of the downstream signal light of each wavelength. On the other hand, each of the optical receivers 12-1 to 12-n outputs the received upstream main signal, and sends a monitor signal indicating the reception status (power, code error rate, etc.) of each upstream main signal to the processing unit 15. Send it out. Further, each of the optical transmitters 11-1 to 11-n may separate the control signal from each ONU multiplexed on each uplink main signal and send it to the processing unit 15.

新設ONU20−kは、WDMフィルタ21、波長選択フィルタ22、光受信器23、光送信器24、制御信号分離手段25、処理部26から構成される。WDMフィルタ21は、OLT10から送信された波長λd1〜λdnの波長帯の下り信号光(波長多重信号光)と、ONU20−kから送信する波長λukを含む波長λu1〜λunの波長帯の上り信号光を光ファイバ伝送路71に対して多重・分離する。波長選択フィルタ22は、WDMフィルタ21で分離された波長多重信号光から、ONU20−kに割り当てられた波長λdkの下り信号光を選択する。光受信器23は、波長選択された下り信号光の受信処理を行い、ONU20−k宛ての主信号を出力する。他のONUにおいてもそれぞれ割り当てられた波長の下り信号光の受信処理を行い、それぞれのONU宛ての主信号を出力する。   The new ONU 20-k includes a WDM filter 21, a wavelength selection filter 22, an optical receiver 23, an optical transmitter 24, a control signal separation unit 25, and a processing unit 26. The WDM filter 21 transmits downstream signal light in the wavelength band of wavelengths λd1 to λdn (wavelength multiplexed signal light) transmitted from the OLT 10 and upstream signal light in the wavelength band of wavelengths λu1 to λun including the wavelength λuk transmitted from the ONU 20-k. Are multiplexed and separated from the optical fiber transmission line 71. The wavelength selection filter 22 selects the downstream signal light having the wavelength λdk assigned to the ONU 20-k from the wavelength multiplexed signal light separated by the WDM filter 21. The optical receiver 23 performs reception processing of the wavelength-selected downlink signal light and outputs a main signal addressed to the ONU 20-k. The other ONUs also perform reception processing of downstream signal light of the assigned wavelength, and output the main signal addressed to each ONU.

制御信号分離手段25は下り主信号から制御信号を分離し、処理部26はこの制御信号からONU20−kにおける波長設定情報を抽出し、波長選択フィルタ22および光送信器24にその波長λukを設定制御する。また、処理部26は、光送信器24のパワーを設定制御する。光送信器24は上り主信号を入力し、設定された波長λukおよびパワーに基づいて上り信号光を生成し、WDMフィルタ21を介して光ファイバ伝送路71に送信する。   The control signal separation means 25 separates the control signal from the downlink main signal, and the processing unit 26 extracts the wavelength setting information in the ONU 20-k from this control signal, and sets the wavelength λuk in the wavelength selection filter 22 and the optical transmitter 24. Control. Further, the processing unit 26 performs setting control of the power of the optical transmitter 24. The optical transmitter 24 receives the upstream main signal, generates upstream signal light based on the set wavelength λuk and power, and transmits it to the optical fiber transmission line 71 via the WDM filter 21.

波長選択フィルタ22は、波長λd1〜λdnの任意の信号光を選択可能な構成であり、例えば膜数や膜厚の制御により入力位置によって出力波長が変化する多層膜フィルタを用いることができる。また、波長選択フィルタ22として、温度による屈折率変化を介して出力波長が変化する半導体導波路型フィルタ、あるいは共振器を構成する2つの反射面の距離を変化させることにより出力波長が変化するファブリペロー型フィルタなどを用いることができる。   The wavelength selection filter 22 is configured to be able to select any signal light with wavelengths λd1 to λdn. For example, a multilayer filter whose output wavelength changes depending on the input position by controlling the number of films and the film thickness can be used. Further, as the wavelength selection filter 22, a semiconductor waveguide type filter whose output wavelength changes through a change in refractive index due to temperature, or a fabric whose output wavelength changes by changing the distance between two reflecting surfaces constituting the resonator. A Perot filter or the like can be used.

光送信器24は、波長λu1〜λunの任意の信号光を生成可能な構成であり、例えば電気信号により出力レーザを選択できるレーザアレイを用いることができる。また、光送信器24として、複数の駆動電流の組み合わせによって出力波長を選択できる分布ブラッグ反射型(DBR)レーザを用いることができる。   The optical transmitter 24 has a configuration capable of generating arbitrary signal light with wavelengths λu1 to λun, and for example, a laser array that can select an output laser by an electric signal can be used. As the optical transmitter 24, a distributed Bragg reflection (DBR) laser capable of selecting an output wavelength by a combination of a plurality of drive currents can be used.

以上の構成に基づき、光波長多重システムに新設ONU20−kを接続する際に、波長選択フィルタ22に設定する未知の選択波長λdkおよび光送信器24に設定する未知の送信波長λukを認識し、設定するまでの処理手順について説明する。   Based on the above configuration, when the new ONU 20-k is connected to the optical wavelength multiplexing system, the unknown selection wavelength λdk set in the wavelength selection filter 22 and the unknown transmission wavelength λuk set in the optical transmitter 24 are recognized, A processing procedure until setting will be described.

図2は、第1の実施形態におけるONU設定制御シーケンス例を示す。このシーケンスでは、新設ONU20−kを同定するための指標となる番号(ID)に基づいてOLT10から波長λdk,λukを指定する。なお、OLTは、別途設けられるオペレーション・サポート・システムなどから、新設ONU20−kのIDを受け取るものとする。   FIG. 2 shows an example of an ONU setting control sequence in the first embodiment. In this sequence, the wavelengths λdk and λuk are designated from the OLT 10 based on a number (ID) serving as an index for identifying the new ONU 20-k. Note that the OLT receives the ID of the newly installed ONU 20-k from an operation support system provided separately.

OLT10は、処理部15で新設ONU20−kのIDと波長設定情報を有する制御信号を生成し、制御信号分配器16を介して制御信号多重手段14−1〜14−nに入力し、各主信号に多重化して光送信器11−1〜11−nにそれぞれ入力し、波長λλd1〜λdnの下り信号光を生成して送信する(S1)。各下り信号光は波長合分波器13で合波され、波長多重信号光として光ファイバ伝送路71に送出され、光パワースプリッタ72で分配されて各ONU20−1〜20−nに伝送される。なお、このとき制御信号が多重化される下り信号光はその時点で送信中のものであり、後述する多重化方法によりそれぞれの主信号に多重化される。また、このとき新設ONU20−kに対応する光送信器11−kも制御信号を多重化した任意の下り信号光の送信を開始してもよい。   The OLT 10 generates a control signal having the ID and wavelength setting information of the new ONU 20-k in the processing unit 15 and inputs the control signal to the control signal multiplexing means 14-1 to 14-n via the control signal distributor 16. The signals are multiplexed and input to the optical transmitters 11-1 to 11-n, respectively, and downstream signal lights having wavelengths λλd1 to λdn are generated and transmitted (S1). Each downstream signal light is multiplexed by the wavelength multiplexer / demultiplexer 13, sent to the optical fiber transmission line 71 as wavelength multiplexed signal light, distributed by the optical power splitter 72, and transmitted to each ONU 20-1 to 20 -n. . At this time, the downlink signal light to which the control signal is multiplexed is currently being transmitted, and is multiplexed onto each main signal by a multiplexing method described later. At this time, the optical transmitter 11-k corresponding to the newly installed ONU 20-k may also start transmission of any downstream signal light obtained by multiplexing the control signals.

その後、OLT10は、新設ONU20−kに対応する光受信器12−kが波長λukの上り信号光を受信し、処理部15がその受信状況(パワーや符号誤り率など)をモニタする(S2)。   Thereafter, in the OLT 10, the optical receiver 12-k corresponding to the newly installed ONU 20-k receives the upstream signal light having the wavelength λuk, and the processing unit 15 monitors the reception status (power, code error rate, etc.) (S2). .

新設ONU20−kは、WDMフィルタ21を介してOLT10から送信された波長多重信号光を入力し、波長選択フィルタ22の選択波長を任意に設定し、対応する波長の下り信号光を波長多重信号光から分離し、光受信器23で受信する。なお、波長選択フィルタ22の選択波長は、例えばλd1〜λdnの中から所定の順番で逐次変化させていくことにより、現在送信中の下り信号光のいずれかを受信することができる。ここで、受信した下り信号光に多重化されている制御信号を制御信号分離手段25で分離して処理部26に受信する(S3)。処理部26は、制御信号を解析して波長設定情報に対応する波長λukを光送信器24に設定し、かつ光送信器24の送信パワーを初期値に設定する(S4)。光送信器24は、設定された波長λukと送信パワーで任意の上り信号光の送信を開始する(S5)。このときの上り信号光は、連続光や繰り返しパタンなどどのようなものでもよい。   The new ONU 20-k receives the wavelength multiplexed signal light transmitted from the OLT 10 through the WDM filter 21, arbitrarily sets the selected wavelength of the wavelength selection filter 22, and converts the downstream signal light of the corresponding wavelength to the wavelength multiplexed signal light. And is received by the optical receiver 23. Note that the wavelength selected by the wavelength selection filter 22 can be received in any one of the downstream signal lights currently being transmitted, for example, by sequentially changing in a predetermined order from λd1 to λdn. Here, the control signal multiplexed in the received downstream signal light is separated by the control signal separation means 25 and received by the processing unit 26 (S3). The processing unit 26 analyzes the control signal, sets the wavelength λuk corresponding to the wavelength setting information in the optical transmitter 24, and sets the transmission power of the optical transmitter 24 to an initial value (S4). The optical transmitter 24 starts transmission of an arbitrary upstream signal light with the set wavelength λuk and transmission power (S5). At this time, the upstream signal light may be any continuous light or repetitive pattern.

OLT10の処理部15は、光受信器12−kで検出される波長λukの上り信号光の受信状況(パワーや符号誤り率など)をモニタし、上り信号光の波長λukおよび送信パワーの確認処理を行うい、、上り信号光の受信状況を新設ONU20−kにフィードバックしながら送信パワーを徐々に上げてゆく(S6)。なお、新設ONU20−kは、OLT10からOK通知があるまで送信パワーを自動的に徐々に上げてゆくようにしてもよい。そして、他の信号との干渉がない所定の送信パワーへの設定が完了したら、OLT10と新設ONU20−kは、下り信号光の波長λdkと上り信号光の波長λukにより主信号の送受信試験を行い(S7)、主信号の送受信を開始する(S8)。   The processing unit 15 of the OLT 10 monitors the reception status (power, code error rate, etc.) of the upstream signal light of the wavelength λuk detected by the optical receiver 12-k, and confirms the wavelength λuk of the upstream signal light and the transmission power In step S6, the transmission power is gradually increased while the reception status of the upstream signal light is fed back to the newly installed ONU 20-k. Note that the new ONU 20-k may automatically gradually increase the transmission power until there is an OK notification from the OLT 10. When the setting to the predetermined transmission power without interference with other signals is completed, the OLT 10 and the newly installed ONU 20-k perform a transmission / reception test of the main signal using the wavelength λdk of the downstream signal light and the wavelength λuk of the upstream signal light. (S7), transmission / reception of the main signal is started (S8).

なお、本実施形態では、OLT10は送信中の下り信号光のすべてで同じ制御信号を多重送信するため、新設ONU20−kの波長選択フィルタ22の選択波長を変えても制御信号を見失うことなはい。このため、新設ONU20−kにおける下り信号光の波長λdkの選択(波長選択フィルタ22の選択波長の設定)は、主信号の送受信試験の開始以前(S3〜S6以前)の任意のタイミングで実行すればよい。   In the present embodiment, since the OLT 10 multiplex-transmits the same control signal with all of the downlink signal light being transmitted, the control signal will not be lost even if the selected wavelength of the wavelength selection filter 22 of the newly installed ONU 20-k is changed. . Therefore, the selection of the wavelength λdk of the downstream signal light (setting of the wavelength selection filter 22) in the newly installed ONU 20-k is performed at an arbitrary timing before the start of the main signal transmission / reception test (before S3 to S6). That's fine.

また、OLT10は、常に制御信号を通じて空き波長情報を送信し、新設ONU20−kがこの制御信号から得られる空き波長情報に基づいて使用する波長を設定するようにしてもよい。このとき、空き波長情報として、常に1組の上り信号光用波長と下り信号光用波長を送るようにすれば、OLT10はその時点から最初に新設されるONUがどの波長で上り信号光を送信してくるか分かるので、その波長に対応する光受信器の受信状況をモニタしていればよい。   Further, the OLT 10 may always transmit vacant wavelength information through a control signal, and set a wavelength to be used by the new ONU 20-k based on the vacant wavelength information obtained from the control signal. At this time, if one set of upstream signal light wavelength and downstream signal light wavelength is always transmitted as the free wavelength information, the OLT 10 transmits the upstream signal light at which wavelength the ONU newly established from that point first transmits. It is only necessary to monitor the reception status of the optical receiver corresponding to the wavelength.

ここで、図3に示すONUの処理手順および図4に示すOLTの処理手順を参照し、新設ONUにおける波長および送信パワーの設定方法について詳しく説明する。   Here, with reference to the ONU processing procedure shown in FIG. 3 and the OLT processing procedure shown in FIG. 4, the wavelength and transmission power setting method in the new ONU will be described in detail.

図3において、新設ONUは、OLTから送信された制御信号を受信すると(S11)、光送信器の波長設定および送信パワー設定を行う(S12,S13)。送信パワーは、初期値として予め決められた中で最低のパワー(設定条件p=1)に設定する。この設定条件pで任意の上り信号光を送信した後に(S14)、一定時間待機する(S15)。この待機時間は、OLTが上り信号光を受信し、その受信状況に応じてONUに対して再設定等の制御信号の返信に要する時間である。例えば、少なくとも信号光が約 1.5kmの光ファイバ伝送路を往復する約10マイクロ秒以上であり、電気的な処理時間と余裕を考慮すると、数ミリ秒〜数秒としてもよい。この待機時間を経てOLTからOK通知があれば送信パワーを確定して処理を終了し、OK通知がなければパワーモードが最大値pmax になるまで逐次送信パワーを上げてゆく(S16,S17,S18)。逐次送信パワーを上げてゆく手順をとることにより、通常は送信パワーが高すぎる状態になることはない。しかし、何らかの理由で送信パワーが高すぎる場合には、OLTから送信パワー低下要求を受け、パワーモードを下げる手順をS15の後に挿入してもよい(S19,S20)。   In FIG. 3, when the newly installed ONU receives the control signal transmitted from the OLT (S11), the new ONU performs wavelength setting and transmission power setting of the optical transmitter (S12, S13). The transmission power is set to the lowest power (setting condition p = 1) determined in advance as an initial value. After transmitting an arbitrary upstream signal light under the setting condition p (S14), the system waits for a predetermined time (S15). This standby time is the time required for the OLT to receive the upstream signal light and return a control signal such as reset to the ONU according to the reception status. For example, at least about 10 microseconds in which signal light travels back and forth through an optical fiber transmission line of about 1.5 km, and considering electrical processing time and margin, it may be several milliseconds to several seconds. If there is an OK notification from the OLT after this waiting time, the transmission power is determined and the processing is terminated. If there is no OK notification, the transmission power is sequentially increased until the power mode reaches the maximum value pmax (S16, S17, S18). ). By taking the procedure of increasing the sequential transmission power, the transmission power is not usually too high. However, if the transmission power is too high for some reason, a procedure for receiving a transmission power reduction request from the OLT and lowering the power mode may be inserted after S15 (S19, S20).

一方、パワーモードを上限まで上げてもOLTからOK通知がない場合は、設定をリセットして処理を中止する。あるいは、制御信号の受信(S11)に戻り、一連の設定処理を最初からやり直すようにしてもよいし、さらにこのループを所定回数だけ回ったら設定をリセットして処理を中止するようにしてもよい。   On the other hand, if there is no OK notification from the OLT even when the power mode is raised to the upper limit, the setting is reset and the process is stopped. Alternatively, the control signal may be returned (S11), and a series of setting processes may be performed again from the beginning, or the setting may be reset and the process may be stopped when this loop is repeated a predetermined number of times. .

なお、新設ONUにおける下り信号光の波長選択(波長選択フィルタの選択波長の設定)は、図2の波長設定シーケンスの説明と同様に、本動作フロー中の任意のタイミングで実行すればよい。   Note that the wavelength selection of the downstream signal light in the newly installed ONU (setting of the wavelength selection filter wavelength selection) may be executed at an arbitrary timing in this operation flow, as in the description of the wavelength setting sequence in FIG.

図4において、OLTは、制御信号を送信し、新設ONUに対応する光受信器(波長λukの上り信号光)の受信状況(パワーや符号誤り率など)をモニタする(S31)。新設ONUに対応する光受信器の受信状況から受光パワーを判定し(S32)、規定範囲内の受光パワーを検知した場合には、新設ONUに当該IDを含むOK通知を送信して設定処理を終了する(S32,S33)。新設ONUに対応する光受光器の受光パワーが規定以下であれば、新設ONUが自動的に送信パワーを逐次上げてゆく場合には特に要求を出す必要はなく、受光パワーの検知・判定処理に戻る(S32)。なお、この場合に新設ONUに対する制御信号に送信パワー上昇要求を入れるようにしてもよい。一方、新設ONUは送信パワーを逐次上げてゆくので、通常は送信パワーが高すぎる状態になることはないが、何らかの理由で送信パワーが規定以上になった場合には、新設ONUに送信パワー低下要求を送信し(S34)、一定時間待機後に受光パワーの検知・判定処理に戻るようにしてもよい(S35)。   In FIG. 4, the OLT transmits a control signal and monitors the reception status (power, code error rate, etc.) of the optical receiver (upstream signal light of wavelength λuk) corresponding to the newly installed ONU (S31). The received light power is determined from the reception status of the optical receiver corresponding to the new ONU (S32), and when the received light power within the specified range is detected, an OK notification including the ID is transmitted to the new ONU and the setting process is performed. The process ends (S32, S33). If the light receiving power of the optical receiver corresponding to the newly installed ONU is less than the specified value, there is no need to make a special request when the newly installed ONU automatically increases the transmission power sequentially. Return (S32). In this case, a request for increasing the transmission power may be included in the control signal for the new ONU. On the other hand, since the new ONU will increase the transmission power successively, the transmission power will not normally be too high, but if for some reason the transmission power exceeds the specified level, the transmission power will drop to the new ONU. The request may be transmitted (S34), and the process may return to the light reception power detection / determination process after waiting for a predetermined time (S35).

以上説明した新設ONUの設定方法により、新設ONUはOLTの主導のもとで自動的に受信波長および送信波長を設定することができる。さらに、新設ONUでは、設定した送信波長による送信パワーをOLTにおける受信状況をモニタしながら低レベルから徐々に上げてゆくので、送信パワーが強すぎて他の信号光へのクロストーク(漏れ込み光)雑音が大きくなる事態を回避することができる。   By the setting method of the new ONU described above, the new ONU can automatically set the reception wavelength and the transmission wavelength under the leadership of the OLT. Furthermore, in the newly installed ONU, the transmission power at the set transmission wavelength is gradually increased from a low level while monitoring the reception status in the OLT, so that the transmission power is too strong and crosstalk (leakage light) to other signal lights. ) It is possible to avoid a situation where noise becomes large.

なお、OLTから新設ONUへの下り信号光の送信は、本動作フロー中の任意のタイミングで開始すればよい。また、OLTから新設ONUへのOK通知に代えて、常時出しているNG通知を消滅させてもよい。   The transmission of the downstream signal light from the OLT to the newly installed ONU may be started at an arbitrary timing in the operation flow. Further, instead of the OK notification from the OLT to the new ONU, the NG notification that is always issued may be deleted.

(制御信号の多重化方法)
制御信号は、主信号に対して時分割多重、周波数分割多重、符号分割多重などにより多重化することができる。
(Control signal multiplexing method)
The control signal can be multiplexed with the main signal by time division multiplexing, frequency division multiplexing, code division multiplexing, or the like.

図5は、第1の実施形態における制御信号の時分割多重化方法を示す。図において、OLTの制御信号多重手段14では、主信号と制御信号がそれぞれバッファされ、識別子が付与され、互いに時間が重ならないように送信される。ONUの制御信号分離手段25では、主信号と制御信号は識別子に基づいて分離される。   FIG. 5 shows a time division multiplexing method of control signals in the first embodiment. In the figure, in the OLT control signal multiplexing means 14, the main signal and the control signal are respectively buffered, given an identifier, and transmitted so that the times do not overlap each other. In the control signal separation means 25 of the ONU, the main signal and the control signal are separated based on the identifier.

図6は、第1の実施形態における制御信号の周波数分割多重化方法を示す。図において、OLTの制御信号多重手段14では、制御信号は予め主信号と周波数帯が重ならないように生成され、ミキサまたはフィルタによって主信号に周波数多重されて送信される。ONUの制御信号分離手段25では、主信号と制御信号はフィルタによって分離される。制御信号の変調方式には、強度シフトキーイング(ASK)、周波数シフトキーイング(FSK)、位相シフトキーイング(PSK)等を用いることができる。上記の時分割多重の場合には、バッファ回路や多重回路の実現性から主信号の速度や変調方式が限定されるが、周波数分割多重の場合には任意の速度、変調方式の主信号を利用することができる。   FIG. 6 shows a frequency division multiplexing method for control signals in the first embodiment. In the figure, in the OLT control signal multiplexing means 14, the control signal is generated in advance so as not to overlap the frequency band with the main signal, and is frequency-multiplexed to the main signal by a mixer or a filter and transmitted. In the ONU control signal separation means 25, the main signal and the control signal are separated by a filter. As the modulation method of the control signal, intensity shift keying (ASK), frequency shift keying (FSK), phase shift keying (PSK) or the like can be used. In the case of the above time division multiplexing, the speed and modulation method of the main signal are limited due to the feasibility of the buffer circuit and the multiplexing circuit, but in the case of frequency division multiplexing, the main signal of an arbitrary speed and modulation method is used. can do.

図7は、第1の実施形態における制御信号の符号分割多重化方法を示す。図において、OLTの制御信号多重手段14では、制御信号は例えばスペクトル拡散回路などの符号化回路によって符号化された後に、ミキサによって主信号に多重されて送信される。図示のように、主信号とのパワー比を十分に小さくすることにより、ONUで主信号をそのまま受信しても品質劣化とならないようにする。ONUの制御信号分離手段25では、主信号からの分岐を経て、例えばスペクトル逆拡散回路などの復号化回路を通した後に高域遮断フィルタによって主信号成分を除去し、制御信号を抽出する。上記の周波数多重の場合には、OLTの光送信器およびONUの光受信器は、主信号帯域に加えて制御信号帯域で動作する必要があるが、符号分割多重を用いれば主信号帯域のみに対して動作する光送受信器を利用することができる。   FIG. 7 shows a code division multiplexing method for control signals in the first embodiment. In the figure, in the control signal multiplexing means 14 of the OLT, the control signal is encoded by an encoding circuit such as a spread spectrum circuit, and then multiplexed with the main signal by a mixer and transmitted. As shown in the figure, the power ratio with the main signal is made sufficiently small so that the quality does not deteriorate even if the main signal is received as it is by the ONU. The control signal separation means 25 of the ONU passes the branch from the main signal, passes through a decoding circuit such as a spectrum despreading circuit, and then removes the main signal component by a high-frequency cutoff filter and extracts the control signal. In the case of the above frequency multiplexing, the OLT optical transmitter and the ONU optical receiver need to operate in the control signal band in addition to the main signal band. However, if code division multiplexing is used, only the main signal band is used. An optical transceiver that operates in response to this can be used.

(第2の実施形態)
図8は、本発明の光波長多重システムの第2の実施形態におけるOLTの構成例を示す。本実施形態におけるOLT10は、図1に示す第1の実施形態のOLT10に代わるものであり、新設ONU20−kに送信する制御信号を光段で重畳することを特徴とする。図1に示す第1の実施形態の新設ONU20−kの構成はそのまま用いることができる。
(Second Embodiment)
FIG. 8 shows a configuration example of the OLT in the second embodiment of the optical wavelength multiplexing system of the present invention. The OLT 10 in this embodiment is an alternative to the OLT 10 in the first embodiment shown in FIG. 1 and is characterized in that a control signal to be transmitted to the newly installed ONU 20-k is superimposed at the optical stage. The configuration of the new ONU 20-k according to the first embodiment shown in FIG. 1 can be used as it is.

図8において、OLT10の波長合波器17は、各光送信器11−1〜11−nから送信された波長λd1〜λdnの下り信号光を波長多重する。この波長多重信号光は光変調器18に入力され、処理部15から出力される制御信号により変調される。これにより、各波長の下り信号光に一括して制御信号が重畳される。この制御信号が重畳された波長多重信号光は、WDMフィルタ19を介して光ファイバ伝送路71に送出される。なお、光変調器18に代えて光増幅器を用い、その駆動電流を制御信号により変調するようにしてもよい。一方、各ONU20−1〜20−nからそれぞれ送信された波長λu1〜λunの上り信号光は、光パワースプリッタ72で波長多重されてOLT10に入力される。OLT10に入力する波長多重信号光は、WDMフィルタ19および波長分波器17′で波長λu1〜λunの上り信号光に分離され、各光受信器12−1〜12−nに受信する。   In FIG. 8, the wavelength multiplexer 17 of the OLT 10 wavelength-multiplexes the downstream signal light having the wavelengths λd1 to λdn transmitted from the optical transmitters 11-1 to 11-n. The wavelength multiplexed signal light is input to the optical modulator 18 and is modulated by the control signal output from the processing unit 15. Thereby, the control signal is superimposed on the downstream signal light of each wavelength in a lump. The wavelength multiplexed signal light on which the control signal is superimposed is sent to the optical fiber transmission line 71 through the WDM filter 19. An optical amplifier may be used in place of the optical modulator 18, and the drive current may be modulated by a control signal. On the other hand, the upstream signal light of the wavelengths λu1 to λun transmitted from the ONUs 20-1 to 20-n is wavelength-multiplexed by the optical power splitter 72 and input to the OLT 10. The wavelength multiplexed signal light input to the OLT 10 is separated into upstream signal light of wavelengths λu1 to λun by the WDM filter 19 and the wavelength demultiplexer 17 ′ and received by the optical receivers 12-1 to 12-n.

本実施形態のOLT10と第1の実施形態の新設ONU20−kとの間において、下り信号光の波長選択(波長選択フィルタの選択波長の設定)と、上り信号光の波長選択(光送信器の波長設定)および送信パワーの調整は、第1の実施形態と同様に図2〜図4に示す制御手順に従って行うことができる。   Between the OLT 10 of the present embodiment and the newly installed ONU 20-k of the first embodiment, the wavelength selection of the downstream signal light (setting of the selection wavelength of the wavelength selection filter) and the wavelength selection of the upstream signal light (of the optical transmitter) Wavelength setting) and transmission power adjustment can be performed according to the control procedure shown in FIGS. 2 to 4 as in the first embodiment.

また、制御信号の多重化方法については、主信号のバッファが困難なために時分割多重化方法を適用することは困難であるが、光変調器18により周波数分割多重方法あるいは符号分割多重方法を適用することは可能である。ただし、制御信号を多重化する際に、主信号に対して影響を与えない程度にそのパワー(変調度)を十分に低く設定する。   As for the control signal multiplexing method, it is difficult to apply the time division multiplexing method because it is difficult to buffer the main signal. However, the optical modulator 18 uses the frequency division multiplexing method or the code division multiplexing method. It is possible to apply. However, when the control signals are multiplexed, the power (degree of modulation) is set sufficiently low so as not to affect the main signal.

(第3の実施形態)
図9は、本発明の光波長多重システムの第3の実施形態におけるOLTの構成例を示す。本実施形態におけるOLT10は、図1に示す第1の実施形態のOLT10に代わるものであり、新設ONU20−kに対してのみその制御信号を下り信号光として送信することを特徴とする。図1に示す第1の実施形態の新設ONU20−kの構成はそのまま用いることができる。
(Third embodiment)
FIG. 9 shows a configuration example of the OLT in the third embodiment of the optical wavelength multiplexing system of the present invention. The OLT 10 in this embodiment is an alternative to the OLT 10 in the first embodiment shown in FIG. 1 and is characterized in that its control signal is transmitted as downlink signal light only to the new ONU 20-k. The configuration of the new ONU 20-k according to the first embodiment shown in FIG. 1 can be used as it is.

図9において、OLT10の処理部15は、新設ONU20−kの波長設定情報等を含む制御信号を生成し、制御信号多重手段14−kを介して光送信器11−kに送出する。光送信器11−kは、制御信号を含む波長λdkの下り信号光を送信する。一方、新設ONU20−kから送信された上り信号光を受信する光受信器12−kは、受信した上り主信号を出力するとともに、その受信状況(パワーや符号誤り率など)を示すモニタ信号を処理部15に送出する。   In FIG. 9, the processing unit 15 of the OLT 10 generates a control signal including wavelength setting information of the newly installed ONU 20-k and sends it to the optical transmitter 11-k via the control signal multiplexing unit 14-k. The optical transmitter 11-k transmits downlink signal light having a wavelength λdk including a control signal. On the other hand, the optical receiver 12-k that receives the upstream signal light transmitted from the newly installed ONU 20-k outputs the received upstream main signal and outputs a monitor signal indicating the reception status (power, code error rate, etc.). The data is sent to the processing unit 15.

図1において、ONU20−kは、WDMフィルタ21を介してOLT10から送信された波長多重信号光を入力し、波長選択フィルタ22の選択波長を任意に設定し、対応する波長の下り信号光を波長多重信号光から分離し、光受信器23で受信する。ここで、下り信号光を受信し、それに含まれる制御信号が制御信号分離手段25を介して処理部26に受信されるまで、処理部26が波長選択フィルタ22の選択波長を逐次変化させてゆき、選択波長をλdkに設定したときに波長λdkの下り信号光に含まれる制御信号を受信することができる。処理部26は、制御信号の波長設定情報に対応する波長λukを光送信器24に設定し、かつ光送信器24の送信パワーを初期値に設定する。以下の処理手順は第1の実施形態と同様である。   In FIG. 1, the ONU 20-k receives the wavelength multiplexed signal light transmitted from the OLT 10 via the WDM filter 21, arbitrarily sets the selection wavelength of the wavelength selection filter 22, and sets the wavelength of the downstream signal light of the corresponding wavelength. The light is separated from the multiplexed signal light and received by the optical receiver 23. Here, the processing unit 26 sequentially changes the selection wavelength of the wavelength selection filter 22 until the downstream signal light is received and the control signal included therein is received by the processing unit 26 via the control signal separation means 25. When the selected wavelength is set to λdk, the control signal included in the downstream signal light having the wavelength λdk can be received. The processing unit 26 sets the wavelength λuk corresponding to the wavelength setting information of the control signal in the optical transmitter 24 and sets the transmission power of the optical transmitter 24 to an initial value. The following processing procedure is the same as that of the first embodiment.

本実施形態のONU設定制御シーケンス例を図10に示すが、図2に示す第1の実施形態のONU設定制御シーケンス例と異なる点は次の通りである。S1に代わるS41では、OLT10の処理部15で新設ONU20−kの波長設定情報を有する制御信号を生成し、制御信号多重手段14−kから光送信器11−kに入力し、波長λdkの下り信号光を生成して送信する。S3に代わるS42では、新設ONU20−kの波長選択フィルタ22の選択波長を逐次変えながら波長λdkの下り信号光を受信し、制御信号分離手段25を介して制御信号を処理部26に受信する。   FIG. 10 shows an example of the ONU setting control sequence according to the present embodiment. The difference from the example of the ONU setting control sequence according to the first embodiment shown in FIG. 2 is as follows. In S41 instead of S1, the processing unit 15 of the OLT 10 generates a control signal having the wavelength setting information of the new ONU 20-k, and inputs the control signal from the control signal multiplexing unit 14-k to the optical transmitter 11-k. Generate and transmit signal light. In S42 instead of S3, the downstream signal light of wavelength λdk is received while sequentially changing the selection wavelength of the wavelength selection filter 22 of the new ONU 20-k, and the control signal is received by the processing unit 26 via the control signal separation means 25.

本実施形態では、図11に示すように、OLT10の制御信号多重手段14−1〜14−nはスイッチを用い、各ONU20−1〜20−nの制御信号分離手段25はスイッチまたは分配器を用いることができる。新設ONU20−kに対しては、それぞれスイッチを切り替えることにより、設定モードでは制御信号を送受信し、定常モードでは主信号を送受信するようにしてもよい。すなわち、主信号へ制御信号を多重化する必要がなくなる。   In this embodiment, as shown in FIG. 11, the control signal multiplexing means 14-1 to 14-n of the OLT 10 use switches, and the control signal separation means 25 of each ONU 20-1 to 20-n is a switch or distributor. Can be used. For the new ONU 20-k, the control signal may be transmitted and received in the setting mode and the main signal may be transmitted and received in the steady mode by switching the switches. That is, it is not necessary to multiplex the control signal to the main signal.

(第4の実施形態)
図12は、本発明の光波長多重システムの第4の実施形態におけるOLTの構成例を示す。本実施形態におけるOLT10は、図1に示す第1の実施形態のOLT10に代わるものであり、制御信号用の光送信器11−0を備え、新設ONU20−kに送信する制御信号をその光送信器11−0から波長λd0の下り信号光として送信することを特徴とする。図1に示す第1の実施形態の新設ONU20−kの構成はそのまま用いることができる。
(Fourth embodiment)
FIG. 12 shows a configuration example of the OLT in the fourth embodiment of the optical wavelength multiplexing system of the present invention. The OLT 10 according to the present embodiment is an alternative to the OLT 10 according to the first embodiment shown in FIG. 1 and includes an optical transmitter 11-0 for control signals, and transmits the control signal to be transmitted to the new ONU 20-k. It is characterized in that it is transmitted as a downstream signal light having a wavelength λd0 from the optical device 11-0. The configuration of the new ONU 20-k according to the first embodiment shown in FIG. 1 can be used as it is.

図12において、OLT10の波長合分波器13は、各光送信器11−0,11−1〜11−nから送信された波長λd0,λd1〜λdnの下り信号光を波長多重する。この波長多重信号光は光ファイバ伝送路71に送出される。処理部15は、新設ONUのIDと波長設定情報等を含む制御信号を生成して光送信器11−0に送出する。光送信器11−0は、制御信号を含む波長λd0の下り信号光を送信する。一方、各光受信器12−1〜12−nは、それぞれ受信した上り主信号を出力するとともに、各上り主信号の受信状況(パワーや符号誤り率など)を示すモニタ信号を処理部15に送出する。   In FIG. 12, the wavelength multiplexer / demultiplexer 13 of the OLT 10 wavelength-multiplexes the downstream signal light having the wavelengths λd0 and λd1 to λdn transmitted from the optical transmitters 11-0 and 11-1 to 11-n. The wavelength multiplexed signal light is sent to the optical fiber transmission line 71. The processing unit 15 generates a control signal including the ID of the newly installed ONU, wavelength setting information, and the like, and sends it to the optical transmitter 11-0. The optical transmitter 11-0 transmits downlink signal light having a wavelength λd0 including a control signal. On the other hand, each of the optical receivers 12-1 to 12-n outputs the received upstream main signal, and sends a monitor signal indicating the reception status (power, code error rate, etc.) of each upstream main signal to the processing unit 15. Send it out.

図1において、ONU20−kは、WDMフィルタ21を介してOLT10から送信された波長多重信号光を入力し、波長選択フィルタ22の選択波長をλd0に設定し、制御信号を含む波長λd0の下り信号光を波長多重信号光から分離し、光受信器23で受信する。処理部26は、制御信号分離手段25を介して制御信号を受信し、制御信号の波長設定情報に対応する波長λukを光送信器24に設定し、かつ光送信器24の送信パワーを初期値に設定する。以下の処理手順は第1の実施形態と同様である。   In FIG. 1, the ONU 20-k receives the wavelength multiplexed signal light transmitted from the OLT 10 through the WDM filter 21, sets the selection wavelength of the wavelength selection filter 22 to λd0, and downloads the downstream signal of the wavelength λd0 including the control signal. The light is separated from the wavelength multiplexed signal light and received by the optical receiver 23. The processing unit 26 receives the control signal via the control signal separation means 25, sets the wavelength λuk corresponding to the wavelength setting information of the control signal in the optical transmitter 24, and sets the transmission power of the optical transmitter 24 to the initial value. Set to. The following processing procedure is the same as that of the first embodiment.

本実施形態のONU設定制御シーケンスは、図11に示す第3の実施形態のONU設定制御シーケンスと同様である。ただし、S41において、OLT10の処理部15で新設ONU20−kの波長設定情報を有する制御信号を生成し、光送信器11−0に入力し、波長λd0の下り信号光を生成して送信する。S42において、新設ONU20−kの波長選択フィルタ22の選択波長をλd0に設定して制御信号を含む下り信号光を受信し、制御信号分離手段25を介して制御信号を処理部26で受信する。本実施形態の場合でも、第3の実施形態のように新設ONU20−kの制御信号分離手段25として、スイッチまたは分配器または周波数分離するフィルタを用い、設定モードでは制御信号を受信し、定常モードでは主信号を受信するようにしてもよい。   The ONU setting control sequence of this embodiment is the same as the ONU setting control sequence of the third embodiment shown in FIG. However, in S41, the processing unit 15 of the OLT 10 generates a control signal having the wavelength setting information of the new ONU 20-k, inputs it to the optical transmitter 11-0, and generates and transmits a downstream signal light having the wavelength λd0. In S42, the selection wavelength of the wavelength selection filter 22 of the newly installed ONU 20-k is set to λd0, the downstream signal light including the control signal is received, and the control signal is received by the processing unit 26 via the control signal separation means 25. Even in the case of the present embodiment, as in the third embodiment, as the control signal separation means 25 of the newly installed ONU 20-k, a switch, a divider, or a frequency separating filter is used, the control signal is received in the setting mode, and the steady mode Then, the main signal may be received.

また、新設ONU20−kの波長選択フィルタ22における下り信号光の波長λdkの設定は、光送信器24の波長設定および送信パワーの設定が完了した後に、主信号の送受信を開始する直前に行う。新設ONU20−kの制御信号分離手段25としてスイッチを用いる場合の切替も同様である。   In addition, the setting of the wavelength λdk of the downstream signal light in the wavelength selection filter 22 of the new ONU 20-k is performed immediately after starting the transmission / reception of the main signal after the wavelength setting of the optical transmitter 24 and the setting of the transmission power are completed. The same applies to switching when a switch is used as the control signal separation means 25 of the new ONU 20-k.

(第5の実施形態)
図13は、本発明の光波長多重システムの第5の実施形態におけるONUの構成例を示す。本実施形態におけるONU20−kは、図1に示す第1の実施形態のONU20−kに代わるものであり、波長選択フィルタ22の出力を2分岐する光タップ27と、制御信号専用の光受信器28を備えることを特徴とする。制御信号分離手段25は、主信号との分離機能は不要であり、制御信号のみを抽出できる構成であればよい。本実施形態のONU20−kに対応するOLTは、図1に示す第1の実施形態のOLTに限らず、図8に示す第2の実施形態のOLT、図9に示す第3の実施形態のOLT、図12に示す第4の実施形態のOLTを用いることができる。
(Fifth embodiment)
FIG. 13 shows a configuration example of the ONU in the fifth embodiment of the optical wavelength multiplexing system of the present invention. The ONU 20-k in this embodiment is an alternative to the ONU 20-k in the first embodiment shown in FIG. 1, and includes an optical tap 27 for branching the output of the wavelength selection filter 22 and an optical receiver dedicated to control signals. 28. The control signal separation unit 25 does not need a separation function from the main signal, and may have any configuration that can extract only the control signal. The OLT corresponding to the ONU 20-k of the present embodiment is not limited to the OLT of the first embodiment shown in FIG. 1, but the OLT of the second embodiment shown in FIG. 8, and the OLT of the third embodiment shown in FIG. The OLT of the fourth embodiment shown in FIG. 12 can be used.

(第6の実施形態)
図14は、本発明の光波長多重システムの第6の実施形態を示す。本実施形態では、図12に示す第4の実施形態のOLT10のみに対応するONU20−kの構成を示し、WDMフィルタ21で波長λd0の制御信号を含む下り信号光を分離して専用の光受信器28で受信し、検出した制御信号を処理部26に直接入力することを特徴とする。
(Sixth embodiment)
FIG. 14 shows a sixth embodiment of the optical wavelength multiplexing system of the present invention. In the present embodiment, the configuration of the ONU 20-k corresponding only to the OLT 10 of the fourth embodiment shown in FIG. The control signal received and detected by the device 28 is directly input to the processing unit 26.

本実施形態のONU設定制御シーケンスは、図10に示す第3の実施形態のONU設定制御シーケンスと同様である。ただし、S41において、OLT10の処理部15で新設ONU20−kの波長設定情報を有する制御信号を生成し、光送信器11−0に入力し、波長λd0の下り信号光を生成して送信する。S42において、光受信器28は、波長λd0の制御信号を含む下り信号光を受信し、制御信号を処理部26で受信する。すなわち、本実施形態では常に制御信号を受信しているので、これを選択する手順が不要となる。   The ONU setting control sequence of this embodiment is the same as the ONU setting control sequence of the third embodiment shown in FIG. However, in S41, the processing unit 15 of the OLT 10 generates a control signal having the wavelength setting information of the new ONU 20-k, inputs it to the optical transmitter 11-0, and generates and transmits a downstream signal light having the wavelength λd0. In S42, the optical receiver 28 receives the downstream signal light including the control signal having the wavelength λd0, and the control unit 26 receives the control signal. That is, in this embodiment, since the control signal is always received, the procedure for selecting it becomes unnecessary.

(第7の実施形態)
図15は、本発明の光波長多重システムの第7の実施形態を示す。本実施形態では、OLT10から各ONU20−1〜20−nで上り信号光の送信に用いる上り用光キャリア(例えば無変調光)を供給し、各ONUでそれぞれ割り当てられた波長の上り用光キャリアを変調して折り返す構成を特徴とする。ここでは、図1に示す第1の実施形態の構成に適用した例を示すが、上記の各実施形態および以下に示す各実施形態の構成にも同様に適用することができる。
(Seventh embodiment)
FIG. 15 shows a seventh embodiment of the optical wavelength multiplexing system of the present invention. In the present embodiment, an upstream optical carrier (for example, unmodulated light) used for transmission of upstream signal light is supplied from the OLT 10 to each ONU 20-1 to 20-n, and the upstream optical carrier having a wavelength assigned to each ONU. It is characterized by a configuration that modulates and folds back. Here, an example applied to the configuration of the first embodiment shown in FIG. 1 is shown, but the present invention can be similarly applied to the configurations of the above embodiments and the following embodiments.

図において、OLT10は波長λu1〜λunの多波長光を出力する多波長光源19を備え、光カプラ73を介して光ファイバ伝送路71に送出する。ONU20−kでは、WDMフィルタ21で波長λu1〜λunの多波長光を一括して分離し、光送信器24に入力する。ここで、光送信器24は、反射型光変調器または注入同期レーザ(例えばファブリペローレーザ)241と波長選択フィルタ242で構成される。処理部26は、波長選択フィルタ242の選択波長をλukに設定することにより、多波長光から波長λukの上り用光キャリアが分離して反射型光変調器または注入同期レーザ241に入力し、主信号で変調した上り信号光を逆方向に送出する。このとき、送信パワーが上記の手順に従って制御される。   In the figure, the OLT 10 includes a multi-wavelength light source 19 that outputs multi-wavelength light with wavelengths λu1 to λun, and transmits the light to an optical fiber transmission line 71 via an optical coupler 73. In the ONU 20-k, the multi-wavelength light having the wavelengths λu 1 to λun is collectively separated by the WDM filter 21 and input to the optical transmitter 24. Here, the optical transmitter 24 includes a reflective optical modulator or an injection-locked laser (for example, a Fabry-Perot laser) 241 and a wavelength selection filter 242. The processing unit 26 sets the selection wavelength of the wavelength selection filter 242 to λuk, so that the upstream optical carrier having the wavelength λuk is separated from the multi-wavelength light and is input to the reflective optical modulator or the injection locking laser 241. The upstream signal light modulated by the signal is transmitted in the reverse direction. At this time, the transmission power is controlled according to the above procedure.

(第8の実施形態)
図16は、本発明の光波長多重システムの第8の実施形態を示す。本実施形態は、図1に示す第1の実施形態において、OLT10とONU20−k(1≦k≦n)を接続する光パワースプリッタ(光カプラ)72に代えて、波長合分波器74を介して各ONUが波長対応に接続されることを特徴とする。波長合分波器74を用いることにより、OLT10から送信された波長多重信号光は、各波長λd1〜λdnの下り信号光に分波されてそれぞれ対応するONU20−1〜20−nに伝送され、各ONU20−1〜20−nから送信された波長λu1〜λunの上り信号光は合波されてOLT10に伝送される。そのため、新設ONU20−kには波長λdkの下り信号光のみが受信されるので、波長選択フィルタ22は不要となる。
(Eighth embodiment)
FIG. 16 shows an eighth embodiment of the optical wavelength multiplexing system of the present invention. In this embodiment, in the first embodiment shown in FIG. 1, a wavelength multiplexer / demultiplexer 74 is used instead of the optical power splitter (optical coupler) 72 that connects the OLT 10 and the ONU 20-k (1 ≦ k ≦ n). Each ONU is connected to each other via a wavelength. By using the wavelength multiplexer / demultiplexer 74, the wavelength multiplexed signal light transmitted from the OLT 10 is demultiplexed into downstream signal lights of the respective wavelengths λd1 to λdn and transmitted to the corresponding ONUs 20-1 to 20-n, The upstream signal lights of wavelengths λu1 to λun transmitted from the respective ONUs 20-1 to 20-n are combined and transmitted to the OLT 10. Therefore, since only the downstream signal light having the wavelength λdk is received by the newly installed ONU 20-k, the wavelength selection filter 22 becomes unnecessary.

本実施形態のONU設定制御シーケンス例を図17に示すが、図10に示す第3の実施形態のONU設定制御シーケンス例と異なる点は次の通りである。S42に代わるS51では、新設ONU20−kの波長選択フィルタ22における波長選択動作はなく、光受信器23、制御信号分離手段25を介して制御信号を処理部26で受信する。本実施形態の場合でも、第3の実施形態のように新設ONU20−kの制御信号分離手段25をスイッチまたは分配器または周波数分離するフィルタを用い、設定モードでは制御信号を受信し、定常モードでは主信号を受信するようにしてもよい。   FIG. 17 shows an example of the ONU setting control sequence according to the present embodiment. The difference from the example of the ONU setting control sequence according to the third embodiment shown in FIG. 10 is as follows. In S51 instead of S42, there is no wavelength selection operation in the wavelength selection filter 22 of the new ONU 20-k, and the control signal is received by the processing unit 26 via the optical receiver 23 and the control signal separation means 25. Even in the case of the present embodiment, as in the third embodiment, the control signal separation means 25 of the newly installed ONU 20-k uses a switch or a distributor or a filter for frequency separation, receives a control signal in the setting mode, and in the steady mode. The main signal may be received.

(第9の実施形態)
図18は、本発明の光波長多重システムの第9の実施形態におけるOLTの構成例を示す。本実施形態におけるOLT10は、図16に示す第8の実施形態のOLT10に代わるものであり、新設ONU20−kに送信する制御信号を光段で重畳することを特徴とする。図16に示す第8の実施形態の新設ONU20−kの構成はそのまま用いることができる。また、OLT10および新設ONU20−kの動作は、図8に示す第2の実施形態と同様である。
(Ninth embodiment)
FIG. 18 shows a configuration example of the OLT in the ninth embodiment of the optical wavelength multiplexing system of the present invention. The OLT 10 in the present embodiment is an alternative to the OLT 10 in the eighth embodiment shown in FIG. 16, and is characterized in that a control signal to be transmitted to the new ONU 20-k is superimposed at the optical stage. The configuration of the new ONU 20-k of the eighth embodiment shown in FIG. 16 can be used as it is. The operations of the OLT 10 and the new ONU 20-k are the same as those in the second embodiment shown in FIG.

(第10の実施形態)
図19は、本発明の光波長多重システムの第10の実施形態におけるOLTの構成例を示す。本実施形態におけるOLT10は、図16に示す第8の実施形態のOLT10に代わるものであり、新設ONU20−kに対してのみその制御信号を下り信号光として送信することを特徴とすることを特徴とする。図17に示す第8の実施形態の新設ONU20−kの構成はそのまま用いることができる。また、OLT10および新設ONU20−k動作は、図9に示す第3の実施形態と同様である。
(Tenth embodiment)
FIG. 19 shows a configuration example of the OLT in the tenth embodiment of the optical wavelength multiplexing system of the present invention. The OLT 10 in this embodiment is an alternative to the OLT 10 in the eighth embodiment shown in FIG. 16, and is characterized in that its control signal is transmitted as downlink signal light only to the new ONU 20-k. And The configuration of the new ONU 20-k of the eighth embodiment shown in FIG. 17 can be used as it is. The operation of the OLT 10 and the new ONU 20-k is the same as that of the third embodiment shown in FIG.

(第11の実施形態)
図20は、本発明の光波長多重システムの第11の実施形態におけるONUの構成例を示す。本実施形態におけるONU20−kは、図16に示す第8の実施形態のONU20−kに代わるものであり、WDMフィルタ21の出力を2分岐する光タップ27と、制御信号専用の光受信器28を備えることを特徴とする。制御信号分離手段25は、主信号との分離機能は不要であり、制御信号のみを抽出できる構成であればよい。本実施形態のONU20−kに対応するOLTは、図16に示す第8の実施形態のOLTに限らず、図18に示す第9の実施形態のOLT、図19に示す第10の実施形態のOLTを用いることができる。
(Eleventh embodiment)
FIG. 20 shows a configuration example of the ONU in the eleventh embodiment of the optical wavelength multiplexing system of the present invention. The ONU 20-k in this embodiment is an alternative to the ONU 20-k in the eighth embodiment shown in FIG. 16, and includes an optical tap 27 for branching the output of the WDM filter 21 and an optical receiver 28 dedicated to control signals. It is characterized by providing. The control signal separation unit 25 does not need a separation function from the main signal, and may have any configuration that can extract only the control signal. The OLT corresponding to the ONU 20-k of the present embodiment is not limited to the OLT of the eighth embodiment shown in FIG. 16, but the OLT of the ninth embodiment shown in FIG. 18, and the OLT of the tenth embodiment shown in FIG. OLT can be used.

(第12の実施形態)
図21は、本発明の光波長多重システムの第12の実施形態を示す。本実施形態におけるOLT10は、図16に示す第8の実施形態のOLT10に代わるものであり、制御信号用の光送信器11−0を備え、新設ONU20−kに送信する制御信号をその光送信器11−0から波長λd0の下り信号光として送信することを特徴とする。また、本実施形態におけるONU20−kは、図16に示す第8の実施形態のONU20−kに代わるものであり、WDMフィルタ21で波長λd0の制御信号を含む下り信号光を分離して専用の光受信器28で受信し、検出した制御信号を処理部26に直接入力することを特徴とする。
(Twelfth embodiment)
FIG. 21 shows a twelfth embodiment of the optical wavelength multiplexing system of the present invention. The OLT 10 in the present embodiment is an alternative to the OLT 10 in the eighth embodiment shown in FIG. 16, and includes an optical transmitter 11-0 for control signals, and transmits the control signal to be transmitted to the newly installed ONU 20-k. It is characterized in that it is transmitted as a downstream signal light having a wavelength λd0 from the optical device 11-0. Also, the ONU 20-k in this embodiment is an alternative to the ONU 20-k in the eighth embodiment shown in FIG. 16, and the WDM filter 21 separates the downstream signal light including the control signal having the wavelength λd0 and uses a dedicated signal. A control signal received and detected by the optical receiver 28 is directly input to the processing unit 26.

ここで、光送信器11−0の波長λd0は広帯域とする。波長合分波器74は、新設ONU20−kに対応する下り信号光の波長λdkを分波するとともに、広帯域の波長λd0の下り信号光から、波長合分波器74のFSRに対応するαだけ離れたλdk+αの下り信号光を同時に分波する。したがって、新設ONU20−kのWDMフィルタ21は、波長λdk+α、波長λdkの下り信号光、波長λukの上り信号光を分離する構成であれば、波長λdk+αの下り信号光を光受信器28に受信して制御信号を抽出することができる。   Here, the wavelength λd0 of the optical transmitter 11-0 is a wide band. The wavelength multiplexer / demultiplexer 74 demultiplexes the wavelength λdk of the downstream signal light corresponding to the newly installed ONU 20-k, and only α corresponding to the FSR of the wavelength multiplexer / demultiplexer 74 from the downstream signal light of the broadband wavelength λd0. Separate downstream λdk + α downstream signal light. Therefore, the WDM filter 21 of the new ONU 20-k receives the downstream signal light of the wavelength λdk + α to the optical receiver 28 as long as the downstream signal light of the wavelength λdk + α, the wavelength λdk and the upstream signal light of the wavelength λuk are separated. Thus, the control signal can be extracted.

なお、下り信号光の波長λd1〜λdnと、上り信号光の波長λu1〜λunが、それぞれ波長合分波器74のFSRに対応する関係にあれば、双方向で1本の光ファイバ伝送路を用いることができる。   If the wavelengths λd1 to λdn of the downstream signal light and the wavelengths λu1 to λun of the upstream signal light have a relationship corresponding to the FSR of the wavelength multiplexer / demultiplexer 74, one optical fiber transmission line is bidirectionally provided. Can be used.

本実施形態のONU設定制御シーケンスは、図17に示す第8の実施形態のONU設定制御シーケンスと同様である。ただし、S41において、OLT10の処理部15で新設ONU20−kの波長設定情報を有する制御信号を生成し、光送信器11−0に入力し、波長λd0の下り信号光を生成して送信する。S51において、光受信器28は、波長λd0+αの制御信号を含む下り信号光を受信し、制御信号を処理部26で受信する。   The ONU setting control sequence of this embodiment is the same as the ONU setting control sequence of the eighth embodiment shown in FIG. However, in S41, the processing unit 15 of the OLT 10 generates a control signal having the wavelength setting information of the new ONU 20-k, inputs it to the optical transmitter 11-0, and generates and transmits a downstream signal light having the wavelength λd0. In S51, the optical receiver 28 receives the downstream signal light including the control signal having the wavelength λd0 + α, and the control unit 26 receives the control signal.

本発明の光波長多重システムの第1の実施形態を示す図。The figure which shows 1st Embodiment of the optical wavelength division multiplexing system of this invention. 第1の実施形態におけるONU設定制御シーケンス例を示す図。The figure which shows the ONU setting control sequence example in 1st Embodiment. 第1の実施形態におけるONUの処理手順を示すフローチャート。The flowchart which shows the processing procedure of ONU in 1st Embodiment. 第1の実施形態におけるOLTの処理手順を示すフローチャート。5 is a flowchart showing a processing procedure of OLT in the first embodiment. 第1の実施形態における制御信号の時分割多重化方法を説明する図。The figure explaining the time division multiplexing method of the control signal in 1st Embodiment. 第1の実施形態における制御信号の周波数分割多重化方法を説明する図。The figure explaining the frequency division multiplexing method of the control signal in 1st Embodiment. 第1の実施形態における制御信号の符号分割多重化方法を説明する図。The figure explaining the code division multiplexing method of the control signal in 1st Embodiment. 本発明の光波長多重システムの第2の実施形態におけるOLTの構成例を示す図。The figure which shows the structural example of OLT in 2nd Embodiment of the optical wavelength multiplexing system of this invention. 本発明の光波長多重システムの第3の実施形態におけるOLTの構成例を示す図。The figure which shows the structural example of OLT in 3rd Embodiment of the optical wavelength multiplexing system of this invention. 第3の実施形態におけるONU設定制御シーケンス例を示す図。The figure which shows the ONU setting control sequence example in 3rd Embodiment. 第3の実施形態における制御信号の送信方法を説明する図。The figure explaining the transmission method of the control signal in 3rd Embodiment. 本発明の光波長多重システムの第4の実施形態におけるOLTの構成例を示す図。The figure which shows the structural example of OLT in 4th Embodiment of the optical wavelength multiplexing system of this invention. 本発明の光波長多重システムの第5の実施形態におけるONUの構成例を示す図。The figure which shows the structural example of ONU in 5th Embodiment of the optical wavelength multiplexing system of this invention. 本発明の光波長多重システムの第6の実施形態を示す図。The figure which shows 6th Embodiment of the optical wavelength multiplexing system of this invention. 本発明の光波長多重システムの第7の実施形態を示す図。The figure which shows 7th Embodiment of the optical wavelength multiplexing system of this invention. 本発明の光波長多重システムの第8の実施形態を示す図。The figure which shows 8th Embodiment of the optical wavelength multiplexing system of this invention. 第8の実施形態におけるONU設定制御シーケンス例を示す図。The figure which shows the ONU setting control sequence example in 8th Embodiment. 本発明の光波長多重システムの第9の実施形態におけるOLTの構成例を示す図。The figure which shows the structural example of OLT in 9th Embodiment of the optical wavelength multiplexing system of this invention. 本発明の光波長多重システムの第10の実施形態におけるOLTの構成例を示す図。The figure which shows the structural example of OLT in 10th Embodiment of the optical wavelength multiplexing system of this invention. 本発明の光波長多重システムの第11の実施形態におけるOLTの構成例を示す図。The figure which shows the structural example of OLT in 11th Embodiment of the optical wavelength multiplexing system of this invention. 本発明の光波長多重システムの第12の実施形態を示す図。The figure which shows 12th Embodiment of the optical wavelength multiplexing system of this invention. 従来の光波長多重システムの第1の構成例を示す図。The figure which shows the 1st structural example of the conventional optical wavelength multiplexing system. 従来の光波長多重システムの第2の構成例を示す図。The figure which shows the 2nd structural example of the conventional optical wavelength multiplexing system.

符号の説明Explanation of symbols

10 光終端装置(OLT)
11 光送信器
12 光受信器
13 波長合分波器
14 制御信号多重手段
15 処理部
16 制御信号分配部
17 波長合波器
17′ 波長分波器
18 光変調器
19 WDMフィルタ
20 光ネットワークユニット(ONU)
21 WDMフィルタ
22 波長選択フィルタ
23,28 光受信器
24 光送信器
25 制御信号分離手段
26 処理部
27 光タップ 71 光ファイバ伝送路
72 光パワースプリッタ
73 光カプラ
74 波長合分波器
10 Optical Termination Equipment (OLT)
DESCRIPTION OF SYMBOLS 11 Optical transmitter 12 Optical receiver 13 Wavelength multiplexer / demultiplexer 14 Control signal multiplexing means 15 Processing part 16 Control signal distribution part 17 Wavelength multiplexer 17 'Wavelength splitter 18 Optical modulator 19 WDM filter 20 Optical network unit ( ONU)
DESCRIPTION OF SYMBOLS 21 WDM filter 22 Wavelength selection filter 23,28 Optical receiver 24 Optical transmitter 25 Control signal separation means 26 Processing part 27 Optical tap 71 Optical fiber transmission line 72 Optical power splitter 73 Optical coupler 74 Wavelength multiplexer / demultiplexer

Claims (23)

光送受信装置(センタ側)と最大複数n個の光送受信装置(ユーザ側)が光ファイバ伝送路および第1の波長合分波器を介して波長対応に接続され、光送受信装置(センタ側)から各光送受信装置(ユーザ側)へ送信する下り信号光と、各光送受信装置(ユーザ側)から光送受信装置(センタ側)へ送信する上り信号光の波長帯域が重ならないように配置し、各光送受信装置(ユーザ側)ごとに割り当てた波長の下り信号光および上り信号光を波長多重伝送する光波長多重システムにおいて、
前記光送受信装置(センタ側)は、前記下り信号光を波長多重し、前記上り信号光を波長分離する第2の波長合分波器と、新設する光送受信装置(ユーザ側)に設定する上り信号光波長の波長設定情報を含む制御信号を、前記各光送受信装置(ユーザ側)に対応する各波長の下り信号光に多重化して送信する制御信号送信手段とを備え、
前記新設する光送受信装置(ユーザ側)は、前記第1の波長合分波器で切り出された所定の波長の下り信号光に多重化された前記制御信号を受信し、この制御信号に応じて上り信号光波長を設定する制御信号受信手段を備えた
ことを特徴とする光波長多重システム。
The optical transmitter / receiver (center side) and a maximum of a plurality of n optical transmitter / receivers (user side) are connected corresponding to the wavelength via the optical fiber transmission line and the first wavelength multiplexer / demultiplexer, and the optical transmitter / receiver (center side) The downstream signal light transmitted from each optical transmission / reception device (user side) and the upstream signal light transmitted from each optical transmission / reception device (user side) to the optical transmission / reception device (center side) are arranged so as not to overlap. In an optical wavelength multiplexing system that wavelength-multiplexes downlink signal light and uplink signal light with a wavelength assigned to each optical transceiver (user side),
The optical transmission / reception device (center side) wavelength-multiplexes the downstream signal light and wavelength-separates the upstream signal light, and an upstream that is set in the newly installed optical transmission / reception device (user side). A control signal transmission unit that multiplexes and transmits a control signal including wavelength setting information of the signal light wavelength to a downstream signal light of each wavelength corresponding to each of the optical transceivers (user side),
The newly installed optical transmission / reception apparatus (user side) receives the control signal multiplexed with the downlink signal light of a predetermined wavelength cut out by the first wavelength multiplexer / demultiplexer, and according to the control signal An optical wavelength multiplexing system comprising control signal receiving means for setting an upstream optical signal wavelength.
光送受信装置(センタ側)と最大複数n個の光送受信装置(ユーザ側)が光ファイバ伝送路および第1の波長合分波器を介して波長対応に接続され、光送受信装置(センタ側)から各光送受信装置(ユーザ側)へ送信する下り信号光と、各光送受信装置(ユーザ側)から光送受信装置(センタ側)へ送信する上り信号光の波長帯域が重ならないように配置し、各光送受信装置(ユーザ側)ごとに割り当てた波長の下り信号光および上り信号光を波長多重伝送する光波長多重システムにおいて、
前記光送受信装置(センタ側)は、前記下り信号光を波長多重し、前記上り信号光を波長分離する第2の波長合分波器と、新設する光送受信装置(ユーザ側)に設定する上り信号光波長の波長設定情報を含む制御信号を、前記新設する光送受信装置(ユーザ側)に対応する所定の波長の下り信号光に多重化して送信する制御信号送信手段とを備え、
前記新設する光送受信装置(ユーザ側)は、前記所定の波長の下り信号光に多重化された前記制御信号を受信し、この制御信号に応じて上り信号光波長を設定する制御信号受信手段を備えた
ことを特徴とする光波長多重システム。
The optical transmitter / receiver (center side) and a maximum of a plurality of n optical transmitter / receivers (user side) are connected corresponding to the wavelength via the optical fiber transmission line and the first wavelength multiplexer / demultiplexer, and the optical transmitter / receiver (center side) The downstream signal light transmitted from each optical transmission / reception device (user side) and the upstream signal light transmitted from each optical transmission / reception device (user side) to the optical transmission / reception device (center side) are arranged so as not to overlap. In an optical wavelength multiplexing system that wavelength-multiplexes downlink signal light and uplink signal light with a wavelength assigned to each optical transceiver (user side),
The optical transmission / reception device (center side) wavelength-multiplexes the downstream signal light and wavelength-separates the upstream signal light, and an upstream that is set in the newly installed optical transmission / reception device (user side). A control signal transmission unit that multiplexes and transmits a control signal including wavelength setting information of a signal light wavelength to a downlink signal light of a predetermined wavelength corresponding to the newly installed optical transceiver (user side),
The newly installed optical transceiver (user side) receives the control signal multiplexed on the downstream signal light of the predetermined wavelength, and has a control signal receiving means for setting the upstream signal light wavelength according to the control signal An optical wavelength division multiplexing system characterized by comprising.
光送受信装置(センタ側)と最大複数n個の光送受信装置(ユーザ側)が光ファイバ伝送路および周期的透過特性を有する第1の波長合分波器を介して波長対応に接続され、光送受信装置(センタ側)から各光送受信装置(ユーザ側)へ送信する下り信号光と、各光送受信装置(ユーザ側)から光送受信装置(センタ側)へ送信する上り信号光の波長帯域が重ならないように配置し、各光送受信装置(ユーザ側)ごとに割り当てた波長の下り信号光および上り信号光を波長多重伝送する光波長多重システムにおいて、
前記光送受信装置(センタ側)は、前記下り信号光を波長多重し、前記上り信号光を波長分離する第2の波長合分波器と、新設する光送受信装置(ユーザ側)に設定する上り信号光波長の波長設定情報を含む制御信号を、前記各光送受信装置(ユーザ側)に対応する下り信号光の波長帯に対して、前記第1の波長合分波器の周期性分だけ離れた広帯域の下り信号光として送信する制御信号送信手段を備え、
前記新設する光送受信装置(ユーザ側)は、前記広帯域の下り信号光から前記波長合分波器で切り出された波長の下り信号光から前記制御信号を受信し、この制御信号に応じて上り信号光波長を設定する制御信号受信手段を備えた
ことを特徴とする光波長多重システム。
An optical transmission / reception device (center side) and a maximum of a plurality of n optical transmission / reception devices (user side) are connected in correspondence with wavelengths via an optical fiber transmission line and a first wavelength multiplexer / demultiplexer having periodic transmission characteristics. The wavelength bands of the downstream signal light transmitted from the transmission / reception device (center side) to each optical transmission / reception device (user side) and the upstream signal light transmitted from each optical transmission / reception device (user side) to the optical transmission / reception device (center side) overlap. In an optical wavelength multiplexing system that wavelength-multiplexes downlink signal light and uplink signal light of wavelengths allocated to each optical transceiver (user side),
The optical transmission / reception device (center side) wavelength-multiplexes the downstream signal light and wavelength-separates the upstream signal light, and an upstream that is set in the newly installed optical transmission / reception device (user side). The control signal including the wavelength setting information of the signal light wavelength is separated by the periodicity of the first wavelength multiplexer / demultiplexer with respect to the wavelength band of the downstream signal light corresponding to each optical transmission / reception device (user side) Control signal transmitting means for transmitting as a wideband downstream signal light,
The newly installed optical transmission / reception apparatus (user side) receives the control signal from the downstream signal light having a wavelength cut out from the broadband downstream signal light by the wavelength multiplexer / demultiplexer, and the upstream signal is transmitted in accordance with the control signal. An optical wavelength multiplexing system comprising control signal receiving means for setting an optical wavelength.
請求項1〜請求項3のいずれかに記載の光波長多重システムにおいて、
前記光送受信装置(センタ側)は、新設する光送受信装置(ユーザ側)に対応する波長の上り信号光の受信状況をモニタし、その受信状況を前記制御信号により新設する光送受信装置(ユーザ側)に通知する上り信号光モニタ手段を備え、
前記新設する光送受信装置(ユーザ側)は、前記光送受信装置(センタ側)から通知される受信状況に応じて所定の波長の上り信号光の送信パワーを増加または減少または保持する送信パワー制御手段を備えた
ことを特徴とする光波長多重システム。
In the optical wavelength division multiplexing system according to any one of claims 1 to 3,
The optical transmission / reception apparatus (center side) monitors the reception status of upstream signal light having a wavelength corresponding to the newly installed optical transmission / reception apparatus (user side), and newly installs the reception status by the control signal (user side). ) Provided with an upstream signal light monitoring means,
The newly installed optical transmission / reception device (user side) increases or decreases or holds the transmission power of the upstream signal light of a predetermined wavelength according to the reception status notified from the optical transmission / reception device (center side). An optical wavelength division multiplexing system characterized by comprising:
請求項4に記載の光波長多重システムにおいて、
前記新設する光送受信装置(ユーザ側)の送信パワー制御手段は、送信パワーを小から大まで複数の段階に対応するパワーモードを有し、前記光送受信装置(センタ側)から送信パワーの減少または保持に対応する指示がない場合に、所定の時間間隔でパワーモードを順番に上げてゆく構成である
ことを特徴とする光波長多重システム。
The optical wavelength division multiplexing system according to claim 4,
The transmission power control means of the newly installed optical transmission / reception device (user side) has a power mode corresponding to a plurality of stages from low to high transmission power, and the transmission power is reduced or reduced from the optical transmission / reception device (center side). An optical wavelength division multiplexing system that is configured to sequentially increase the power mode at predetermined time intervals when there is no instruction corresponding to holding.
請求項1に記載の光波長多重システムにおいて、
前記光送受信装置(センタ側)の制御信号送信手段は、前記制御信号を主信号に電気段で多重化し、前記各光送受信装置(ユーザ側)に対応する各波長の下り信号光を生成する構成である
ことを特徴とする光波長多重システム。
The optical wavelength division multiplexing system according to claim 1,
The control signal transmitting means of the optical transmission / reception apparatus (center side) multiplexes the control signal with a main signal at an electrical stage to generate downstream signal light of each wavelength corresponding to each optical transmission / reception apparatus (user side) An optical wavelength division multiplexing system characterized by
請求項2に記載の光波長多重システムにおいて、
前記光送受信装置(センタ側)の制御信号送信手段は、前記制御信号を主信号に電気段で多重化し、前記新設する光送受信装置(ユーザ側)に対応する所定の波長の下り信号光を生成する構成である
ことを特徴とする光波長多重システム。
The optical wavelength division multiplexing system according to claim 2,
The control signal transmission means of the optical transmission / reception apparatus (center side) multiplexes the control signal with the main signal at the electrical stage, and generates downstream signal light of a predetermined wavelength corresponding to the newly installed optical transmission / reception apparatus (user side) An optical wavelength division multiplexing system characterized in that
請求項1に記載の光波長多重システムにおいて、
前記光送受信装置(センタ側)の制御信号送信手段は、前記各光送受信装置(ユーザ側)に対応する各波長の下り信号光を波長多重した波長多重信号光に前記制御信号を光段で多重化する構成である
ことを特徴とする光波長多重システム。
The optical wavelength division multiplexing system according to claim 1,
The control signal transmission means of the optical transmitter / receiver (center side) multiplexes the control signal at the optical stage with wavelength multiplexed signal light obtained by wavelength multiplexing the downstream signal light of each wavelength corresponding to each optical transmitter / receiver (user side). An optical wavelength division multiplexing system characterized in that
請求項6または請求項7に記載の光波長多重システムにおいて、
前記光送受信装置(センタ側)の制御信号送信手段は、前記主信号および前記制御信号にそれぞれ識別子を付加して時分割多重化する構成である
ことを特徴とする光波長多重システム。
The optical wavelength division multiplexing system according to claim 6 or 7,
The optical wavelength multiplexing system, wherein the control signal transmission means of the optical transmission / reception apparatus (center side) is configured to add an identifier to each of the main signal and the control signal and perform time division multiplexing.
請求項6〜8のいずれかに記載の光波長多重システムにおいて、
前記光送受信装置(センタ側)の制御信号送信手段は、前記主信号と前記制御信号が互いに異なる周波数帯域に設定され、周波数分割多重する構成である
ことを特徴とする光波長多重システム。
In the optical wavelength division multiplexing system according to any one of claims 6 to 8,
The optical wavelength multiplexing system, wherein the control signal transmission means of the optical transmission / reception apparatus (center side) is configured such that the main signal and the control signal are set in different frequency bands and frequency division multiplexed.
請求項6〜8のいずれかに記載の光波長多重システムにおいて、
前記光送受信装置(センタ側)の制御信号送信手段は、前記主信号と前記制御信号を符号分割多重する構成である
ことを特徴とする光波長多重システム。
In the optical wavelength division multiplexing system according to any one of claims 6 to 8,
The optical wavelength multiplexing system, wherein the control signal transmission means of the optical transceiver (center side) is configured to code division multiplex the main signal and the control signal.
請求項1または請求項2に記載の光波長多重システムにおいて、
前記新設する光送受信装置(ユーザ側)の制御信号受信手段は、前記制御信号を含む下り信号光を受光し、出力される電気信号から前記主信号と前記制御信号を分離して前記制御信号を出力する構成である
ことを特徴とする光波長多重システム。
The optical wavelength division multiplexing system according to claim 1 or 2,
The control signal receiving means of the newly installed optical transceiver (user side) receives downstream signal light including the control signal, separates the main signal and the control signal from the output electric signal, and outputs the control signal. An optical wavelength division multiplexing system characterized by having an output configuration.
請求項1または請求項2に記載の光波長多重システムにおいて、
前記新設する光送受信装置(ユーザ側)の制御信号受信手段は、前記制御信号を含む下り信号光を2分岐してそれぞれ受光し、その一方の電気信号から前記制御信号を抽出する構成である
ことを特徴とする光波長多重システム。
The optical wavelength division multiplexing system according to claim 1 or 2,
The control signal receiving means of the newly installed optical transmission / reception apparatus (user side) has a configuration in which the downstream signal light including the control signal is branched into two, respectively, and the control signal is extracted from one of the electrical signals. An optical wavelength division multiplexing system.
請求項3に記載の光波長多重システムにおいて、
前記新設する光送受信装置(ユーザ側)の制御信号受信手段は、前記制御信号を含む所定の波長の下り信号光を分波して受光し、その電気信号から前記制御信号を抽出する構成である
ことを特徴とする光波長多重システム。
The optical wavelength division multiplexing system according to claim 3,
The control signal receiving means of the newly installed optical transceiver (user side) is configured to demultiplex and receive downstream signal light having a predetermined wavelength including the control signal and extract the control signal from the electrical signal. An optical wavelength division multiplexing system.
請求項2に記載の光波長多重システムにおいて、
前記光送受信装置(センタ側)の制御信号送信手段および前記新設する光送受信装置(ユーザ側)の制御信号受信手段は、前記制御信号を含む下り信号光と前記主信号を含む下り信号光を切り替えて送受信する構成である
ことを特徴とする光波長多重システム。
The optical wavelength division multiplexing system according to claim 2,
The control signal transmission means of the optical transmission / reception apparatus (center side) and the control signal reception means of the newly installed optical transmission / reception apparatus (user side) switch between downlink signal light including the control signal and downlink signal light including the main signal. An optical wavelength multiplexing system characterized by having a configuration for transmitting and receiving data.
請求項1〜3のいずれかに記載の光波長多重システムにおいて、
前記新設する光送受信装置(ユーザ側)の制御信号受信手段は、波長設定時には前記制御信号を含む下り信号光を受光する波長を選択し、定常時には前記主信号を含む下り信号光を受光する波長を選択する構成である
ことを特徴とする光波長多重システム。
In the optical wavelength division multiplexing system according to any one of claims 1 to 3,
The control signal receiving means of the newly installed optical transceiver (user side) selects a wavelength for receiving the downstream signal light including the control signal when setting the wavelength, and receives a downstream signal light including the main signal when stationary. An optical wavelength division multiplexing system characterized in that the configuration is selected.
請求項1〜3のいずれかに記載の光波長多重システムにおいて、
前記光送受信装置(センタ側)は、前記各光送受信装置(ユーザ側)に上り用光キャリアを供給する手段を備え、
前記各光送受信装置(ユーザ側)は、前記上り用光キャリアからそれぞれ対応する波長の上り用光キャリアを変調して折り返し送信する手段を備えた
ことを特徴とする光波長多重システム。
In the optical wavelength division multiplexing system according to any one of claims 1 to 3,
The optical transceiver (center side) includes means for supplying an upstream optical carrier to each optical transceiver (user side),
Each of the optical transmission / reception apparatuses (user side) includes means for modulating and transmitting an uplink optical carrier having a corresponding wavelength from the uplink optical carrier.
光終端装置(OLT)と最大複数n個の光ネットワークユニット(ONU)が光ファイバ伝送路および第1の波長合分波器を介して波長対応に接続され、光終端装置から各光ネットワークユニットへ送信する下り信号光と、各光ネットワークユニットから光終端装置へ送信する上り信号光の波長帯域が重ならないように配置し、各光ネットワークユニットごとに割り当てた波長の下り信号光および上り信号光を波長多重伝送する光波長多重システムの光終端装置において、
前記下り信号光を波長多重し、前記上り信号光を波長分離する第2の波長合分波器と、
新設する光ネットワークユニットに設定する上り信号光波長の波長設定情報を含む制御信号を、前記各光ネットワークユニットに対応する各波長の下り信号光に多重化して送信する制御信号送信手段と
を備えたことを特徴とする光波長多重システムの光終端装置。
An optical terminator (OLT) and a maximum of a plurality of n optical network units (ONUs) are connected to each wavelength via an optical fiber transmission line and a first wavelength multiplexer / demultiplexer, and from the optical terminator to each optical network unit. The downstream signal light to be transmitted and the upstream signal light transmitted from each optical network unit to the optical terminating device are arranged so that the wavelength bands do not overlap. In the optical termination device of an optical wavelength multiplexing system for wavelength multiplexing transmission,
A second wavelength multiplexer / demultiplexer that wavelength-multiplexes the downstream signal light and wavelength-separates the upstream signal light;
Control signal transmission means for multiplexing and transmitting a control signal including wavelength setting information of an upstream optical signal wavelength to be set in a newly installed optical network unit to downstream optical signals of each wavelength corresponding to each optical network unit; An optical terminator for an optical wavelength division multiplexing system.
請求項18に記載の光終端装置を備えた光波長多重システムの光ネットワークユニットにおいて、
前記波長合分波器で切り出された所定の波長の下り信号光に多重化された前記制御信号を受信し、この制御信号に応じて上り信号光波長を設定する制御信号受信手段を備えた
ことを特徴とする光波長多重システムの光ネットワークユニット。
In the optical wavelength multiplex system of the optical network unit with an optical terminal device according to claim 18,
A control signal receiving unit configured to receive the control signal multiplexed on the downlink signal light of a predetermined wavelength cut out by the wavelength multiplexer / demultiplexer and set the uplink signal light wavelength according to the control signal; An optical network unit for an optical wavelength division multiplexing system.
光終端装置(OLT)と最大複数n個の光ネットワークユニット(ONU)が光ファイバ伝送路および第1の波長合分波器を介して波長対応に接続され、光終端装置から各光ネットワークユニットへ送信する下り信号光と、各光ネットワークユニットから光終端装置へ送信する上り信号光の波長帯域が重ならないように配置し、各光ネットワークユニットごとに割り当てた波長の下り信号光および上り信号光を波長多重伝送する光波長多重システムの光終端装置において、
前記下り信号光を波長多重し、前記上り信号光を波長分離する第2の波長合分波器と、
新設する光ネットワークユニットに設定する上り信号光波長の波長設定情報を含む制御信号を、前記新設する光ネットワークユニットに対応する所定の波長の下り信号光に多重化して送信する制御信号送信手段と
を備えたことを特徴とする光波長多重システムの光終端装置。
An optical terminator (OLT) and a maximum of a plurality of n optical network units (ONUs) are connected to each wavelength via an optical fiber transmission line and a first wavelength multiplexer / demultiplexer, and from the optical terminator to each optical network unit. The downstream signal light to be transmitted and the upstream signal light to be transmitted from each optical network unit to the optical termination device are arranged so that the wavelength bands do not overlap. In an optical termination device of an optical wavelength multiplexing system for wavelength multiplexing transmission,
A second wavelength multiplexer / demultiplexer for wavelength-multiplexing the downstream signal light and wavelength-separating the upstream signal light;
Control signal transmitting means for multiplexing and transmitting a control signal including wavelength setting information of an upstream optical signal wavelength set in a newly installed optical network unit to a downstream optical signal having a predetermined wavelength corresponding to the newly installed optical network unit; An optical terminator for an optical wavelength division multiplexing system.
請求項20に記載の光終端装置を備えた光波長多重システムの光ネットワークユニットにおいて、
前記所定の波長の下り信号光に多重化された前記制御信号を受信し、この制御信号に応じて上り信号光波長を設定する制御信号受信手段を備えた
ことを特徴とする光波長多重システムの光ネットワークユニット。
In the optical wavelength multiplex system of the optical network unit with an optical terminal device according to claim 20,
An optical wavelength multiplexing system comprising: a control signal receiving unit configured to receive the control signal multiplexed on the downstream signal light having the predetermined wavelength and set an upstream signal light wavelength according to the control signal. Optical network unit.
光終端装置(OLT)と最大複数n個の光ネットワークユニット(ONU)が光ファイバ伝送路および周期的透過特性を有する第1の波長合分波器を介して波長対応に接続され、光終端装置から各光ネットワークユニットへ送信する下り信号光と、各光ネットワークユニットから光終端装置へ送信する上り信号光の波長帯域が重ならないように配置し、各光ネットワークユニットごとに割り当てた波長の下り信号光および上り信号光を波長多重伝送する光波長多重システムの光終端装置において、
前記下り信号光を波長多重し、前記上り信号光を波長分離する第2の波長合分波器と、
新設する光ネットワークユニットに設定する上り信号光波長の波長設定情報を含む制御信号を、前記各光ネットワークユニットに対応する下り信号光の波長帯に対して、前記第1の波長合分波器の周期性分だけ離れた広帯域の下り信号光として送信する制御信号送信手段と
を備えたことを特徴とする光波長多重システムの光終端装置。
An optical terminator (OLT) and a maximum of a plurality of n optical network units (ONUs) are connected in correspondence with wavelengths via an optical fiber transmission line and a first wavelength multiplexer / demultiplexer having periodic transmission characteristics. The downstream signal light transmitted from the optical network unit to each optical network unit and the upstream signal light transmitted from each optical network unit to the optical termination device are arranged so that the wavelength bands do not overlap, and the downstream signal of the wavelength assigned to each optical network unit In an optical termination device of an optical wavelength multiplexing system for wavelength multiplexing transmission of light and upstream signal light,
A second wavelength multiplexer / demultiplexer for wavelength-multiplexing the downstream signal light and wavelength-separating the upstream signal light;
A control signal including wavelength setting information of the upstream optical signal wavelength to be set in the newly installed optical network unit is transmitted to the downstream optical signal wavelength band corresponding to each optical network unit by the first wavelength multiplexer / demultiplexer. And a control signal transmitting means for transmitting the signal as broadband downstream signal light separated by a periodicity.
請求項22に記載の光終端装置を備えた光波長多重システムの光ネットワークユニットにおいて、
前記広帯域の下り信号光から前記第1の波長合分波器で切り出された波長の下り信号光から前記制御信号を受信し、この制御信号に応じて上り信号光波長を設定する制御信号受信手段を備えた
ことを特徴とする光波長多重システムの光ネットワークユニット。
In the optical wavelength multiplex system of the optical network unit with an optical terminal device according to claim 22,
Control signal receiving means for receiving the control signal from the downstream signal light having a wavelength cut out from the broadband downstream signal light by the first wavelength multiplexer / demultiplexer and setting the upstream signal light wavelength according to the control signal An optical network unit for an optical wavelength division multiplexing system.
JP2005009283A 2005-01-17 2005-01-17 Optical wavelength division multiplexing system, optical termination device and optical network unit Expired - Fee Related JP4499576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005009283A JP4499576B2 (en) 2005-01-17 2005-01-17 Optical wavelength division multiplexing system, optical termination device and optical network unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005009283A JP4499576B2 (en) 2005-01-17 2005-01-17 Optical wavelength division multiplexing system, optical termination device and optical network unit

Publications (2)

Publication Number Publication Date
JP2006197489A JP2006197489A (en) 2006-07-27
JP4499576B2 true JP4499576B2 (en) 2010-07-07

Family

ID=36803165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005009283A Expired - Fee Related JP4499576B2 (en) 2005-01-17 2005-01-17 Optical wavelength division multiplexing system, optical termination device and optical network unit

Country Status (1)

Country Link
JP (1) JP4499576B2 (en)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4704842B2 (en) * 2005-08-01 2011-06-22 株式会社日立製作所 WDM type PON system
JP4747915B2 (en) 2006-03-31 2011-08-17 日本電気株式会社 Wavelength division multiplexing PON system station side device, wavelength and network address assignment method, and program thereof
JP2008054093A (en) * 2006-08-25 2008-03-06 Nec Corp Optical communication system, optical communication apparatus, and optical communication wavelength control method
JP4388556B2 (en) 2007-01-09 2009-12-24 株式会社日立コミュニケーションテクノロジー Passive optical network system and wavelength allocation method
JP2008219518A (en) 2007-03-05 2008-09-18 Nec Corp Optical communication device, system and optical communication control method
US20080267625A1 (en) * 2007-04-30 2008-10-30 Futurewei Technologies, Inc. Multi-Rate Multi-Wavelength Optical Burst Detector
JP4894659B2 (en) * 2007-07-19 2012-03-14 Kddi株式会社 Optical transmission system
JP4820791B2 (en) * 2007-09-21 2011-11-24 株式会社日立製作所 Passive optical network system and ranging method
US7962038B2 (en) 2007-12-14 2011-06-14 Verizon Patent And Licensing Inc. High performance gigabit passive optical network
JP5053121B2 (en) * 2008-02-22 2012-10-17 日本電信電話株式会社 Optical transceiver on the optical terminal side (OSU)
JP4994300B2 (en) * 2008-05-29 2012-08-08 日本電信電話株式会社 Optical termination device
JP2010010986A (en) * 2008-06-26 2010-01-14 Fujikura Ltd Optical transmission system using four-wave mixing
JP5268485B2 (en) * 2008-08-06 2013-08-21 株式会社日立製作所 Automatic wavelength tuning control method for optical wavelength division multiplexing system
JP5079659B2 (en) * 2008-10-08 2012-11-21 日本電信電話株式会社 Optical access system
JP5085498B2 (en) * 2008-10-10 2012-11-28 日本電信電話株式会社 Optical access system
JP2010114622A (en) * 2008-11-06 2010-05-20 Nippon Telegr & Teleph Corp <Ntt> Optical communication system, transmitter of optical subscriber unit, receiver of optical network unit, and method for transmitting outgoing signal of optical subscriber unit
JP2010114623A (en) * 2008-11-06 2010-05-20 Nippon Telegr & Teleph Corp <Ntt> Optical communication system, transmitter of onu, receiver of olt, and method of transmitting up-link signal of onu
WO2010064981A1 (en) 2008-12-01 2010-06-10 Telefonaktiebolaget L M Ericsson (Publ) Methods and devices for wavelength alignment in wdm-pon
JP2009081887A (en) * 2009-01-06 2009-04-16 Hitachi Communication Technologies Ltd Passive optical network system, optical terminating device, and optical network unit
US8917994B2 (en) 2009-03-30 2014-12-23 Nec Corporation Wavelength path multiplexing and demultiplexing optical transmission apparatus
JP4909376B2 (en) * 2009-05-19 2012-04-04 株式会社日立製作所 Passive optical network system and wavelength allocation method
JP5511233B2 (en) * 2009-06-18 2014-06-04 Nttエレクトロニクス株式会社 Optical signal determination device, terminal device connection method, terminal device, and fixed wavelength light source selection method
JP2013502785A (en) 2009-08-19 2013-01-24 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Improved optical network
CN102104812B (en) * 2009-12-22 2013-10-09 华为技术有限公司 Method for automatically selecting wavelength and optical module
US9634792B2 (en) * 2010-11-24 2017-04-25 Alcatel Lucent Method and apparatus of performing ONT wavelength tuning via a heat source
EP2498431B1 (en) * 2011-03-09 2014-09-17 Mitsubishi Electric R&D Centre Europe B.V. Method for configuring transmission interfaces of devices communicating via a band-pass filter
JP5150758B2 (en) * 2011-09-05 2013-02-27 株式会社日立製作所 Optical termination device and optical network unit
CN104137490B (en) 2012-04-20 2017-11-10 三菱电机株式会社 Communication system, mother station device, sub-station device, control device and communication control method
JP5556921B1 (en) * 2013-03-01 2014-07-23 沖電気工業株式会社 Subscriber side apparatus registration method and optical network system
JP6094666B2 (en) * 2013-03-08 2017-03-15 富士通株式会社 Optical network system and optical communication method
EP2782286B1 (en) * 2013-03-22 2019-08-21 Mitsubishi Electric R&D Centre Europe B.V. Method and device for determining whether a configuration of an optical transmission interface has to be adjusted
CN104144360A (en) * 2013-05-06 2014-11-12 上海贝尔股份有限公司 Method and device for reconfiguring wave lengths of optical network unit
EP2928091A1 (en) * 2014-03-31 2015-10-07 Alcatel Lucent Method of receiving a wavelength-division multiplexed optical upstream signal in an optical access network
WO2015186194A1 (en) * 2014-06-03 2015-12-10 三菱電機株式会社 Master station device, slave station device, optical communication system, and wavelength allocation method
US9768905B2 (en) * 2014-06-25 2017-09-19 Futurewei Technologies, Inc. Optical line terminal (OLT) support of optical network unit (ONU) calibration
EP3217682B1 (en) * 2014-11-05 2019-07-31 Huawei Technologies Co., Ltd. Optical port auto-negotiation method, optical module, office side device, and terminal device
JP2016195358A (en) 2015-04-01 2016-11-17 富士通株式会社 Communication device and wavelength adjusting method
US9998254B2 (en) * 2015-05-20 2018-06-12 Finisar Corporation Method and apparatus for hardware configured network
EP3116153B1 (en) * 2015-07-09 2018-06-06 Mitsubishi Electric R&D Centre Europe B.V. Method for controlling access to an out-of-band communication channel in an optical communications network
CN107147513B (en) * 2016-03-01 2019-03-15 中兴通讯股份有限公司 A kind of management method and optical module of multi-wavelength passive optical network
JP6366885B2 (en) * 2016-06-30 2018-08-01 三菱電機株式会社 Slave station apparatus and optical communication system
KR102017883B1 (en) 2016-07-26 2019-09-03 한국전자통신연구원 Passive optical network receiving and transmitting frame using multi-lanes
JP7081679B2 (en) 2018-09-27 2022-06-07 日本電気株式会社 Optical transmitter and receiver
WO2021214996A1 (en) 2020-04-24 2021-10-28 日本電信電話株式会社 Transmission system, transmission method, and communication system
CN113873357A (en) * 2020-06-30 2021-12-31 华为技术有限公司 Optical splitter, ODN, method for identifying optical link where ONU is located, OLT, ONU and PON system
JPWO2022244252A1 (en) * 2021-05-21 2022-11-24
US12015886B2 (en) * 2021-10-06 2024-06-18 Nokia Solutions And Networks Oy Control of optical-modulation amplitude for burst-mode transmission

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03227199A (en) * 1990-01-31 1991-10-08 Oki Electric Ind Co Ltd Duplex optical communication system
JPH0537542A (en) * 1991-07-30 1993-02-12 Hitachi Ltd Wavelength split multiplex transmission method and wavelength split multiplex network
JPH05336177A (en) * 1992-06-04 1993-12-17 Fujitsu Ltd Transmission system for monitor control signal and optical relay system
JPH08107393A (en) * 1994-10-05 1996-04-23 Nippon Telegr & Teleph Corp <Ntt> Multiplex wavelength network
JPH0951325A (en) * 1995-08-09 1997-02-18 Nec Corp Wavelength multiplex optical transmitting system
JPH0983491A (en) * 1995-09-19 1997-03-28 Canon Inc Wavelength multiplex communication network
JPH09172409A (en) * 1995-12-20 1997-06-30 Nec Niigata Ltd Infrared communication equipment
JPH10126341A (en) * 1996-10-21 1998-05-15 Fujitsu Ltd Optical transmitter and optical network system
JPH10247896A (en) * 1997-03-05 1998-09-14 Fujitsu Ltd Communication network, optical transmitter, optical receiver and communication method
JP2000196536A (en) * 1998-12-28 2000-07-14 Nippon Telegr & Teleph Corp <Ntt> Wavelength multiplexed two-way optical transmission system
JP2000201137A (en) * 1998-10-27 2000-07-18 Nippon Telegr & Teleph Corp <Ntt> Optical transmission system
JP2001036474A (en) * 1999-07-22 2001-02-09 Nec Corp Optical output level automatic adjustment system for optical transmission and method
JP2001230733A (en) * 2000-02-16 2001-08-24 Kddi Corp Bidirectional wavelength multiplex optical communication system
JP2003018126A (en) * 2001-04-25 2003-01-17 Matsushita Electric Ind Co Ltd Optical transmission system and optical transmitter used therain
JP2003234705A (en) * 2002-02-08 2003-08-22 Denso Corp Optical communication device
JP2003324456A (en) * 2002-05-01 2003-11-14 Nippon Telegr & Teleph Corp <Ntt> Optical wavelength multiplex transmission method and optical wavelength multiplex transmission system
WO2004010612A1 (en) * 2002-07-23 2004-01-29 Fujitsu Limited Optical transmission method and system
JP2004274636A (en) * 2003-03-12 2004-09-30 Nec Corp Wavelength division multiplex transmission system, and remote apparatus and station apparatus employed for the system
WO2004114555A1 (en) * 2003-06-18 2004-12-29 Nippon Telegraph And Telephone Corporation Optical wavelength multiplex access system and optical network unit

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03227199A (en) * 1990-01-31 1991-10-08 Oki Electric Ind Co Ltd Duplex optical communication system
JPH0537542A (en) * 1991-07-30 1993-02-12 Hitachi Ltd Wavelength split multiplex transmission method and wavelength split multiplex network
JPH05336177A (en) * 1992-06-04 1993-12-17 Fujitsu Ltd Transmission system for monitor control signal and optical relay system
JPH08107393A (en) * 1994-10-05 1996-04-23 Nippon Telegr & Teleph Corp <Ntt> Multiplex wavelength network
JPH0951325A (en) * 1995-08-09 1997-02-18 Nec Corp Wavelength multiplex optical transmitting system
JPH0983491A (en) * 1995-09-19 1997-03-28 Canon Inc Wavelength multiplex communication network
JPH09172409A (en) * 1995-12-20 1997-06-30 Nec Niigata Ltd Infrared communication equipment
JPH10126341A (en) * 1996-10-21 1998-05-15 Fujitsu Ltd Optical transmitter and optical network system
JPH10247896A (en) * 1997-03-05 1998-09-14 Fujitsu Ltd Communication network, optical transmitter, optical receiver and communication method
JP2000201137A (en) * 1998-10-27 2000-07-18 Nippon Telegr & Teleph Corp <Ntt> Optical transmission system
JP2000196536A (en) * 1998-12-28 2000-07-14 Nippon Telegr & Teleph Corp <Ntt> Wavelength multiplexed two-way optical transmission system
JP2001036474A (en) * 1999-07-22 2001-02-09 Nec Corp Optical output level automatic adjustment system for optical transmission and method
JP2001230733A (en) * 2000-02-16 2001-08-24 Kddi Corp Bidirectional wavelength multiplex optical communication system
JP2003018126A (en) * 2001-04-25 2003-01-17 Matsushita Electric Ind Co Ltd Optical transmission system and optical transmitter used therain
JP2003234705A (en) * 2002-02-08 2003-08-22 Denso Corp Optical communication device
JP2003324456A (en) * 2002-05-01 2003-11-14 Nippon Telegr & Teleph Corp <Ntt> Optical wavelength multiplex transmission method and optical wavelength multiplex transmission system
WO2004010612A1 (en) * 2002-07-23 2004-01-29 Fujitsu Limited Optical transmission method and system
JP2004274636A (en) * 2003-03-12 2004-09-30 Nec Corp Wavelength division multiplex transmission system, and remote apparatus and station apparatus employed for the system
WO2004114555A1 (en) * 2003-06-18 2004-12-29 Nippon Telegraph And Telephone Corporation Optical wavelength multiplex access system and optical network unit

Also Published As

Publication number Publication date
JP2006197489A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
JP4499576B2 (en) Optical wavelength division multiplexing system, optical termination device and optical network unit
KR100480540B1 (en) Wavelength division multiplexing passive optical network system
US5574584A (en) Wavelength division multiplexing passive optical network with bi-directional optical spectral slicing
AU2008356593B2 (en) Optical network
KR100734873B1 (en) Wavelength tracking apparatus and method in WDM-PON system
US20060146855A1 (en) Optical wavelength multiplex access system and optical network unit
US20040001718A1 (en) Course wavelength division multiplexed optical network
KR100330409B1 (en) Wavelength Division Multiplexing Multiplexer / Demultiplexer and Wavelength Division Multiplexing Passive Optical Subscriber Network
KR100785436B1 (en) Wavelength division multiplexing passive optical network for convergence broadcasting service and communication service
JP2004274752A (en) Wavelength division multiplexed passive optical network system
WO2007086514A1 (en) Optical wavelength multiplexing access system
US8824890B2 (en) Open optical access network system
WO2011122700A1 (en) Wavelength-division-multiplexing passive-optical-network system, subscriber-side termination apparatus, and wavelength changing method
US20150055957A1 (en) Method of determining physical layer wavelength of tunable optical network unit (onu) in time and wavelength division multiplexed passive optical network (twdm-pon)
US20070133986A1 (en) Physical coding sublayer apparatus and Ethernet layer architecture for network-based tunable wavelength passive optical network system
EP3267605B1 (en) A method and central network device for establishing an embedded optical communication channel in an optical wdm transmission system
KR100711352B1 (en) Wavelength-division-multiplexed passive optical network using wavelength-locked optical transmitter
US11309973B2 (en) Optical burst monitoring
JP5053121B2 (en) Optical transceiver on the optical terminal side (OSU)
WO2019079138A1 (en) Method and apparatus for hardware-configured network
JP4699413B2 (en) Wavelength multiplexer
JP4793282B2 (en) COMMUNICATION SYSTEM, COMMUNICATION DEVICE, COMMUNICATION METHOD, AND COMMUNICATION PROGRAM
JP3615476B2 (en) Optical access system, access node device, and user node device
KR20130079272A (en) Optical transmitter/receiver and wavelength initialization using thereof
JP2004222255A (en) Optical network unit, wavelength splitter and optical wavelength-division multiplexing access system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4499576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees