JP3740357B2 - Optical multiplexer / demultiplexer with improved group delay characteristics - Google Patents

Optical multiplexer / demultiplexer with improved group delay characteristics Download PDF

Info

Publication number
JP3740357B2
JP3740357B2 JP2000266124A JP2000266124A JP3740357B2 JP 3740357 B2 JP3740357 B2 JP 3740357B2 JP 2000266124 A JP2000266124 A JP 2000266124A JP 2000266124 A JP2000266124 A JP 2000266124A JP 3740357 B2 JP3740357 B2 JP 3740357B2
Authority
JP
Japan
Prior art keywords
stage
optical
input
demultiplexer
group delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000266124A
Other languages
Japanese (ja)
Other versions
JP2002071978A (en
Inventor
要 神宮寺
勤 鬼頭
学 小熊
善典 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2000266124A priority Critical patent/JP3740357B2/en
Publication of JP2002071978A publication Critical patent/JP2002071978A/en
Application granted granted Critical
Publication of JP3740357B2 publication Critical patent/JP3740357B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光通信,光交換,光コンピューティング等の分野で使用される光合分波器に関し、特にマッハツェンダフィルタを多段縦続で構成したラティスフィルタを多段に構成した光合分波器に関する。
【0002】
【従来の技術】
近年、光通信,光交換,光コンピューティング等の分野、特に複数の波長の異なる光信号を多重化して通信する波長多重光通信の分野で、波長多重された信号光を異なる波長ごとに異なる出力ポートに分波する光分波器、あるいは、異なる波長が異なる入力ポートに入力されたときに1つの出力ポートに波長を多重化した光信号を出力する光合波器は重要な部品である。
【0003】
このような要求に答えることのできる部品としては、アレイ導波路格子がある(参考文献1:H. Takahashi, S. Suzuki, and I. Nishi, "Wavelength multiplexer based SiO2-Ta2O5 arryed-waveguide grating", J. Lightwave Technol., vol.12, no.6, pp. 989-995, 1994)。アレイ導波路格子は1つの素子で非常に多くの信号を一括合分波できることから、波長多重通信に適したデバイスとして既に現用システムにも導入されている。
【0004】
一方、16波程度以下と扱える多重数は比較的少ないが、低損失で、しかも光合分波機能と併せてスイッチング機能も同時にもつ、高機能な光合分波器としては、マッハツェンダフィルタを組み合わせた光合分波器がある。
【0005】
図3は4波を扱う従来の光分波器の構成を示す。各2入力2出力の光合分波素子としてマッハツェンダフィルタを用い、それを3個組み合わせている。入力ポートに近い第1段目のマッハツェンダフィルタ101の光路長差は2ΔL(Δは微小値を表わす)で、2段目の2個のマッハツェンダフィルタ102,103の光路長差はそれぞれΔLである。周期波長は逆に、第1段目のマッハツェンダフィルタ101がΔλ、第2段目のマッハツェンダフィルタ102,103がそれぞれ2Δλである。2段目の2個のマッハツェンダフィルタ102,103は、その中心波長がΔλずらせてある。
【0006】
本光分波器に入力された波長の異なる4波λ1,λ2,λ3,λ4は、第1段目のマッハツェンダフィルタ101により、λ1,λ3とλ2,λ4に分けられ、さらに2段目のマッハツェンダフィルタ102,103によりλ1,λ3,λ2,λ4にそれぞれ分けられる。また、それぞれのマッハツェンダフィルタの導波路上に設けた位相シフタ41〜43を駆動することにより、出力ポートに分波される波長を自由にスイッチングできる。
【0007】
最近では、上記のようなマッハツェンダフィルタの代わりに、2段以上のマッハツェンダフィルタを縦続接続したラティスフィルタ(lattice filter)を用いて、波長平坦透過特性に優れた、より高機能な光合分波器が作られるようになってきている。
【0008】
【発明が解決しようとする課題】
しかしながら、上記のようなマッハツェンダフィルタを多段縦続接続したラティスフィルタを用いた光合分波器では、機能を向上させるためにはラティスフィルタの段数を大きくした方がよいが、その段数を増やすと群遅延分散が大きくなるという解決すべき課題が生じた。
【0009】
本発明は、上記のような課題を解決するためになされたもので、その目的は、ラティスフィルタを2入力2出力の光合分波素子として用いたM入力M出力の高機能化な光合分波器において、ラティスフィルタの段数を増やした場合及び、組み合わせ段数を増やした場合に、光合分波器の合分波特性は変えずに、群遅延分散を最小化することにある。
【0010】
【課題を解決するための手段】
上記目標を達成するため、請求項1の発明は、2本の光導波路と該2本の光導波路を複数N+1箇所(Nは2以上の整数)の異なる位置で結合するN+1個の光カップラとから構成される2入力2出力の光合分波素子を3個、2段に組み合わせることにより構成される異なる複数M波(Mは2以上の整数)の波長を合分波するための光合分波器であって、1段目の1個の2入力2出力の光合分波素子の前記NをN=3,2段目の並列2個の2入力2出力の光合分波素子の前記NをそれぞれN=4とし、前記2入力2出力の光合分波素子は、位相制御用の位相シフタを備えたマッハツェンダフィルタを複数個縦続接続したラティスフィルタであり、前記2入力2出力の光合分波素子が前記光カップラの結合率と前記位相シフタの位相制御量とからなる回路パラメータを変えることにより振幅特性が同じでも異なる位相特性をもつことが可能であることを利用して、異なる位相特性をもつ複数個の前記2入力2出力の光合分波素子を組み合わせ、前記1段目の群遅延分散に対して前記2段目で逆特性の群遅延分散を与えることにより光合分波器の全てのチャンネルの群遅延分散を最小化し、前記1段目の2入力2出力の光合分波素子の光路長差を4ΔL、4ΔL、2ΔL、前記2段目の2入力2出力の光合分波素子の光路長差を2ΔL、2ΔL、2ΔL、ΔL(ただし、ΔLは周期周波数に対応する光路長差)にして、前記2入力2出力の光合分波素子の透過域/阻止域の透過特性を平坦化することにより、平坦な透過域/阻止域をもつようにした光合分波器において、前記1段目の前記ラティスフィルタの位相シフタの位相制御量ψn(nは自然数であって各ラティスフィルタの入力ポートの順列番号)として、ψ1=0×π,ψ2=1×π,ψ3=0×πを回路パラメータとして用い、前記2段目の一方の前記ラティスフィルタの位相シフタの位相制御量ψnとして、ψ1=0×π,ψ2=1×π,ψ3=1×π,ψ4=0×πを回路パラメータとして用い、前記2段目の他方の前記ラティスフィルタの位相シフタの位相制御量ψnとして、ψ1=0×π,ψ2=1×π,ψ3=1×π,ψ4=1×πを回路パラメータとして用い、かつ前記1段目の前記ラティスフィルタの振幅結合の角度θn(nは自然数であって各ラティスフィルタの入力ポートの順列番号)として、θ1=0.4664×π,θ2=0.1591×π,θ3=0.3755×π,θ4=0.25×πを回路パラメータとして用い、前記2段目の2個の前記ラティスフィルタの振幅結合の角度θnとして、θ1=0.4404×π,θ2=0.0698×π,θ3=0.1291×π,θ4=0.3006×π,θ5=0.25×πを回路パラメータとして用いたことを特徴とする。
【0015】
(作用)
光合分波素子として用いられる2入力2出力のラティスフィルタは、1つの振幅特性に対して複数の位相特性をもつことが知られている(参考文献2:K. Jinguji and M. Kawachi, "Synthesis of coherent two-port lattice-form optical delay-line circuit", J. Lightwave Technol., vol. 13. no. 1, pp. 73-82, 1995)。このことを利用して、本発明では、上記構成のように、振幅特性は同じで位相特性が異なる多段接続されたラティスフィルタの群遅延分散が逆特性となるように
組み合わせることにより、群遅延分散を打ち消すようにし、この結果、光合分波器の合分波特性は変えずに、位相の周波数に対する2回微分に対応する群遅延分散を改善し、多段ラティスフィルタ全体として群遅延分散を最小化することが可能となる。
【0016】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。
【0017】
(第1の実施形態)
図1の(A)は本発明の第1の実施の形態における透過域/阻止域が波長平坦な4波の光合分波器の構成を示す。図1の(B)はその光合分波器の第1段目のラティスフィルタ111の相対光周波数に対する光強度透過率特性(破線)と群遅延分散特性(実線)を示し、図1の(C)はその光合分波器の第2段目のラティスフィルタ112、113の相対光周波数に対する光強度透過率特性(破線)と群遅延分散特性(実線)を示す。
本実施形態では、図1の(A)に示すように、入力ポート側の第1段目にはマッハツェンダフィルタを3段縦続接続して構成したラティスフィルタ111が、第2段目にはそれぞれマッハツェンダフィルタを4段縦続して構成したラティスフィルタ112,113が使用されている。また、本実施形態では、透過域/阻止域が波長平坦な特性を実現するために、第1段目のラティスフィルタ111の光路長差は4ΔL,4ΔL,2ΔL,第2段目のラティスフィルタ112,113の光路長差はそれぞれ2ΔL,2ΔL,2ΔL,ΔLとした。
【0018】
本光合分波器は石英系平面光波回路(参考文献3:M. Kawachi, "Silica waveguides on silicon and their application to integrated-optic components", Optical and Quantum Electronics. Vol. 22. pp. 391-416, 1990)により作製した。各マッハツェンダフィルタの光導波路の上にはそれぞれ位相シフタとして位相制御用のヒータ41〜51を形成した。本実施形態では、一例として、4波の各チャンネル間隔は100GHzとした。
【0019】
これに対応して、第1段目のラティスフィルタ111の周期周波数を100GHzに、第2段のラティスフィルタ112、113の周期周波数をそれぞれ200GHzとした。周期周波数で決まる光路長差ΔLは1.03mmとした。
【0020】
第2段目の2個の4段ラティスフィルタ112と113は、その中心周波数が互いに100GHz異なり、図1の(B)および(C)に示すように、各チャンネルの中心周波数(波長λ1,λ2,λ3,λ4)付近の透過特性が波長平坦化され、各チャンネルの中心周波数付近の群遅延分散が第1段目のラティスフィルタ111と逆特性になるように設計されている。
【0021】
波長平坦特性を実現する方法は複数種類あるが、本実施形態では、図1の(B)および(C)に示すように、第1段目のラティスフィルタ111は最大平坦特性、第2段目のラティスフィルタ112、113はリップル(脈動)のあることが特徴であるチェビシェフ特性により、波長平坦化を実現した。
【0022】
2段構成以上のラティスフィルタは、同じ回路構成で回路パラメータを変えることにより、透過特性が同じで、位相特性、言い換えれば、群遅延特性が異なるフィルタを設計することができる。本実施形態では、このラティスフィルタの回路パラメータは、方向性結合器21〜34の結合率と位相シフタ(位相制御用ヒータ)41〜51の位相制御量である。第1段目の3段構成のラティスフィルタ111の場合は、図1の(B)に示すような最大平坦特性をもち、群遅延分散特性が異なるフィルタは16通りある。第2段目の4段構成のラティスフィルタ112、113の場合は、図1の(C)に示すようなチェビシェフ特性をもち、群遅延分散特性が異なるフィルタは2の10乗通りある。
【0023】
本実施形態では、後述の図2に示すように、各チャンネルの中心周波数(波長λ1,λ2,λ3,λ4)で群遅延分散が0になり、第1段目と第2段目のラティスフィルタの群遅延分散がチャンネル中心周波数付近で互いに逆な特性をもつように、第1段目のラティスフィルタ111の2個の出力ポートの特性が最小位相特性を、第2段目の2個のラティスフィルタ112、113の合計4個の出力ポートの特性が全て最大位相特性をもつように設計した。
【0024】
ここで、ラティスフィルタの伝達関数zを
z=exp(jωΔτ) …(1)
(ただし、ωは周波数、Δτは光路長差ΔLに対応する単位遅延時間)
の多項式で表示した時、上記最小位相特性はそのフィルタの伝達関数zの零点が|z|=1の円内にあるフィルタ特性、上記最大位相特性はそのフィルタの伝達関数zの零点が|z|=1の円外にあるフィルタ特性と定義する。
【0025】
図2は上述のようにして作製した本発明の第1の実施形態の光合分波器の光強度透過率と群遅延分散のチャンネル中心周波数付近での測定結果を示す。実線Aは本実施形態の群遅延分散、一点鎖線Bは参考のために作製した従来の光合分波器の群遅延分散を表わす。この従来の光合分波器は本実施形態のものと同じ回路構成であるが回路パラメータが異なる。
【0026】
本発明の第1の実施形態で用いた回路パラメータの設計値と上記従来例で用いた回路パラメータの設計値を下記の表1に示す。表1において、θnは方向性結合器21〜34の振幅結合の角度を表現し(パワー結合率はsin2(θn)に対応)、ψnは位相シフタ41〜51の位相制御量を表示し、nは各ラティスフィルタの入力ポートから順に番号付けを定義したものである。
【0027】
【表1】

Figure 0003740357
【0028】
本実施形態におけるの光合分波器の群遅延分散は、第1段目ラティスフィルタ111と第2段目の2個のラティスフィルタ112、113の群遅延分散がともに逆特性になるように、表1の(A)に示すように、回路パラメータの値が設計されているため、図2の実線Aに示すように、全てのチャンネルにおいて、チャンネル中心周波数(波長λ1,λ2,λ3,λ4)付近で6GHz以上の周波数にわたって群遅延分散が最小化されている。
【0029】
一方、従来の光合分波器では、群遅延分散の最小化を考慮しておらず、表1の(B)に示すように、ラティスフィルタの出力ポートの位相特性、言い換えれば、群遅延分散を適当に選んで回路パラメータの値を設計していた。そのため、回路全体の群遅延分散が大きな値をもってしまっていた。ここで、図2の一点鎖線Bに示した従来例は、全てのラティスフィルタが最大平坦特性及び最小位相特性をもつように設計したものである。
【0030】
本実施形態では、上述のように、2段構成以上のラティスフィルタにおいて、その回路パラメータの設計値を変えることにより、透過特性が同じで、異なる群遅延特性のフィルタを設計することができることを利用して、前段の順特性の群遅延分散をもつラティスフィルタと後段の逆特性の群遅延分散をもつラティスフィルタとを組み合わせることにより、全てのチャンネルの群遅延分散を最小化した光合分波器が実現できた。
【0031】
(他の実施形態)
上述した本発明の第1の実施形態では、第1段目のラティスフィルタ111の2個の出力ポートの特性が最小位相特性をもち、第2段目の2個のラティスフィルタ112、113の合計4個の全ての出力ポートの特性が最大位相特性をもつようにした。しかし、この組み合わせ以外に、例えば、第1段目のラティスフィルタ111の2個の出力ポートの特性をそれぞれ最小位相特性、及び最大位相特性にし、第2段目のそれぞれ対応するラティスフィルタ112、113の出力ポート特性を逆に最大位相特性及び最小位相特性をもたすようにして、全てのチャンネルに対して群遅延分散の最小化を行うこともできる。このように、本発明では、群遅延分散を最小化する組み合わせは、複数存在する。このため、本発明は上述した第1の実施形態のラティスフィルタの組み合わせ方のみに限定されず、本発明の目的を実現できる全ての組み合わせを含んでいる。
【0032】
また、本発明の第1の実施形態では、ラティスフィルタを2段組み合わせて4波の光合分波器を実現したが、さらにその段数を大きくして、例えば、ラティスフィルタを3段組み合せで8波、ラティスフィルタを4段組み合わせで16波の光合分波器を構成することも可能である。この際、3段8波の光合分波器の場合は、例えば、1段目と、2段及び3段目とを逆群遅延分散をもつラティスフィルタを用いて群遅延分散の最小化を行うことができる。また、4段16波の光合分波器の場合は、例えば、1段目と、2段及び3段及び4段目とを逆群遅延分散をもつラティスフィルタを用いて群遅延分散の最小化を行うことができる。
【0033】
以上、具体例としての実施形態を用いて本発明を説明したが、本発明はこれら説明した実施形態に限定されるものではない。
【0034】
例えば、本発明の第1の実施形態では石英系の平面光回路を用いたが、半導体,LiNbO3などの別の材料で平面光回路を形成することも可能である。また、平面光回路の代わりに光ファイバを用いて光遅延回路を作ることも可能である。
【0035】
また、位相制御の方法として、本発明の第1の実施形態ではヒータ加熱による熱光学効果を利用したが、電気光学効果などの他の手法により、位相制御を行うことも可能である。
【0036】
また、本発明の第1の実施形態では、光結合器として方向性結合器を用いたが、Multi-Mode-Interference(MMI)カップラを用いることも可能である。
【0037】
このように、本発明は、素子の組合せ方に関するものであり、その回路の物理的実現手段には拘束されない。本発明の第1の実施形態に示した回路パラメータは本発明の1つの例に過ぎず、本発明はこの値に限定されるものでもない。
【0038】
【発明の効果】
以上述べたように、本発明によれば、波長平坦化というような高機能特性をもつ光合分波器において、振幅特性は同じで位相特性が異なる多段接続されたラティスフィルタの群遅延分散が逆特性となるように組み合わせることにより、群遅延分散を打ち消すようにしているので、光合分波器の合分波特性は変えずに、位相の周波数に対する2回微分に対応する群遅延分散を改善し、多段ラティスフィルタ全体として群遅延分散を最小化することができる。
【0039】
また、本発明の光合分波器は、アレイ導波路格子と組み合わせることにより、非常に扱える波長数が大きな光合分波器を構成することも可能である。
【0040】
このように、本発明の光合分波器は、波長多重通信のキーデバイスとして、その応用範囲は非常に大きいと期待できる。
【図面の簡単な説明】
【図1】(A)は本発明の第1の実施の形態における透過域/阻止域が波長平坦な4波の光合分波器の回路構成を示す模式図、(B)はその光合分波器の第1段目のラティスフィルタの相対光周波数に対する光強度透過率特性(破線)と群遅延分散特性(実線)を示すグラフ、(C)はその光合分波器の第2段目のラティスフィルタの相対光周波数に対する光強度透過率特性(破線)と群遅延分散特性(実線)を示すグラフである。
【図2】本発明の第1の実施形態の光合分波器と従来の光合分波器の光強度透過率と群遅延分散のチャンネル中心周波数付近での測定結果を示すグラフである。
【図3】従来のマッハツェンダフィルタの組み合わせによる光合分波器の回路構成例を示す模式図である。
【符号の説明】
11〜14 光導波路
21〜34 光結合器
41〜51 位相シフタ
101 1段目のマッハツェンダフィルタ
102,103 2段目のマッハツェンダフィルタ
111 1段目の3段構成ラティスフィルタ
112,113 2段目の4段構成ラティスフィルタ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical multiplexer / demultiplexer used in the fields of optical communication, optical switching, optical computing, and the like, and more particularly to an optical multiplexer / demultiplexer in which a lattice filter in which Mach-Zehnder filters are cascaded is configured in multiple stages.
[0002]
[Prior art]
In recent years, in the fields of optical communication, optical switching, optical computing, etc., especially in the field of wavelength multiplexing optical communication that multiplexes and communicates optical signals with different wavelengths, the output of wavelength-multiplexed signal light differs at different wavelengths. An optical demultiplexer that demultiplexes to a port or an optical multiplexer that outputs an optical signal having a wavelength multiplexed to one output port when different wavelengths are input to different input ports is an important component.
[0003]
There is an arrayed waveguide grating as a component that can meet such requirements (Reference 1: H. Takahashi, S. Suzuki, and I. Nishi, “Wavelength multiplexer based SiO 2 -Ta 2 O 5 arryed- waveguide grating ", J. Lightwave Technol., vol. 12, no. 6, pp. 989-995, 1994). Since an arrayed waveguide grating can collectively multiplex / demultiplex a very large number of signals with one element, it has already been introduced into a current system as a device suitable for wavelength division multiplexing communication.
[0004]
On the other hand, the number of multiplexes that can be handled at about 16 waves or less is relatively small, but it has a low loss and also has a switching function as well as an optical multiplexing / demultiplexing function. There is a duplexer.
[0005]
FIG. 3 shows the configuration of a conventional optical demultiplexer that handles four waves. A Mach-Zehnder filter is used as each 2-input / 2-output optical multiplexing / demultiplexing element, and three of them are combined. The optical path length difference of the first stage Mach-Zehnder filter 101 close to the input port is 2ΔL (Δ represents a minute value), and the optical path length differences of the second stage Mach-Zehnder filters 102 and 103 are ΔL, respectively. Conversely, the periodic wavelength is Δλ for the first-stage Mach-Zehnder filter 101 and 2Δλ for the second-stage Mach-Zehnder filters 102 and 103. The center wavelengths of the two Mach-Zehnder filters 102 and 103 in the second stage are shifted by Δλ.
[0006]
The four waves λ1, λ2, λ3, and λ4 having different wavelengths input to the present optical demultiplexer are divided into λ1, λ3, λ2, and λ4 by the first stage Mach-Zehnder filter 101, and further the second stage Mach-Zehnder. Filters 102 and 103 divide them into λ1, λ3, λ2, and λ4, respectively. Further, by driving the phase shifters 41 to 43 provided on the waveguides of the respective Mach-Zehnder filters, the wavelength demultiplexed to the output port can be freely switched.
[0007]
Recently, instead of the Mach-Zehnder filter as described above, a lattice filter (lattice filter) in which two or more stages of Mach-Zehnder filters are connected in cascade has been used, and a higher-performance optical multiplexer / demultiplexer having excellent wavelength flat transmission characteristics has been developed. It is starting to be made.
[0008]
[Problems to be solved by the invention]
However, in an optical multiplexer / demultiplexer using a lattice filter in which Mach-Zehnder filters as described above are cascaded, it is better to increase the number of stages of the lattice filter in order to improve the function. The problem to be solved arises that the dispersion becomes large.
[0009]
The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide an M-input M-output high-performance optical multiplexing / demultiplexing using a lattice filter as a 2-input / 2-output optical multiplexing / demultiplexing element. It is to minimize group delay dispersion without changing the multiplexing / demultiplexing characteristics of the optical multiplexer / demultiplexer when the number of stages of the lattice filter and the number of combination stages are increased.
[0010]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the invention of claim 1 includes two optical waveguides and N + 1 optical couplers for coupling the two optical waveguides at a plurality of N + 1 positions (N is an integer of 2 or more). Optical multiplexing / demultiplexing for multiplexing / demultiplexing the wavelengths of different M waves (M is an integer of 2 or more) configured by combining three 2-input 2-output optical multiplexing / demultiplexing elements composed of The N of one 2-input 2-output optical multiplexing / demultiplexing element in the first stage is N = 3, and the N of the two parallel 2-input 2-output optical multiplexing / demultiplexing elements in the second stage is Each of N = 4, and the 2-input 2-output optical multiplexing / demultiplexing element is a lattice filter in which a plurality of Mach-Zehnder filters each having a phase shifter for phase control are cascade-connected, and the 2-input 2-output optical multiplexing / demultiplexing element Is the coupling rate of the optical coupler and the phase control amount of the phase shifter. By combining the plurality of two-input two-output optical multiplexing / demultiplexing elements having different phase characteristics by utilizing the fact that it is possible to have different phase characteristics even if the amplitude characteristics are the same by changing the circuit parameters, By giving the group delay dispersion of the reverse characteristic at the second stage to the group delay dispersion at the first stage, the group delay dispersion of all the channels of the optical multiplexer / demultiplexer is minimized, and the 2-stage 2-input 2-output of the first stage 4ΔL, 4ΔL, 2ΔL, and the optical path length difference of the second-stage 2-input 2-output optical multiplexing / demultiplexing element is 2ΔL, 2ΔL, 2ΔL, ΔL (where ΔL is a periodic frequency) The optical multiplexing / demultiplexing is made to have a flat transmission band / stopping band by flattening the transmission characteristics of the transmission / stopping band of the two-input / two-output optical multiplexing / demultiplexing element with a corresponding optical path length difference). in vessels, the latte of the first stage As a circuit parameter, ψ1 = 0 × π, ψ2 = 1 × π, and ψ3 = 0 × π are used as phase control amounts ψn (n is a natural number and a permutation number of each lattice filter input port) of the phase shifter of the filter. As a circuit parameter, ψ1 = 0 × π, ψ2 = 1 × π, ψ3 = 1 × π, and ψ4 = 0 × π are used as phase control amounts ψn of the phase shifter of one of the lattice filters in the second stage. , Ψ1 = 0 × π, ψ2 = 1 × π, ψ3 = 1 × π, ψ4 = 1 × π are used as circuit parameters as the phase control amount ψn of the phase shifter of the other lattice filter of the second stage, As the angle θn (n is a natural number and a permutation number of the input port of each lattice filter) of the amplitude coupling of the lattice filter in the first stage, θ1 = 0.4664 × π, θ2 = 0.15991 × π, θ3 = 0.355 × π, θ4 = 0. Using 5 × π as a circuit parameter, θ1 = 0.4404 × π, θ2 = 0.0698 × π, and θ3 = 0.1291 × as the amplitude coupling angle θn of the two lattice filters in the second stage. π, θ4 = 0.3006 × π, and θ5 = 0.25 × π are used as circuit parameters .
[0015]
(Function)
It is known that a 2-input 2-output lattice filter used as an optical multiplexing / demultiplexing element has a plurality of phase characteristics with respect to one amplitude characteristic (reference 2: K. Jinguji and M. Kawachi, “Synthesis”). of coherent two-port lattice-form optical delay-line circuit ", J. Lightwave Technol., vol. 13. no. 1, pp. 73-82, 1995). By utilizing this fact, in the present invention, as in the above configuration, the group delay dispersion is achieved by combining the multi-stage connected lattice filters having the same amplitude characteristics but different phase characteristics so that the group delay dispersion is reversed. As a result, the group delay dispersion corresponding to the second derivative with respect to the phase frequency is improved without changing the multiplexing / demultiplexing characteristics of the optical multiplexer / demultiplexer, and the group delay dispersion is minimized as the entire multistage lattice filter. Can be realized.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0017]
(First embodiment)
FIG. 1A shows the configuration of a four-wave optical multiplexer / demultiplexer with a flat transmission band / stop band in the first embodiment of the present invention. FIG. 1B shows the light intensity transmittance characteristic (broken line) and the group delay dispersion characteristic (solid line) with respect to the relative optical frequency of the first stage lattice filter 111 of the optical multiplexer / demultiplexer. ) Shows the light intensity transmittance characteristic (broken line) and the group delay dispersion characteristic (solid line) with respect to the relative optical frequency of the second stage lattice filters 112 and 113 of the optical multiplexer / demultiplexer.
In this embodiment, as shown in FIG. 1A, a lattice filter 111 configured by connecting three stages of Mach-Zehnder filters in cascade on the first stage on the input port side, and a Mach-Zehnder on the second stage, respectively. Lattice filters 112 and 113 configured by cascading filters in four stages are used. Further, in the present embodiment, in order to realize a characteristic in which the transmission band / stop band has a flat wavelength, the optical path length differences of the first-stage lattice filter 111 are 4ΔL, 4ΔL, 2ΔL, and the second-stage lattice filter 112. , 113 are 2ΔL, 2ΔL, 2ΔL, and ΔL, respectively.
[0018]
This optical multiplexer / demultiplexer is a quartz-based planar lightwave circuit (Reference 3: M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components”, Optical and Quantum Electronics. Vol. 22. pp. 391-416, 1990). On the optical waveguide of each Mach-Zehnder filter, heaters 41 to 51 for phase control are formed as phase shifters. In the present embodiment, as an example, the interval between the four channels is set to 100 GHz.
[0019]
Correspondingly, the periodic frequency of the first-stage lattice filter 111 is set to 100 GHz, and the periodic frequencies of the second-stage lattice filters 112 and 113 are respectively set to 200 GHz. The optical path length difference ΔL determined by the periodic frequency was 1.03 mm.
[0020]
The two four-stage lattice filters 112 and 113 in the second stage are different in center frequency from each other by 100 GHz. As shown in FIGS. 1B and 1C, the center frequencies (wavelengths λ1, λ2) of each channel are shown. , Λ3, λ4) is designed so that the transmission characteristics in the vicinity of the wavelength are flattened, and the group delay dispersion in the vicinity of the center frequency of each channel is opposite to that of the lattice filter 111 in the first stage.
[0021]
There are a plurality of methods for realizing the wavelength flat characteristic. In this embodiment, as shown in FIGS. 1B and 1C, the first-stage lattice filter 111 has the maximum flat characteristic and the second-stage characteristic. The Lattice filters 112 and 113 of the present invention realized wavelength flattening by Chebyshev characteristics characterized by ripples (pulsations).
[0022]
A lattice filter having a two-stage configuration or more can be designed by changing circuit parameters with the same circuit configuration, so that filters having the same transmission characteristics and different phase characteristics, in other words, group delay characteristics can be designed. In the present embodiment, the circuit parameters of the lattice filter are the coupling rate of the directional couplers 21 to 34 and the phase control amount of the phase shifters (phase control heaters) 41 to 51. In the case of the first-stage three-stage lattice filter 111, there are 16 filters having the maximum flat characteristic as shown in FIG. 1B and different group delay dispersion characteristics. In the case of the second-stage lattice filters 112 and 113 in the second stage, there are 2 10 powers of filters having Chebyshev characteristics as shown in FIG. 1C and different group delay dispersion characteristics.
[0023]
In this embodiment, as shown in FIG. 2 described later, the group delay dispersion becomes 0 at the center frequencies (wavelengths λ1, λ2, λ3, and λ4) of each channel, and the first-stage and second-stage lattice filters. Therefore, the characteristics of the two output ports of the first-stage lattice filter 111 have the minimum phase characteristics, and the two lattices of the second stage so that the group delay dispersion of the first-stage lattice filter 111 has opposite characteristics near the channel center frequency. The characteristics of a total of four output ports of the filters 112 and 113 are all designed to have maximum phase characteristics.
[0024]
Here, the transfer function z of the lattice filter is expressed as z = exp (jωΔτ) (1)
(Where ω is the frequency, Δτ is the unit delay time corresponding to the optical path length difference ΔL)
The minimum phase characteristic is a filter characteristic in which the zero of the transfer function z of the filter is in a circle of | z | = 1, and the maximum phase characteristic is the zero of the transfer function z of the filter | z It is defined as a filter characteristic outside the circle of | = 1.
[0025]
FIG. 2 shows the measurement results in the vicinity of the channel center frequency of the light intensity transmittance and group delay dispersion of the optical multiplexer / demultiplexer according to the first embodiment of the present invention manufactured as described above. The solid line A represents the group delay dispersion of this embodiment, and the alternate long and short dash line B represents the group delay dispersion of a conventional optical multiplexer / demultiplexer fabricated for reference. This conventional optical multiplexer / demultiplexer has the same circuit configuration as that of the present embodiment, but differs in circuit parameters.
[0026]
The design values of the circuit parameters used in the first embodiment of the present invention and the design values of the circuit parameters used in the conventional example are shown in Table 1 below. In Table 1, θn represents the angle of amplitude coupling of the directional couplers 21 to 34 (power coupling rate corresponds to sin 2 (θn)), ψn represents the phase control amount of the phase shifters 41 to 51, n defines numbering sequentially from the input port of each lattice filter.
[0027]
[Table 1]
Figure 0003740357
[0028]
The group delay dispersion of the optical multiplexer / demultiplexer in this embodiment is expressed so that the group delay dispersion of the first-stage lattice filter 111 and the second-stage lattice filters 112 and 113 have opposite characteristics. Since the circuit parameter values are designed as shown in (A) of 1, the channel center frequencies (wavelengths λ1, λ2, λ3, and λ4) are near all channels as shown by the solid line A in FIG. The group delay dispersion is minimized over a frequency of 6 GHz or more.
[0029]
On the other hand, the conventional optical multiplexer / demultiplexer does not consider the minimization of the group delay dispersion. As shown in Table 1 (B), the phase characteristics of the output port of the lattice filter, in other words, the group delay dispersion is reduced. The circuit parameter values were designed appropriately. Therefore, the group delay dispersion of the entire circuit has a large value. Here, the conventional example shown by the alternate long and short dash line B in FIG. 2 is designed so that all lattice filters have the maximum flat characteristic and the minimum phase characteristic.
[0030]
In the present embodiment, as described above, it is possible to design a filter having the same transmission characteristic and different group delay characteristics by changing the design value of the circuit parameter in a lattice filter having two or more stages. Thus, an optical multiplexer / demultiplexer that minimizes the group delay dispersion of all channels by combining a lattice filter having a group delay dispersion with the forward characteristic of the front stage and a lattice filter having a group delay dispersion with the reverse characteristic of the latter stage is obtained. Realized.
[0031]
(Other embodiments)
In the first embodiment of the present invention described above, the characteristics of the two output ports of the first-stage lattice filter 111 have minimum phase characteristics, and the total of the second-stage lattice filters 112 and 113 in the second stage. All four output ports have maximum phase characteristics. However, in addition to this combination, for example, the characteristics of the two output ports of the first stage lattice filter 111 are set to the minimum phase characteristic and the maximum phase characteristic, respectively, and the lattice filters 112 and 113 corresponding to the second stage respectively. It is also possible to minimize the group delay dispersion for all channels by providing the maximum phase characteristic and the minimum phase characteristic on the contrary to the output port characteristics. Thus, in the present invention, there are a plurality of combinations that minimize the group delay dispersion. For this reason, this invention is not limited only to the combination method of the lattice filter of 1st Embodiment mentioned above, All the combinations which can implement | achieve the objective of this invention are included.
[0032]
In the first embodiment of the present invention, a four-wave optical multiplexer / demultiplexer is realized by combining two stages of lattice filters. However, the number of stages is further increased, for example, eight waves by combining three stages of lattice filters. It is also possible to construct a 16-wave optical multiplexer / demultiplexer by combining four lattice filters. In this case, in the case of a three-stage eight-wave optical multiplexer / demultiplexer, for example, the first stage, the second stage, and the third stage are minimized by using a lattice filter having inverse group delay dispersion. be able to. In the case of a four-stage 16-wave optical multiplexer / demultiplexer, for example, the first stage, the second stage, the third stage, and the fourth stage are minimized by using a lattice filter having inverse group delay dispersion. It can be performed.
[0033]
Although the present invention has been described above using the exemplary embodiments, the present invention is not limited to the described embodiments.
[0034]
For example, although the quartz-based planar optical circuit is used in the first embodiment of the present invention, the planar optical circuit may be formed of another material such as a semiconductor or LiNbO 3 . It is also possible to make an optical delay circuit using an optical fiber instead of a planar optical circuit.
[0035]
In addition, as the phase control method, the first embodiment of the present invention uses the thermo-optic effect by heater heating, but the phase control can also be performed by other methods such as an electro-optic effect.
[0036]
In the first embodiment of the present invention, the directional coupler is used as the optical coupler. However, a Multi-Mode-Interference (MMI) coupler can also be used.
[0037]
As described above, the present invention relates to a method of combining elements, and is not restricted by the physical realization means of the circuit. The circuit parameters shown in the first embodiment of the present invention are only an example of the present invention, and the present invention is not limited to this value.
[0038]
【The invention's effect】
As described above, according to the present invention, in an optical multiplexer / demultiplexer having a high-performance characteristic such as wavelength flattening, the group delay dispersion of a multistage connected lattice filter having the same amplitude characteristic but different phase characteristics is reversed. Since the group delay dispersion is canceled by combining the characteristics, the group delay dispersion corresponding to the second derivative with respect to the phase frequency is improved without changing the multiplexing / demultiplexing characteristics of the optical multiplexer / demultiplexer. In addition, the group delay dispersion can be minimized for the entire multistage lattice filter.
[0039]
Further, the optical multiplexer / demultiplexer of the present invention can be combined with an arrayed waveguide grating to constitute an optical multiplexer / demultiplexer having a very large number of wavelengths that can be handled.
[0040]
Thus, the optical multiplexer / demultiplexer of the present invention can be expected to have a very large application range as a key device for wavelength division multiplexing.
[Brief description of the drawings]
FIG. 1A is a schematic diagram illustrating a circuit configuration of a four-wave optical multiplexer / demultiplexer having a flat transmission band / stop band in the first embodiment of the present invention, and FIG. The graph showing the light intensity transmittance characteristic (broken line) and the group delay dispersion characteristic (solid line) with respect to the relative optical frequency of the first stage lattice filter of the optical device, (C) is the second stage lattice of the optical multiplexer / demultiplexer. It is a graph which shows the light intensity transmittance | permeability characteristic (broken line) and the group delay dispersion characteristic (solid line) with respect to the relative optical frequency of a filter.
FIG. 2 is a graph showing measurement results of the optical intensity transmission and the group delay dispersion in the vicinity of the channel center frequency of the optical multiplexer / demultiplexer according to the first embodiment of the present invention and the conventional optical multiplexer / demultiplexer.
FIG. 3 is a schematic diagram showing a circuit configuration example of an optical multiplexer / demultiplexer using a combination of conventional Mach-Zehnder filters.
[Explanation of symbols]
11 to 14 Optical waveguides 21 to 34 Optical couplers 41 to 51 Phase shifter 101 First stage Mach-Zehnder filter 102, 103 Second stage Mach-Zehnder filter 111 First stage three-stage lattice filter 112, 113 Second stage 4 Stage configuration lattice filter

Claims (1)

2本の光導波路と該2本の光導波路を複数N+1箇所(Nは2以上の整数)の異なる位置で結合するN+1個の光カップラとから構成される2入力2出力の光合分波素子を3個、2段に組み合わせることにより構成される異なる複数M波(Mは2以上の整数)の波長を合分波するための光合分波器であって、
1段目の1個の2入力2出力の光合分波素子の前記NをN=3,2段目の並列2個の2入力2出力の光合分波素子の前記NをそれぞれN=4とし、
前記2入力2出力の光合分波素子は、位相制御用の位相シフタを備えたマッハツェンダフィルタを複数個縦続接続したラティスフィルタであり、
前記2入力2出力の光合分波素子が前記光カップラの結合率と前記位相シフタの位相制御量とからなる回路パラメータを変えることにより振幅特性が同じでも異なる位相特性をもつことが可能であることを利用して、異なる位相特性をもつ複数個の前記2入力2出力の光合分波素子を組み合わせ、前記1段目の群遅延分散に対して前記2段目で逆特性の群遅延分散を与えることにより光合分波器の全てのチャンネルの群遅延分散を最小化し、
前記1段目の2入力2出力の光合分波素子の光路長差を4ΔL、4ΔL、2ΔL、前記2段目の2入力2出力の光合分波素子の光路長差を2ΔL、2ΔL、2ΔL、ΔL(ただし、ΔLは周期周波数に対応する光路長差)にして、前記2入力2出力の光合分波素子の透過域/阻止域の透過特性を平坦化することにより、平坦な透過域/阻止域をもつようにした光合分波器において、
前記1段目の前記ラティスフィルタの位相シフタの位相制御量ψn(nは自然数であって各ラティスフィルタの入力ポートの順列番号)として、ψ1=0×π,ψ2=1×π,ψ3=0×πを回路パラメータとして用い、前記2段目の一方の前記ラティスフィルタの位相シフタの位相制御量ψnとして、ψ1=0×π,ψ2=1×π,ψ3=1×π,ψ4=0×πを回路パラメータとして用い、前記2段目の他方の前記ラティスフィルタの位相シフタの位相制御量ψnとして、ψ1=0×π,ψ2=1×π,ψ3=1×π,ψ4=1×πを回路パラメータとして用い、かつ
前記1段目の前記ラティスフィルタの振幅結合の角度θn(nは自然数であって各ラティスフィルタの入力ポートの順列番号)として、θ1=0.4664×π,θ2=0.1591×π,θ3=0.3755×π,θ4=0.25×πを回路パラメータとして用い、前記2段目の2個の前記ラティスフィルタの振幅結合の角度θnとして、θ1=0.4404×π,θ2=0.0698×π,θ3=0.1291×π,θ4=0.3006×π,θ5=0.25×πを回路パラメータとして用いたことを特徴とする光合分波器。
A two-input two-output optical multiplexing / demultiplexing element composed of two optical waveguides and N + 1 optical couplers that couple the two optical waveguides at a plurality of N + 1 locations (N is an integer of 2 or more). An optical multiplexer / demultiplexer for multiplexing / demultiplexing wavelengths of different M waves (M is an integer of 2 or more) configured by combining three, two stages,
The N of one 2-input 2-output optical multiplexing / demultiplexing element in the first stage is N = 3, and the N of the two parallel 2-input 2-output optical multiplexing / demultiplexing elements in the second stage is N = 4, respectively. ,
The two-input two-output optical multiplexing / demultiplexing element is a lattice filter in which a plurality of Mach-Zehnder filters each having a phase shifter for phase control are connected in cascade.
The two-input two-output optical multiplexing / demultiplexing element can have different phase characteristics even if the amplitude characteristics are the same by changing a circuit parameter composed of the coupling ratio of the optical coupler and the phase control amount of the phase shifter. Are used to combine a plurality of 2-input 2-output optical multiplexing / demultiplexing elements having different phase characteristics, and to give a group delay dispersion having an inverse characteristic in the second stage to the group delay dispersion in the first stage. This minimizes the group delay dispersion of all channels of the optical multiplexer / demultiplexer,
The optical path length difference of the first stage 2-input 2-output optical multiplexing / demultiplexing element is 4ΔL, 4ΔL, 2ΔL, and the optical path length difference of the second stage 2-input 2-output optical multiplexing / demultiplexing element is 2ΔL, 2ΔL, 2ΔL, By making ΔL (where ΔL is the optical path length difference corresponding to the periodic frequency) and flattening the transmission characteristics of the two-input / two-output optical multiplexing / demultiplexing device, the transmission characteristics / flat characteristics are flat. In an optical multiplexer / demultiplexer designed to have a band,
As a phase control amount ψn (n is a natural number and a permutation number of each lattice filter input port) of the phase shifter of the lattice filter of the first stage, ψ1 = 0 × π, ψ2 = 1 × π, ψ3 = 0 Using π as a circuit parameter, ψ1 = 0 × π, ψ2 = 1 × π, ψ3 = 1 × π, ψ4 = 0 × as the phase control amount ψn of the phase shifter of one of the lattice filters in the second stage Using π as a circuit parameter, ψ1 = 0 × π, ψ2 = 1 × π, ψ3 = 1 × π, ψ4 = 1 × π as phase control amounts ψn of the phase shifter of the other lattice filter of the second stage As a circuit parameter, and
As the angle θn (n is a natural number and the permutation number of the input port of each lattice filter) of the amplitude coupling of the lattice filter in the first stage, θ1 = 0.4664 × π, θ2 = 0.15991 × π, θ3 = 0.3755 × π, θ4 = 0.25 × π is used as a circuit parameter, and θ1 = 0.4404 × π, θ2 = 0 as an angle θn of amplitude coupling of the two lattice filters in the second stage. 0.0698 × π, θ3 = 0.1291 × π, θ4 = 0.3006 × π, and θ5 = 0.25 × π are used as circuit parameters .
JP2000266124A 2000-09-01 2000-09-01 Optical multiplexer / demultiplexer with improved group delay characteristics Expired - Lifetime JP3740357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000266124A JP3740357B2 (en) 2000-09-01 2000-09-01 Optical multiplexer / demultiplexer with improved group delay characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000266124A JP3740357B2 (en) 2000-09-01 2000-09-01 Optical multiplexer / demultiplexer with improved group delay characteristics

Publications (2)

Publication Number Publication Date
JP2002071978A JP2002071978A (en) 2002-03-12
JP3740357B2 true JP3740357B2 (en) 2006-02-01

Family

ID=18753270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000266124A Expired - Lifetime JP3740357B2 (en) 2000-09-01 2000-09-01 Optical multiplexer / demultiplexer with improved group delay characteristics

Country Status (1)

Country Link
JP (1) JP3740357B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4902447B2 (en) * 2007-07-06 2012-03-21 日本電信電話株式会社 Chromatic dispersion compensation circuit
US7555178B2 (en) * 2007-07-20 2009-06-30 Infinera Corporation Periodic optical filter
JP4783389B2 (en) * 2008-02-21 2011-09-28 日本電信電話株式会社 Variable compensator for chromatic dispersion and chromatic dispersion slope
JP5868341B2 (en) * 2012-08-24 2016-02-24 日本電信電話株式会社 Optical multiplexer / demultiplexer
JP5949610B2 (en) * 2013-03-19 2016-07-13 富士通株式会社 Wavelength multiplexer / demultiplexer and optical integrated circuit device
JP7279518B2 (en) 2019-05-29 2023-05-23 富士通株式会社 Optical demultiplexer, optical transmission device and optical demultiplexing control method

Also Published As

Publication number Publication date
JP2002071978A (en) 2002-03-12

Similar Documents

Publication Publication Date Title
JP3537344B2 (en) Optical add-drop multiplexer
US7221821B2 (en) Hitless errorless trimmable dynamic optical add/drop multiplexer devices
JP3256418B2 (en) Optical device
EP1857846B1 (en) Asymmetric mach-zehnder interferometer having a reduced drive voltage coupled to a compact low-loss arrayed waveguide grating
CN117043650A (en) Low loss, low crosstalk optical mode multiplexer and optical cross-connect
JP3740357B2 (en) Optical multiplexer / demultiplexer with improved group delay characteristics
JPH0618735A (en) 4-wave multiplex transmission waveguide type optical multiplexer/demultiplexer, 8-wave multiplex transmission waveguide type optical multiplexer/ demultiplexer, and plural wave multiplex transmission waveguide type optical multiplexer/demultiplexer
US6600852B1 (en) Wavelength selective device and switch and method thereby
US6236781B1 (en) Duplicated-port waveguide grating router having substantially flat passbands
JPS60172841A (en) Optical switch
JPH11271559A (en) Optical device
JP2009210788A (en) Optical matrix switch
JPH11109147A (en) Array waveguide grating element
JP2014160216A (en) Mach-zehnder interferometer type wavelength selection switch
JP3857925B2 (en) Optical multiplexer / demultiplexer
JPH03213829A (en) Waveguide type optical branching element operating at wide-wavelength-range
JP2001189696A (en) Dispersed slope compensator
EP1581828B1 (en) Integrated optical add drop device having switching function and method of switching
JPH0659291A (en) Waveguide type optical multiplexer-branching filter for four-wave multiplex transmission and eight-wave multiple transmission
CN114924357B (en) Wavelength division multiplexing optical delay line based on cascade Mach-Zehnder interferometer structure
US20020136489A1 (en) Optical multiplexer/demultiplexer
Jinguji et al. Synthesis of one-input M-output optical FIR lattice circuits
JP2009246768A (en) Wave-band cross connect apparatus
Jinguji et al. Design algorithm for multichannel interleave filters
JPS63287125A (en) Wavelength multiplex bidirectional transmission method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050920

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051107

R151 Written notification of patent or utility model registration

Ref document number: 3740357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term