JP2002071978A - Optical multiplexer/demultiplexer improved in group delay characteristic - Google Patents

Optical multiplexer/demultiplexer improved in group delay characteristic

Info

Publication number
JP2002071978A
JP2002071978A JP2000266124A JP2000266124A JP2002071978A JP 2002071978 A JP2002071978 A JP 2002071978A JP 2000266124 A JP2000266124 A JP 2000266124A JP 2000266124 A JP2000266124 A JP 2000266124A JP 2002071978 A JP2002071978 A JP 2002071978A
Authority
JP
Japan
Prior art keywords
optical
demultiplexer
group delay
optical multiplexer
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000266124A
Other languages
Japanese (ja)
Other versions
JP3740357B2 (en
Inventor
Kaname Jinguji
要 神宮寺
Tsutomu Kito
勤 鬼頭
Manabu Oguma
学 小熊
Yoshinori Hibino
善典 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2000266124A priority Critical patent/JP3740357B2/en
Publication of JP2002071978A publication Critical patent/JP2002071978A/en
Application granted granted Critical
Publication of JP3740357B2 publication Critical patent/JP3740357B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To minimize a group delay dispersion without changing the multiplexing/demultiplexing characteristics of an optical multiplexer/ demultiplexer when the number of stages of a lattice filter is increased and when the number of combination stages is increased, in the highly functional optical multiplexer/demultiplexer of M-input and M-output using the lattice filter as an optical multiplexing/demultiplexing element of two-input and two- output. SOLUTION: The values of circuit parameters of respective stage lattice filters are designed so that group delay dispersions of multistage connected lattice filters 111-113 equale in amplitude characteristic but different in phase characteristic have inverse characteristics in the forward stage and in the backward stage. Thus, group delay dispersion is negated, consequently, group delay dispersion corresponding to second order derivative to a phase frequency is improved without changing the multiplexing/demultiplexing characteristics of the optical multiplexer/demultiplexer, and group delay dispersion is minimized as the whole of multistage lattice filter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光通信,光交換,
光コンピューティング等の分野で使用される光合分波器
に関し、特にマッハツェンダフィルタを多段縦続で構成
したラティスフィルタを多段に構成した光合分波器に関
する。
TECHNICAL FIELD The present invention relates to optical communication, optical switching,
The present invention relates to an optical multiplexer / demultiplexer used in the field of optical computing and the like, and more particularly, to an optical multiplexer / demultiplexer in which a Lattice filter in which Mach-Zehnder filters are cascaded in multiple stages is configured in multiple stages.

【0002】[0002]

【従来の技術】近年、光通信,光交換,光コンピューテ
ィング等の分野、特に複数の波長の異なる光信号を多重
化して通信する波長多重光通信の分野で、波長多重され
た信号光を異なる波長ごとに異なる出力ポートに分波す
る光分波器、あるいは、異なる波長が異なる入力ポート
に入力されたときに1つの出力ポートに波長を多重化し
た光信号を出力する光合波器は重要な部品である。
2. Description of the Related Art In recent years, in the fields of optical communication, optical switching, optical computing, and the like, in particular, in the field of wavelength multiplexing optical communication in which a plurality of optical signals having different wavelengths are multiplexed and communicated, wavelength-multiplexed signal light is different. An optical demultiplexer that demultiplexes to a different output port for each wavelength or an optical multiplexer that outputs an optical signal in which a wavelength is multiplexed to one output port when a different wavelength is input to a different input port is important. Parts.

【0003】このような要求に答えることのできる部品
としては、アレイ導波路格子がある(参考文献1:H. T
akahashi, S. Suzuki, and I. Nishi, "Wavelength mu
ltiplexer based SiO2-Ta2O5 arryed-waveguide gratin
g", J. Lightwave Technol., vol.12, no.6, pp. 989-
995, 1994)。アレイ導波路格子は1つの素子で非常に
多くの信号を一括合分波できることから、波長多重通信
に適したデバイスとして既に現用システムにも導入され
ている。
[0003] As a component that can meet such a demand, there is an arrayed waveguide grating (Reference 1: H. T.
akahashi, S. Suzuki, and I. Nishi, "Wavelength mu
ltiplexer based SiO 2 -Ta 2 O 5 arryed-waveguide gratin
g ", J. Lightwave Technol., vol.12, no.6, pp. 989-
995, 1994). The arrayed waveguide grating has already been introduced into a working system as a device suitable for wavelength division multiplexing communication since a very large number of signals can be multiplexed / demultiplexed with one element.

【0004】一方、16波程度以下と扱える多重数は比
較的少ないが、低損失で、しかも光合分波機能と併せて
スイッチング機能も同時にもつ、高機能な光合分波器と
しては、マッハツェンダフィルタを組み合わせた光合分
波器がある。
On the other hand, a Mach-Zehnder filter is used as a high-performance optical multiplexer / demultiplexer that has a relatively low number of multiplexes that can be handled as about 16 waves or less, yet has a low loss and also has a switching function in addition to an optical multiplexer / demultiplexer function. There is a combined optical multiplexer / demultiplexer.

【0005】図3は4波を扱う従来の光分波器の構成を
示す。各2入力2出力の光合分波素子としてマッハツェ
ンダフィルタを用い、それを3個組み合わせている。入
力ポートに近い第1段目のマッハツェンダフィルタ10
1の光路長差は2ΔL(Δは微小値を表わす)で、2段
目の2個のマッハツェンダフィルタ102,103の光
路長差はそれぞれΔLである。周期波長は逆に、第1段
目のマッハツェンダフィルタ101がΔλ、第2段目の
マッハツェンダフィルタ102,103がそれぞれ2Δ
λである。2段目の2個のマッハツェンダフィルタ10
2,103は、その中心波長がΔλずらせてある。
FIG. 3 shows a configuration of a conventional optical demultiplexer which handles four waves. A Mach-Zehnder filter is used as a 2-input 2-output optical multiplexing / demultiplexing element, and three of them are combined. First stage Mach-Zehnder filter 10 close to input port
The optical path length difference of 1 is 2ΔL (Δ represents a minute value), and the optical path length differences of the two Mach-Zehnder filters 102 and 103 in the second stage are each ΔL. Conversely, the periodic wavelength is opposite, and the first-stage Mach-Zehnder filter 101 is Δλ, and the second-stage Mach-Zehnder filters 102 and 103 are each 2Δ.
λ. Second stage two Mach-Zehnder filters 10
2 and 103 have their center wavelengths shifted by Δλ.

【0006】本光分波器に入力された波長の異なる4波
λ1,λ2,λ3,λ4は、第1段目のマッハツェンダ
フィルタ101により、λ1,λ3とλ2,λ4に分け
られ、さらに2段目のマッハツェンダフィルタ102,
103によりλ1,λ3,λ2,λ4にそれぞれ分けら
れる。また、それぞれのマッハツェンダフィルタの導波
路上に設けた位相シフタ41〜43を駆動することによ
り、出力ポートに分波される波長を自由にスイッチング
できる。
[0006] Four waves λ1, λ2, λ3, λ4 having different wavelengths input to the optical demultiplexer are divided into λ1, λ3 and λ2, λ4 by a first stage Mach-Zehnder filter 101, and further divided into two stages. Eye Mach-Zehnder filter 102,
103 divides them into λ1, λ3, λ2, and λ4. Further, by driving the phase shifters 41 to 43 provided on the waveguides of the respective Mach-Zehnder filters, it is possible to freely switch the wavelength demultiplexed to the output port.

【0007】最近では、上記のようなマッハツェンダフ
ィルタの代わりに、2段以上のマッハツェンダフィルタ
を縦続接続したラティスフィルタ(lattice filter)を
用いて、波長平坦透過特性に優れた、より高機能な光合
分波器が作られるようになってきている。
Recently, instead of the above-described Mach-Zehnder filter, a more sophisticated light combining device having excellent wavelength flat transmission characteristics using a lattice filter in which two or more stages of Mach-Zehnder filters are cascaded. Corrugations are being made.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記の
ようなマッハツェンダフィルタを多段縦続接続したラテ
ィスフィルタを用いた光合分波器では、機能を向上させ
るためにはラティスフィルタの段数を大きくした方がよ
いが、その段数を増やすと群遅延分散が大きくなるとい
う解決すべき課題が生じた。
However, in an optical multiplexer / demultiplexer using a lattice filter in which Mach-Zehnder filters are cascaded in multiple stages as described above, it is better to increase the number of lattice filters in order to improve the function. However, there is a problem to be solved that increasing the number of stages increases the group delay dispersion.

【0009】本発明は、上記のような課題を解決するた
めになされたもので、その目的は、ラティスフィルタを
2入力2出力の光合分波素子として用いたM入力M出力
の高機能化な光合分波器において、ラティスフィルタの
段数を増やした場合及び、組み合わせ段数を増やした場
合に、光合分波器の合分波特性は変えずに、群遅延分散
を最小化することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to improve the function of an M-input M-output using a lattice filter as a 2-input 2-output optical multiplexer / demultiplexer. In an optical multiplexer / demultiplexer, when the number of lattice filter stages is increased and when the number of combination stages is increased, the group delay dispersion is minimized without changing the multiplexing / demultiplexing characteristics of the optical multiplexer / demultiplexer.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明は、2本の光導波路と該2本の光導
波路を複数N+1箇所(Nは2以上の整数)の異なる位
置で結合するN+1個の光カップラからなる構成を有す
る2入力2出力の光合分波素子を複数個、複数段に組み
合わせることにより構成される異なる複数M波(Mは2
以上の整数)の波長を合分波するための光合分波器にお
いて、前記2入力2出力の光合分波素子が回路パラメー
タを変えることにより振幅特性が同じでも異なる位相特
性をもつことが可能であることを利用して、異なる位相
特性をもつ複数個の前記2入力2出力の光合分波素子を
組み合わせ、前段の群遅延分散に対して後段で逆特性の
群遅延分散を与えることにより光合分波器の全てのチャ
ンネルの群遅延分散を最小化したことを特徴とする。
In order to achieve the above object, according to the present invention, there are provided two optical waveguides and a plurality of N + 1 locations (N is an integer of 2 or more) at different positions. A plurality of different M-waves (M is 2) constituted by combining a plurality of 2-input / 2-output optical multiplexing / demultiplexing elements having a configuration of N + 1 optical couplers coupled in a plurality of stages.
In the optical multiplexer / demultiplexer for multiplexing / demultiplexing the wavelengths of the above integers, the two-input / two-output optical multiplexing / demultiplexing element can have different phase characteristics even if the amplitude characteristics are the same by changing circuit parameters. Utilizing this fact, a plurality of the aforementioned two-input / two-output optical multiplexing / demultiplexing elements having different phase characteristics are combined, and the group delay dispersion having the opposite characteristic to the group delay dispersion of the preceding stage is given to the latter stage. It is characterized in that the group delay dispersion of all channels of the wave filter is minimized.

【0011】ここで、前記2入力2出力の光合分波素子
の透過域/阻止域の透過特性を平坦化することにより、
平坦な透過域/阻止域をもつようにしたことを特徴とす
ることができる。
Here, by flattening the transmission characteristics in the transmission region / rejection region of the two-input two-output optical multiplexer / demultiplexer,
It can be characterized by having a flat transmission area / blocking area.

【0012】また、前記2入力2出力の光合分波素子の
位相特性が最小位相あるいは最大位相をもつことを特徴
とすることができる。
Further, the two-input two-output optical multiplexing / demultiplexing device can be characterized in that the phase characteristic has a minimum phase or a maximum phase.

【0013】また、前記2入力2出力の光合分波素子
は、位相制御用の位相シフタを備えたマッハツェンダフ
ィルタを複数個縦続接続したラティスフィルタであるこ
とを特徴とすることができる。
The two-input two-output optical multiplexing / demultiplexing device may be a lattice filter in which a plurality of Mach-Zehnder filters each having a phase shifter for phase control are cascaded.

【0014】また、群遅延分散が前段の前記光合分波素
子(または光合分波素子群)と後段の前記光合分波素子
群とで逆特性となるように、前記位相シフタの位相制御
量を設定したことを特徴とすることができる。
Further, the phase control amount of the phase shifter is adjusted so that the group delay dispersion has inverse characteristics between the optical multiplexing / demultiplexing element (or the optical multiplexing / demultiplexing element group) at the preceding stage and the optical multiplexing / demultiplexing element group at the subsequent stage. It can be characterized by setting.

【0015】(作用)光合分波素子として用いられる2
入力2出力のラティスフィルタは、1つの振幅特性に対
して複数の位相特性をもつことが知られている(参考文
献2:K. Jinguji and M. Kawachi, "Synthesis of coh
erent two-port lattice-form optical delay-line cir
cuit", J. Lightwave Technol., vol. 13. no. 1, p
p. 73-82, 1995)。このことを利用して、本発明では、
上記構成のように、振幅特性は同じで位相特性が異なる
多段接続されたラティスフィルタの群遅延分散が逆特性
となるように組み合わせることにより、群遅延分散を打
ち消すようにし、この結果、光合分波器の合分波特性は
変えずに、位相の周波数に対する2回微分に対応する群
遅延分散を改善し、多段ラティスフィルタ全体として群
遅延分散を最小化することが可能となる。
(Function) 2 used as an optical multiplexing / demultiplexing element
It is known that a lattice filter having two inputs and two outputs has a plurality of phase characteristics with respect to one amplitude characteristic (Reference 2: K. Jinguji and M. Kawachi, "Synthesis of coh
erent two-port lattice-form optical delay-line cir
cuit ", J. Lightwave Technol., vol. 13. no. 1, p
p. 73-82, 1995). Taking advantage of this, in the present invention,
As in the above configuration, the group delay dispersion of the multi-stage connected lattice filters having the same amplitude characteristic and different phase characteristics is combined so that the group delay dispersion has an inverse characteristic, so that the group delay dispersion is canceled out. It is possible to improve the group delay dispersion corresponding to the second derivative of the phase with respect to the frequency without changing the multiplexing / demultiplexing characteristics of the filter, and to minimize the group delay dispersion as a whole multistage lattice filter.

【0016】[0016]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0017】(第1の実施形態)図1の(A)は本発明
の第1の実施の形態における透過域/阻止域が波長平坦
な4波の光合分波器の構成を示す。図1の(B)はその
光合分波器の第1段目のラティスフィルタ111の相対
光周波数に対する光強度透過率特性(破線)と群遅延分
散特性(実線)を示し、図1の(C)はその光合分波器
の第2段目のラティスフィルタ112、113の相対光
周波数に対する光強度透過率特性(破線)と群遅延分散
特性(実線)を示す。本実施形態では、図1の(A)に
示すように、入力ポート側の第1段目にはマッハツェン
ダフィルタを3段縦続接続して構成したラティスフィル
タ111が、第2段目にはそれぞれマッハツェンダフィ
ルタを4段縦続して構成したラティスフィルタ112,
113が使用されている。また、本実施形態では、透過
域/阻止域が波長平坦な特性を実現するために、第1段
目のラティスフィルタ111の光路長差は4ΔL,4Δ
L,2ΔL,第2段目のラティスフィルタ112,11
3の光路長差はそれぞれ2ΔL,2ΔL,2ΔL,ΔL
とした。
(First Embodiment) FIG. 1A shows a configuration of a four-wavelength optical multiplexer / demultiplexer having a flat wavelength transmission / rejection band according to a first embodiment of the present invention. FIG. 1B shows a light intensity transmittance characteristic (broken line) and a group delay dispersion characteristic (solid line) with respect to a relative optical frequency of the first-stage lattice filter 111 of the optical multiplexer / demultiplexer, and FIG. ) Shows the light intensity transmittance characteristic (dashed line) and the group delay dispersion characteristic (solid line) with respect to the relative optical frequency of the second-stage lattice filters 112 and 113 of the optical multiplexer / demultiplexer. In the present embodiment, as shown in FIG. 1A, the first stage on the input port side has a lattice filter 111 configured by cascading three stages of Mach-Zehnder filters, and the second stage has Mach-Zehnder filters respectively. A lattice filter 112 constituted by cascading four filters,
113 are used. Further, in the present embodiment, in order to realize a characteristic in which the transmission band / rejection band has a flat wavelength, the optical path length difference of the first-stage lattice filter 111 is 4ΔL, 4Δ.
L, 2ΔL, second stage lattice filters 112, 11
3 are 2ΔL, 2ΔL, 2ΔL, and ΔL, respectively.
And

【0018】本光合分波器は石英系平面光波回路(参考
文献3:M. Kawachi, "Silica waveguides on silicon
and their application to integrated-optic componen
ts",Optical and Quantum Electronics. Vol. 22. pp.
391-416, 1990)により作製した。各マッハツェンダフ
ィルタの光導波路の上にはそれぞれ位相シフタとして位
相制御用のヒータ41〜51を形成した。本実施形態で
は、一例として、4波の各チャンネル間隔は100GH
zとした。
The optical multiplexer / demultiplexer is a quartz-based planar lightwave circuit (Reference 3: M. Kawachi, "Silica waveguides on silicon").
and their application to integrated-optic componen
ts ", Optical and Quantum Electronics. Vol. 22. pp.
391-416, 1990). Phase control heaters 41 to 51 were formed on the optical waveguides of the respective Mach-Zehnder filters as phase shifters. In the present embodiment, as an example, each channel interval of four waves is 100 GHz.
z.

【0019】これに対応して、第1段目のラティスフィ
ルタ111の周期周波数を100GHzに、第2段のラ
ティスフィルタ112、113の周期周波数をそれぞれ
200GHzとした。周期周波数で決まる光路長差ΔL
は1.03mmとした。
Correspondingly, the periodic frequency of the first-stage lattice filter 111 is set to 100 GHz, and the periodic frequencies of the second-stage lattice filters 112 and 113 are each set to 200 GHz. Optical path length difference ΔL determined by periodic frequency
Was 1.03 mm.

【0020】第2段目の2個の4段ラティスフィルタ1
12と113は、その中心周波数が互いに100GHz
異なり、図1の(B)および(C)に示すように、各チャ
ンネルの中心周波数(波長λ1,λ2,λ3,λ4)付
近の透過特性が波長平坦化され、各チャンネルの中心周
波数付近の群遅延分散が第1段目のラティスフィルタ1
11と逆特性になるように設計されている。
Two 4-stage lattice filters 1 at the second stage
12 and 113 have center frequencies of 100 GHz
In contrast, as shown in FIGS. 1B and 1C, the transmission characteristics near the center frequency (wavelengths λ1, λ2, λ3, λ4) of each channel are flattened, and the group near the center frequency of each channel is set. Lattice filter 1 with first stage delay dispersion
11 is designed to have the opposite characteristic.

【0021】波長平坦特性を実現する方法は複数種類あ
るが、本実施形態では、図1の(B)および(C)に示す
ように、第1段目のラティスフィルタ111は最大平坦
特性、第2段目のラティスフィルタ112、113はリ
ップル(脈動)のあることが特徴であるチェビシェフ特
性により、波長平坦化を実現した。
Although there are a plurality of methods for realizing the wavelength flat characteristic, in the present embodiment, as shown in FIGS. 1B and 1C, the first-stage lattice filter 111 has the maximum flat characteristic, The second-stage lattice filters 112 and 113 have achieved wavelength flattening by Chebyshev characteristics, which are characterized by ripples (pulsations).

【0022】2段構成以上のラティスフィルタは、同じ
回路構成で回路パラメータを変えることにより、透過特
性が同じで、位相特性、言い換えれば、群遅延特性が異
なるフィルタを設計することができる。本実施形態で
は、このラティスフィルタの回路パラメータは、方向性
結合器21〜34の結合率と位相シフタ(位相制御用ヒ
ータ)41〜51の位相制御量である。第1段目の3段
構成のラティスフィルタ111の場合は、図1の(B)
に示すような最大平坦特性をもち、群遅延分散特性が異
なるフィルタは16通りある。第2段目の4段構成のラ
ティスフィルタ112、113の場合は、図1の(C)
に示すようなチェビシェフ特性をもち、群遅延分散特性
が異なるフィルタは2の10乗通りある。
By changing circuit parameters with the same circuit configuration, a lattice filter having two or more stages can design filters having the same transmission characteristics and different phase characteristics, in other words, different group delay characteristics. In the present embodiment, the circuit parameters of the lattice filter are the coupling ratio of the directional couplers 21 to 34 and the phase control amounts of the phase shifters (phase control heaters) 41 to 51. In the case of the first-stage three-stage lattice filter 111, FIG.
There are 16 types of filters having maximum flatness characteristics as shown in (1) and different group delay dispersion characteristics. In the case of the lattice filters 112 and 113 having a four-stage configuration of the second stage, FIG.
There are 2 10 powers of filters having Chebyshev characteristics as shown in (1) and different group delay dispersion characteristics.

【0023】本実施形態では、後述の図2に示すよう
に、各チャンネルの中心周波数(波長λ1,λ2,λ
3,λ4)で群遅延分散が0になり、第1段目と第2段
目のラティスフィルタの群遅延分散がチャンネル中心周
波数付近で互いに逆な特性をもつように、第1段目のラ
ティスフィルタ111の2個の出力ポートの特性が最小
位相特性を、第2段目の2個のラティスフィルタ11
2、113の合計4個の出力ポートの特性が全て最大位
相特性をもつように設計した。
In this embodiment, as shown in FIG. 2 described later, the center frequencies (wavelengths λ1, λ2, λ
(3, λ4), the group delay dispersion becomes 0, and the first-stage lattices are set so that the group delay dispersions of the first-stage and second-stage lattice filters have mutually opposite characteristics near the channel center frequency. The characteristics of the two output ports of the filter 111 indicate the minimum phase characteristics, and the two lattice filters 11
The design was made so that the characteristics of all four output ports 2, 113 had the maximum phase characteristics.

【0024】ここで、ラティスフィルタの伝達関数zを z=exp(jωΔτ) …(1) (ただし、ωは周波数、Δτは光路長差ΔLに対応する
単位遅延時間)の多項式で表示した時、上記最小位相特
性はそのフィルタの伝達関数zの零点が|z|=1の円
内にあるフィルタ特性、上記最大位相特性はそのフィル
タの伝達関数zの零点が|z|=1の円外にあるフィル
タ特性と定義する。
Here, when the transfer function z of the lattice filter is represented by a polynomial of z = exp (jωΔτ) (1), where ω is a frequency and Δτ is a unit delay time corresponding to the optical path length difference ΔL. The minimum phase characteristic is a filter characteristic in which the zero of the transfer function z of the filter is within a circle of | z | = 1, and the maximum phase characteristic is a zero of the transfer function z of the filter is outside the circle of | z | = 1. It is defined as a certain filter characteristic.

【0025】図2は上述のようにして作製した本発明の
第1の実施形態の光合分波器の光強度透過率と群遅延分
散のチャンネル中心周波数付近での測定結果を示す。実
線Aは本実施形態の群遅延分散、一点鎖線Bは参考のため
に作製した従来の光合分波器の群遅延分散を表わす。こ
の従来の光合分波器は本実施形態のものと同じ回路構成
であるが回路パラメータが異なる。
FIG. 2 shows the measurement results of the optical multiplexer / demultiplexer according to the first embodiment of the present invention manufactured as described above, in the vicinity of the channel center frequency of the light intensity transmittance and the group delay dispersion. The solid line A represents the group delay dispersion of the present embodiment, and the dashed line B represents the group delay dispersion of a conventional optical multiplexer / demultiplexer manufactured for reference. This conventional optical multiplexer / demultiplexer has the same circuit configuration as that of the present embodiment, but differs in circuit parameters.

【0026】本発明の第1の実施形態で用いた回路パラ
メータの設計値と上記従来例で用いた回路パラメータの
設計値を下記の表1に示す。表1において、θnは方向
性結合器21〜34の振幅結合の角度を表現し(パワー
結合率はsin2(θn)に対応)、ψnは位相シフタ4
1〜51の位相制御量を表示し、nは各ラティスフィル
タの入力ポートから順に番号付けを定義したものであ
る。
Table 1 below shows the design values of the circuit parameters used in the first embodiment of the present invention and the design values of the circuit parameters used in the conventional example. In Table 1, θn represents the angle of the amplitude coupling of the directional couplers 21 to 34 (the power coupling ratio corresponds to sin 2 (θn)), and Δn represents the phase shifter 4.
The phase control amounts of 1 to 51 are displayed, and n defines the numbering in order from the input port of each lattice filter.

【0027】[0027]

【表1】 [Table 1]

【0028】本実施形態におけるの光合分波器の群遅延
分散は、第1段目ラティスフィルタ111と第2段目の
2個のラティスフィルタ112、113の群遅延分散が
ともに逆特性になるように、表1の(A)に示すよう
に、回路パラメータの値が設計されているため、図2の
実線Aに示すように、全てのチャンネルにおいて、チャ
ンネル中心周波数(波長λ1,λ2,λ3,λ4)付近
で6GHz以上の周波数にわたって群遅延分散が最小化
されている。
The group delay dispersion of the optical multiplexer / demultiplexer in the present embodiment is such that the group delay dispersion of the first-stage lattice filter 111 and the group delay dispersion of the two second-stage lattice filters 112 and 113 have opposite characteristics. Since the values of the circuit parameters are designed as shown in (A) of Table 1, the channel center frequencies (wavelengths λ1, λ2, λ3, In the vicinity of λ4), the group delay dispersion is minimized over a frequency of 6 GHz or more.

【0029】一方、従来の光合分波器では、群遅延分散
の最小化を考慮しておらず、表1の(B)に示すよう
に、ラティスフィルタの出力ポートの位相特性、言い換
えれば、群遅延分散を適当に選んで回路パラメータの値
を設計していた。そのため、回路全体の群遅延分散が大
きな値をもってしまっていた。ここで、図2の一点鎖線
Bに示した従来例は、全てのラティスフィルタが最大平
坦特性及び最小位相特性をもつように設計したものであ
る。
On the other hand, in the conventional optical multiplexer / demultiplexer, the minimization of the group delay dispersion is not taken into consideration, and the phase characteristic of the output port of the lattice filter, in other words, the group The circuit parameters are designed by appropriately selecting the delay dispersion. Therefore, the group delay dispersion of the entire circuit has a large value. Here, the dashed line in FIG.
In the conventional example shown in B, all lattice filters are designed so as to have maximum flatness characteristics and minimum phase characteristics.

【0030】本実施形態では、上述のように、2段構成
以上のラティスフィルタにおいて、その回路パラメータ
の設計値を変えることにより、透過特性が同じで、異な
る群遅延特性のフィルタを設計することができることを
利用して、前段の順特性の群遅延分散をもつラティスフ
ィルタと後段の逆特性の群遅延分散をもつラティスフィ
ルタとを組み合わせることにより、全てのチャンネルの
群遅延分散を最小化した光合分波器が実現できた。
In this embodiment, as described above, in a lattice filter having two or more stages, by changing the design value of the circuit parameter, it is possible to design a filter having the same transmission characteristics and different group delay characteristics. Utilizing what can be done, by combining a lattice filter with group delay dispersion with forward characteristic in the preceding stage and a lattice filter with group delay dispersion with inverse characteristic in the latter stage, optical combining that minimizes group delay dispersion of all channels A wave device was realized.

【0031】(他の実施形態)上述した本発明の第1の
実施形態では、第1段目のラティスフィルタ111の2
個の出力ポートの特性が最小位相特性をもち、第2段目
の2個のラティスフィルタ112、113の合計4個の
全ての出力ポートの特性が最大位相特性をもつようにし
た。しかし、この組み合わせ以外に、例えば、第1段目
のラティスフィルタ111の2個の出力ポートの特性を
それぞれ最小位相特性、及び最大位相特性にし、第2段
目のそれぞれ対応するラティスフィルタ112、113
の出力ポート特性を逆に最大位相特性及び最小位相特性
をもたすようにして、全てのチャンネルに対して群遅延
分散の最小化を行うこともできる。このように、本発明
では、群遅延分散を最小化する組み合わせは、複数存在
する。このため、本発明は上述した第1の実施形態のラ
ティスフィルタの組み合わせ方のみに限定されず、本発
明の目的を実現できる全ての組み合わせを含んでいる。
(Other Embodiments) In the above-described first embodiment of the present invention, the two-stage lattice filter 111 of the first stage is used.
The characteristics of the output ports have the minimum phase characteristic, and the characteristics of all four output ports of the two lattice filters 112 and 113 in the second stage have the maximum phase characteristic. However, in addition to this combination, for example, the characteristics of the two output ports of the first-stage lattice filter 111 are set to the minimum phase characteristic and the maximum phase characteristic, respectively, and the corresponding second-stage lattice filters 112 and 113 are set.
In contrast, the output port characteristics of (1) and (2) have maximum phase characteristics and minimum phase characteristics, so that group delay dispersion can be minimized for all channels. Thus, in the present invention, there are a plurality of combinations that minimize the group delay dispersion. For this reason, the present invention is not limited to only the combination of the lattice filters of the first embodiment described above, but includes all combinations that can achieve the object of the present invention.

【0032】また、本発明の第1の実施形態では、ラテ
ィスフィルタを2段組み合わせて4波の光合分波器を実
現したが、さらにその段数を大きくして、例えば、ラテ
ィスフィルタを3段組み合せで8波、ラティスフィルタ
を4段組み合わせで16波の光合分波器を構成すること
も可能である。この際、3段8波の光合分波器の場合
は、例えば、1段目と、2段及び3段目とを逆群遅延分
散をもつラティスフィルタを用いて群遅延分散の最小化
を行うことができる。また、4段16波の光合分波器の
場合は、例えば、1段目と、2段及び3段及び4段目と
を逆群遅延分散をもつラティスフィルタを用いて群遅延
分散の最小化を行うことができる。
Also, in the first embodiment of the present invention, a four-wave optical multiplexer / demultiplexer is realized by combining two stages of lattice filters. However, the number of stages is further increased, and for example, three stages of lattice filters are combined. It is also possible to form an optical multiplexer / demultiplexer of 16 waves by combining 8 waves and 4 stages of lattice filters. At this time, in the case of a three-stage eight-wave optical multiplexer / demultiplexer, for example, the first stage, the second stage, and the third stage are minimized by using a lattice filter having inverse group delay dispersion. be able to. In the case of a 4-stage 16-wave optical multiplexer / demultiplexer, for example, the first stage, the second stage, the third stage, and the fourth stage are minimized by using a lattice filter having inverse group delay dispersion. It can be performed.

【0033】以上、具体例としての実施形態を用いて本
発明を説明したが、本発明はこれら説明した実施形態に
限定されるものではない。
As described above, the present invention has been described using the specific embodiments. However, the present invention is not limited to the above-described embodiments.

【0034】例えば、本発明の第1の実施形態では石英
系の平面光回路を用いたが、半導体,LiNbO3など
の別の材料で平面光回路を形成することも可能である。
また、平面光回路の代わりに光ファイバを用いて光遅延
回路を作ることも可能である。
For example, in the first embodiment of the present invention, a quartz-based planar optical circuit is used, but it is also possible to form a planar optical circuit with another material such as a semiconductor or LiNbO 3 .
Further, it is also possible to make an optical delay circuit by using an optical fiber instead of the planar optical circuit.

【0035】また、位相制御の方法として、本発明の第
1の実施形態ではヒータ加熱による熱光学効果を利用し
たが、電気光学効果などの他の手法により、位相制御を
行うことも可能である。
In the first embodiment of the present invention, a thermo-optical effect by heater heating is used as a phase control method. However, the phase control can be performed by another method such as an electro-optical effect. .

【0036】また、本発明の第1の実施形態では、光結
合器として方向性結合器を用いたが、Multi-Mode-Inter
ference(MMI)カップラを用いることも可能であ
る。
In the first embodiment of the present invention, the directional coupler is used as the optical coupler.
It is also possible to use an ference (MMI) coupler.

【0037】このように、本発明は、素子の組合せ方に
関するものであり、その回路の物理的実現手段には拘束
されない。本発明の第1の実施形態に示した回路パラメ
ータは本発明の1つの例に過ぎず、本発明はこの値に限
定されるものでもない。
As described above, the present invention relates to a method of assembling elements, and is not restricted by a physical realizing means of the circuit. The circuit parameters shown in the first embodiment of the present invention are merely examples of the present invention, and the present invention is not limited to these values.

【0038】[0038]

【発明の効果】以上述べたように、本発明によれば、波
長平坦化というような高機能特性をもつ光合分波器にお
いて、振幅特性は同じで位相特性が異なる多段接続され
たラティスフィルタの群遅延分散が逆特性となるように
組み合わせることにより、群遅延分散を打ち消すように
しているので、光合分波器の合分波特性は変えずに、位
相の周波数に対する2回微分に対応する群遅延分散を改
善し、多段ラティスフィルタ全体として群遅延分散を最
小化することができる。
As described above, according to the present invention, in an optical multiplexer / demultiplexer having high functional characteristics such as wavelength flattening, a multistage connected lattice filter having the same amplitude characteristics and different phase characteristics is used. Since the group delay dispersion is canceled by combining them so that the group delay dispersion has the opposite characteristic, the multiplexing / demultiplexing characteristics of the optical multiplexer / demultiplexer are not changed, and the differential with respect to the frequency of the phase is twice differentiated. The group delay dispersion can be improved, and the group delay dispersion can be minimized as a whole multistage lattice filter.

【0039】また、本発明の光合分波器は、アレイ導波
路格子と組み合わせることにより、非常に扱える波長数
が大きな光合分波器を構成することも可能である。
The optical multiplexer / demultiplexer of the present invention can be combined with an arrayed waveguide grating to form an optical multiplexer / demultiplexer having a very large number of wavelengths that can be handled.

【0040】このように、本発明の光合分波器は、波長
多重通信のキーデバイスとして、その応用範囲は非常に
大きいと期待できる。
As described above, the optical multiplexer / demultiplexer of the present invention can be expected to have a very large application range as a key device for wavelength division multiplexing communication.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)は本発明の第1の実施の形態における透
過域/阻止域が波長平坦な4波の光合分波器の回路構成
を示す模式図、(B)はその光合分波器の第1段目のラ
ティスフィルタの相対光周波数に対する光強度透過率特
性(破線)と群遅延分散特性(実線)を示すグラフ、
(C)はその光合分波器の第2段目のラティスフィルタ
の相対光周波数に対する光強度透過率特性(破線)と群
遅延分散特性(実線)を示すグラフである。
FIG. 1A is a schematic diagram illustrating a circuit configuration of a four-wavelength optical multiplexer / demultiplexer having a flat transmission band / rejection band according to a first embodiment of the present invention, and FIG. Graph showing light intensity transmittance characteristics (broken line) and group delay dispersion characteristics (solid line) with respect to the relative optical frequency of the first stage lattice filter of the filter.
(C) is a graph showing a light intensity transmittance characteristic (broken line) and a group delay dispersion characteristic (solid line) with respect to a relative optical frequency of the second stage lattice filter of the optical multiplexer / demultiplexer.

【図2】本発明の第1の実施形態の光合分波器と従来の
光合分波器の光強度透過率と群遅延分散のチャンネル中
心周波数付近での測定結果を示すグラフである。
FIG. 2 is a graph showing measurement results of the optical multiplexer / demultiplexer according to the first embodiment of the present invention and the conventional optical multiplexer / demultiplexer near the channel center frequency of the optical intensity transmittance and the group delay dispersion.

【図3】従来のマッハツェンダフィルタの組み合わせに
よる光合分波器の回路構成例を示す模式図である。
FIG. 3 is a schematic diagram showing a circuit configuration example of an optical multiplexer / demultiplexer formed by combining a conventional Mach-Zehnder filter.

【符号の説明】 11〜14 光導波路 21〜34 光結合器 41〜51 位相シフタ 101 1段目のマッハツェンダフィルタ 102,103 2段目のマッハツェンダフィルタ 111 1段目の3段構成ラティスフィルタ 112,113 2段目の4段構成ラティスフィルタDESCRIPTION OF SYMBOLS 11 to 14 Optical waveguides 21 to 34 Optical coupler 41 to 51 Phase shifter 101 First-stage Mach-Zehnder filter 102, 103 Second-stage Mach-Zehnder filter 111 First-stage three-stage lattice filter 112, 113 Second-stage 4-stage lattice filter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小熊 学 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 (72)発明者 日比野 善典 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 Fターム(参考) 2H047 KA03 KA12 KB04 LA18 MA05 RA08 TA13  ──────────────────────────────────────────────────続 き Continuing on the front page (72) The inventor, Manabu Oguma 2-3-1, Otemachi, Chiyoda-ku, Tokyo Within Nippon Telegraph and Telephone Corporation (72) The inventor, Yoshinori Hibino 2-3-3, Otemachi, Chiyoda-ku, Tokyo No. 1 Nippon Telegraph and Telephone Corporation F-term (reference) 2H047 KA03 KA12 KB04 LA18 MA05 RA08 TA13

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 2本の光導波路と該2本の光導波路を複
数N+1箇所(Nは2以上の整数)の異なる位置で結合
するN+1個の光カップラからなる構成を有する2入力
2出力の光合分波素子を複数個、複数段に組み合わせる
ことにより構成される異なる複数M波(Mは2以上の整
数)の波長を合分波するための光合分波器において、 前記2入力2出力の光合分波素子が回路パラメータを変
えることにより振幅特性が同じでも異なる位相特性をも
つことが可能であることを利用して、異なる位相特性を
もつ複数個の前記2入力2出力の光合分波素子を組み合
わせ、前段の群遅延分散に対して後段で逆特性の群遅延
分散を与えることにより光合分波器の全てのチャンネル
の群遅延分散を最小化したことを特徴とする光合分波
器。
1. A two-input, two-output configuration having a configuration comprising two optical waveguides and N + 1 optical couplers for coupling the two optical waveguides at a plurality of N + 1 locations (N is an integer of 2 or more) at different positions. An optical multiplexer / demultiplexer for multiplexing / demultiplexing a plurality of M-waves (M is an integer of 2 or more) composed of a plurality of optical multiplexing / demultiplexing elements in a plurality of stages. Utilizing the fact that the optical multiplexing / demultiplexing element can have different phase characteristics even if the amplitude characteristics are the same by changing circuit parameters, a plurality of the 2-input / 2-output optical multiplexing / demultiplexing devices having different phase characteristics are used. An optical multiplexer / demultiplexer characterized in that the group delay dispersion of all channels of the optical multiplexer / demultiplexer is minimized by giving the group delay dispersion of the opposite characteristic to the group delay dispersion of the preceding stage in the latter stage.
【請求項2】 前記2入力2出力の光合分波素子の透過
域/阻止域の透過特性を平坦化することにより、平坦な
透過域/阻止域をもつようにしたことを特徴とする請求
項1に記載の光合分波器。
2. A flat transmission / rejection region by flattening transmission characteristics of a transmission / rejection region of the two-input / two-output optical multiplexing / demultiplexing device. 2. The optical multiplexer / demultiplexer according to 1.
【請求項3】 前記2入力2出力の光合分波素子の位相
特性が最小位相あるいは最大位相をもつことを特徴とす
る請求項1または2に記載の光合分波器。
3. The optical multiplexer / demultiplexer according to claim 1, wherein a phase characteristic of the two-input two-output optical multiplexer / demultiplexer has a minimum phase or a maximum phase.
【請求項4】 前記2入力2出力の光合分波素子は、位
相制御用の位相シフタを備えたマッハツェンダフィルタ
を複数個縦続接続したラティスフィルタであることを特
徴とする請求項1ないし3のいずれかに記載の光合分波
器。
4. The optical multiplexer / demultiplexer having two inputs and two outputs is a lattice filter in which a plurality of Mach-Zehnder filters each having a phase shifter for phase control are connected in cascade. An optical multiplexer / demultiplexer according to any of the claims.
【請求項5】 群遅延分散が前段の前記光合分波素子
(または光合分波素子群)と後段の前記光合分波素子群
とで逆特性となるように、前記位相シフタの位相制御量
を設定したことを特徴とする請求項4に記載の光合分波
器。
5. The phase control amount of the phase shifter is adjusted so that group delay dispersion has inverse characteristics between the optical multiplexing / demultiplexing element (or the optical multiplexing / demultiplexing element group) at the preceding stage and the optical multiplexing / demultiplexing element group at the subsequent stage. The optical multiplexer / demultiplexer according to claim 4, wherein the optical multiplexer / demultiplexer is set.
JP2000266124A 2000-09-01 2000-09-01 Optical multiplexer / demultiplexer with improved group delay characteristics Expired - Lifetime JP3740357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000266124A JP3740357B2 (en) 2000-09-01 2000-09-01 Optical multiplexer / demultiplexer with improved group delay characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000266124A JP3740357B2 (en) 2000-09-01 2000-09-01 Optical multiplexer / demultiplexer with improved group delay characteristics

Publications (2)

Publication Number Publication Date
JP2002071978A true JP2002071978A (en) 2002-03-12
JP3740357B2 JP3740357B2 (en) 2006-02-01

Family

ID=18753270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000266124A Expired - Lifetime JP3740357B2 (en) 2000-09-01 2000-09-01 Optical multiplexer / demultiplexer with improved group delay characteristics

Country Status (1)

Country Link
JP (1) JP3740357B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009015156A (en) * 2007-07-06 2009-01-22 Nippon Telegr & Teleph Corp <Ntt> Wavelength dispersion compensation circuit
JP2009198824A (en) * 2008-02-21 2009-09-03 Nippon Telegr & Teleph Corp <Ntt> Wavelength dispersion and wavelength dispersion slope variable compensator
JP2010534348A (en) * 2007-07-20 2010-11-04 インフィネラ コーポレイション Periodic optical filter
JP2014059542A (en) * 2012-08-24 2014-04-03 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexer/demultiplexer
JP2014182259A (en) * 2013-03-19 2014-09-29 Fujitsu Ltd Wavelength multiplexer/demultiplexer and optical integrated circuit device
US11119278B2 (en) 2019-05-29 2021-09-14 Fujitsu Limited Optical demultiplexer, optical transport apparatus, and method of controlling optical demultiplexing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009015156A (en) * 2007-07-06 2009-01-22 Nippon Telegr & Teleph Corp <Ntt> Wavelength dispersion compensation circuit
JP2010534348A (en) * 2007-07-20 2010-11-04 インフィネラ コーポレイション Periodic optical filter
JP2009198824A (en) * 2008-02-21 2009-09-03 Nippon Telegr & Teleph Corp <Ntt> Wavelength dispersion and wavelength dispersion slope variable compensator
JP2014059542A (en) * 2012-08-24 2014-04-03 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexer/demultiplexer
JP2014182259A (en) * 2013-03-19 2014-09-29 Fujitsu Ltd Wavelength multiplexer/demultiplexer and optical integrated circuit device
US11119278B2 (en) 2019-05-29 2021-09-14 Fujitsu Limited Optical demultiplexer, optical transport apparatus, and method of controlling optical demultiplexing

Also Published As

Publication number Publication date
JP3740357B2 (en) 2006-02-01

Similar Documents

Publication Publication Date Title
JP3256418B2 (en) Optical device
US5953467A (en) Switchable optical filter
US7221821B2 (en) Hitless errorless trimmable dynamic optical add/drop multiplexer devices
EP1426800A2 (en) Optical multi/demultiplexing circuit equipped with phase generating device
EP1973252B1 (en) Controllable optical add/drop multiplexer
JP2007310387A (en) Asymmetric mach-zehnder interferometer having reduced drive voltage coupled to compact low-loss arrayed waveguide grating
EP1168010A2 (en) Optical multi/demultiplexer
US20170187483A1 (en) Low transit loss add-drop multiplexing node for all optical networking
EP2049929B1 (en) Ultra-narrow bandpass filter
JP2002071978A (en) Optical multiplexer/demultiplexer improved in group delay characteristic
US20050068602A1 (en) Optical add-filtering switching device
EP1226675B1 (en) A device and a method for optical multiplexing/demultiplexing
Oguma et al. Ultrawide-passband tandem MZI-synchronized AWG and group delay ripple balancing out technique
Madsen A multiport frequency band selector with inherently low loss, flat passbands, and low crosstalk
JPH10177115A (en) Optical wavelength selector and optical communication system
JP2004199046A (en) Optical multiplexing/demultiplexing circuit equipped with phase generating function
JP2001108846A (en) Waveguide grating router
JP2002082241A (en) Optical multiplexer/demultiplexer
JPH11109147A (en) Array waveguide grating element
JPH03213829A (en) Waveguide type optical branching element operating at wide-wavelength-range
JP2001189696A (en) Dispersed slope compensator
JP2004233619A (en) Optical switch and optical wavelength router
JP3128974B2 (en) Waveguide type optical multiplexer / demultiplexer
EP1447693A1 (en) Flexible Passband Filter
JP3652315B2 (en) Optical demultiplexer and optical multiplexer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050920

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051107

R151 Written notification of patent or utility model registration

Ref document number: 3740357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term