JPS63286749A - Method for measuring contamination index of membrane filter device - Google Patents

Method for measuring contamination index of membrane filter device

Info

Publication number
JPS63286749A
JPS63286749A JP12140187A JP12140187A JPS63286749A JP S63286749 A JPS63286749 A JP S63286749A JP 12140187 A JP12140187 A JP 12140187A JP 12140187 A JP12140187 A JP 12140187A JP S63286749 A JPS63286749 A JP S63286749A
Authority
JP
Japan
Prior art keywords
water
flow rate
filtration
membrane
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12140187A
Other languages
Japanese (ja)
Other versions
JP2525807B2 (en
Inventor
Ikuo Shindo
神藤 郁夫
Hideo Azuma
東 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP62121401A priority Critical patent/JP2525807B2/en
Publication of JPS63286749A publication Critical patent/JPS63286749A/en
Application granted granted Critical
Publication of JP2525807B2 publication Critical patent/JP2525807B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To exactly measure a contamination index by the flow rate of filtration when the water filtered by a filter membrane having excellent filter performance passes an ultrafilter membrane for testing and the flow rate of filtration at which test water passes the same filter membrane. CONSTITUTION:The filtered water as water to be treated is previously obtd. by using the filter membrane similar to the ultrafilter membrane 9 for testing or the filter membrane having the higher filter performance than the filter performance of the membrane 9. A brand new filter membrane 9 is then set to a measuring instrument and the filtered water which is previously obtd. is passed therethrough under a specified pressure. The filtered water 1 dropping from the outside of the membrane 9 is received in a measuring cylinder 12 and the flow rate A of filtration is measured from the volume of the filtered water within the specified period of time. The same pressure as the pressure applied to the water at the time of measuring the flow rate A is applied to the test water to be subjected to determination of the contamination index and is filtered by the filter membrane used for measurement of the flow rate A. The flow rater B of filtration of this time is measured. The membrane 9 is contaminated according to the content of the contaminating material in the test water. Since the flow rate B is inversely proportional to the content of the contaminating material in the test water, the contamination index of the test water is determined from the ratio between the flow rate B and the flow rate A.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は分析用純水、製薬用水あるいは半導体洗浄用の
超純水等の微粒子含有量の極めて少ない高純度水を得る
ために設置される、限外濾過膜装置あるいは逆浸透膜装
置等の膜濾過装置の汚染指標を求める方法に関するもの
である。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is installed to obtain high purity water with extremely low particulate content, such as purified water for analysis, water for pharmaceuticals, or ultrapure water for cleaning semiconductors. , relates to a method for determining a contamination index of a membrane filtration device such as an ultrafiltration membrane device or a reverse osmosis membrane device.

〈従来の技術〉 従来から上水道、工業用水、地下水、河川水、湖沼水、
あるいは各種の回収水等を原水とし、種々の処理工程を
経て、たとえば半導体洗浄用の超純水等の微粒子含有量
の極めて少ない高純度水が得られている。このような高
純度水を得る場合、被処理水中の微粒子を除去するため
に、精密濾過膜や限外濾過膜や逆浸透膜等のその目的に
応じた各種の膜濾過装置がその処理工程中に用いられて
いるのが普通である。なお逆浸透膜は当初被処理水中の
塩類を脱塩するための透過膜として開発されたものであ
るが、近年ではたとえば半導体洗浄用超純水の処理工程
の末端に設置して、純水中のT、O,C(全有機炭素)
と共に、各種細菌等の微粒子を透過により除去するため
に設置されるようになって来ており、学説上では透過(
Permeation)と濾過(Filtration
)とは明確に区別されているが、膜を介して微粒子を濾
し分けることについては何ら変わりがないので、ここで
は便宜上の逆浸透膜装置も膜濾過装置として扱う。
<Conventional technology> Traditionally, water supply, industrial water, groundwater, river water, lake water,
Alternatively, various types of recovered water and the like are used as raw water and subjected to various treatment steps to obtain high-purity water with extremely low particulate content, such as ultrapure water for semiconductor cleaning. When obtaining such high-purity water, various membrane filtration devices depending on the purpose, such as microfiltration membranes, ultrafiltration membranes, and reverse osmosis membranes, are used during the treatment process to remove fine particles from the water to be treated. It is commonly used for. Reverse osmosis membranes were initially developed as permeable membranes to desalinate salts in water to be treated, but in recent years they have been installed at the end of the ultrapure water treatment process for semiconductor cleaning, for example, to remove salts from the water being treated. T, O, C (total organic carbon)
At the same time, it has been installed to remove microparticles such as various bacteria through permeation, and according to theory, permeation (
Permeation and filtration
), but since there is no difference in filtering out fine particles through a membrane, here, for convenience, a reverse osmosis membrane device is also treated as a membrane filtration device.

さてこのような膜濾過装置を工程中に用いる場合、その
被処理水の当該濾過膜に対する汚染指標を知ることは極
めて重要である。
When such a membrane filtration device is used in a process, it is extremely important to know the contamination index for the filtration membrane of the water to be treated.

すなわち当該汚染指標から膜濾過装置に用いる濾過膜の
種類を決定したり、あるいは当該濾過膜の交換時期を予
測したり、あるいは当初の設計時において当該汚染指標
を用いて前処理装置の設置の必要性を判断したり、もし
くは前処理装置の種類を知る手掛りとしたり、あるいは
被処理水の汚染指標を定常的に知ることによって、前処
理装置の処理性能を管理するなどに用いる。
In other words, the type of filtration membrane to be used in a membrane filtration device can be determined from the contamination index, or the replacement period of the filtration membrane can be predicted, or the necessity of installing a pre-treatment device can be determined using the contamination index at the time of initial design. It is used to judge the quality of the pretreatment equipment, to use it as a clue to know the type of pretreatment equipment, or to manage the treatment performance of the pretreatment equipment by regularly knowing the contamination index of the water to be treated.

当該汚染指標を知る従来の測定方法として、SDI値、
MF値、FT値あるいはSI値等が用いられている。
Conventional methods of measuring the pollution index include SDI value,
The MF value, FT value, SI value, etc. are used.

SDI値は0.45μmのフィルターを用いて、一定圧
力で検水を濾過した際の流速から汚染指標を求めるもの
であり、またMF値は0.45μmのフィルターを用い
て、一定量の検水を一定減圧下で吸引濾過したときの濾
過時間から汚染指標を求めるものであり、またFT値は
0.2μmのフィルターを用いて、一定圧力で検水を濾
過した際の流速から汚染指標を求めるものであり、また
Sl値は0.8μmのフィルターを用いて、一定圧力で
検水を濾過した際の流速から汚染指標を求めるものであ
る。
The SDI value is a contamination index determined from the flow rate when a sample water is filtered at a constant pressure using a 0.45 μm filter, and the MF value is a contamination index obtained by filtering a fixed amount of sample water using a 0.45 μm filter. The contamination index is determined from the filtration time when water is suction-filtered under a constant reduced pressure, and the contamination index is determined from the flow rate when the test water is filtered at a constant pressure using a filter with an FT value of 0.2 μm. The SL value is a contamination index determined from the flow rate when sample water is filtered at a constant pressure using a 0.8 μm filter.

〈発明が解決しようとする問題点〉 ところで分析用純水、製薬用水、あるいは半導体洗浄用
の超純水等は、前述したごとく種々の前処理装置、たと
えば凝集沈殿装置、砂濾過装置、2床3塔式純水製造装
置およびまたは混床式純水製造装置、精密濾過器等を経
て、限外濾過膜装置等の膜濾過装置で処理される場合が
あるが、このような限外濾過膜装置の汚染指標を従来の
SDI値、MF値、FT値、Sl値等で測定することは
困難である。
<Problems to be Solved by the Invention> By the way, pure water for analysis, water for pharmaceuticals, ultrapure water for cleaning semiconductors, etc., can be obtained using various pretreatment equipment, such as a coagulation sedimentation equipment, a sand filtration equipment, and a two-bed In some cases, the water is processed through a three-column pure water production device, a mixed bed pure water production device, a precision filter, etc., and then processed with a membrane filtration device such as an ultrafiltration membrane device. It is difficult to measure contamination indicators of equipment using conventional SDI values, MF values, FT values, Sl values, etc.

というのは全く同じ原水を全く同様な種類の複数系列の
前処理装置で処理し、これらの処理水を被処理水として
同じ種類の限外濾過膜装置で濾過する場合、各系列別の
限外濾過膜装置の被処理水のたとえばFT値が全く同じ
数値であっても、当該限外濾過膜装置の圧力損失の上昇
の程度が全く相違するという現象が度々起こる。なおF
T値にかぎらずSDI値、MF値、Sl値についても、
この現象が起こることは同様である。
This is because if the same raw water is treated with multiple lines of pretreatment equipment of exactly the same type, and these treated water is filtered as treated water through the same type of ultrafiltration membrane equipment, the ultrafiltration rate of each line will be Even if the FT value of the water to be treated in a filtration membrane device is exactly the same, a phenomenon often occurs in which the degree of increase in pressure loss in the ultrafiltration membrane device is completely different. Furthermore, F
Not only the T value, but also the SDI value, MF value, and Sl value,
This phenomenon also occurs.

これらの現象は、従来の汚染指標では測定することが不
可能な汚染物質が膜濾過装置の被処理水中に含まれてい
ることを如実に示すものである。
These phenomena clearly indicate that the water to be treated by the membrane filtration device contains pollutants that cannot be measured using conventional pollution indicators.

本発明はこのような従来の汚染指標では測定することが
できないような比較的清澄な検水であっても、膜濾過装
置に対する汚染指標を正確に測定することができる方法
を提供することを目的とするものである。
An object of the present invention is to provide a method that can accurately measure contamination indicators for a membrane filtration device even in relatively clear sample water that cannot be measured using conventional contamination indicators. That is.

く問題点を解決するための手段〉 本発明は試験用限外濾過膜に、あらかじめ得た当該試験
用限外濾過膜と同様の限外濾過膜の濾過水あるいは当該
試験用限外濾過膜より濾過性能が優れている濾過膜の濾
過水を、一定の圧力で通過させた際の濾過流速Aを測定
し、引き続き当該試験用限外濾過膜に一定量の検水を通
過させて検水中の汚染物質を当該試験用限外濾過膜で濾
過し、しかる後に当該試験用限外濾過膜に前記濾過流速
Aを測定した時と同じ圧力で前記濾過水を再び通過させ
た際の濾過流速Bを測定し、当該濾過流速Aと当該濾過
流速Bとを用いて汚染指標を求めることを特徴とする膜
濾過装置における汚染指標の測定方法に関するものであ
る。
Means for Solving Problems〉 The present invention provides an ultrafiltration membrane for testing using filtrated water from an ultrafiltration membrane similar to the ultrafiltration membrane for testing obtained in advance or from the ultrafiltration membrane for testing. The filtration flow rate A is measured when filtered water is passed through a filtration membrane with excellent filtration performance at a constant pressure, and then a certain amount of test water is passed through the test ultrafiltration membrane. The filtration flow rate B when the pollutant is filtered through the test ultrafiltration membrane, and then the filtrate water is passed through the test ultrafiltration membrane again at the same pressure as when the filtration flow rate A was measured. The present invention relates to a method for measuring a contamination index in a membrane filtration device, characterized in that the contamination index is determined using the filtration flow rate A and the filtration flow rate B.

すなわち従来の汚染指標を測定する際に用いる0、2μ
m〜0.8μmのフィルターに変えて、それよりl/1
0ないし1/100の孔径を有する試験用限外濾過膜を
用い、当該限外濾過膜を実質的に汚染する物質を含まな
い水を、先に当該限外濾過膜に一定の圧力で通過させて
、その時の濾過流速を測定してブランクとし、次いでブ
ランクを測定した後の当該限外濾過膜に一定量の検水を
通過させて、検水中の汚染物質を当該濾過膜で捕捉し、
次いで前述のブランクの測定と全く同じ水を同条件で濾
過し、その時の濾過流速を測定することにより、検水を
濾過した際に、どの程度当該限外濾過膜が汚染されてい
るかを両者の濾過流速から知り、この両者の濾過流速の
数値を用いて汚染指標を求めるものである。
In other words, 0.2μ used when measuring conventional contamination indicators.
Change to m ~ 0.8 μm filter, l/1 than that
Using a test ultrafiltration membrane with a pore size of 0 to 1/100, water that does not contain substances that substantially contaminate the ultrafiltration membrane is first passed through the ultrafiltration membrane at a constant pressure. Then, the filtration flow rate at that time is measured as a blank, and then a certain amount of test water is passed through the ultrafiltration membrane after measuring the blank, and the contaminants in the test water are captured by the filtration membrane,
Next, by filtering the same water under the same conditions as in the blank measurement described above and measuring the filtration flow rate at that time, it is possible to determine how much the ultrafiltration membrane is contaminated when the sample water is filtered. This is known from the filtration flow rate, and the contamination index is determined using both values of the filtration flow rate.

〈作用〉 以下に本発明をその測定の手順毎に詳細に説明する。<Effect> The present invention will be explained in detail below for each measurement procedure.

第1図は本発明に用いる測定装置の実施態様の一例のフ
ローを示す説明図であり、第2図は試験用限外濾過膜の
一部切欠拡大断面図である。
FIG. 1 is an explanatory diagram showing the flow of an embodiment of the measuring device used in the present invention, and FIG. 2 is an enlarged partially cutaway sectional view of an ultrafiltration membrane for testing.

第1図お、よび第2図に示したごとく、密閉可能な濾過
水槽1と同じく密閉可能な検水槽2とを用意し、当該両
槽1および2の下方部にそれぞれ弁3および4を有する
流出管5および6の一端を接続し、当該流出管5および
6の他端を連通して、その連通部に合流管7の一端を接
続する。また当該合流管7の他端に、試験用限外濾過膜
9である中空糸状限外濾過膜の内径よりやや大きい径の
注射針8を取り付け、当該注射針8を当該限外濾過膜9
の一端の中空部に挿入して水密的に連通ずる。
As shown in Figures 1 and 2, a sealable filtration tank 1 and a sealable test tank 2 are prepared, and valves 3 and 4 are provided at the lower parts of both tanks 1 and 2, respectively. One ends of the outflow pipes 5 and 6 are connected, the other ends of the outflow pipes 5 and 6 are communicated with each other, and one end of the merging pipe 7 is connected to the communication portion. In addition, an injection needle 8 having a diameter slightly larger than the inner diameter of the hollow fiber ultrafiltration membrane, which is the test ultrafiltration membrane 9, is attached to the other end of the confluence tube 7, and the injection needle 8 is inserted into the ultrafiltration membrane 9.
It is inserted into the hollow part of one end of the pipe to establish watertight communication.

また当該濾過膜9の他端の中空部に、当該濾過膜の内径
よりやや大きい径の針金状の密栓lOを挿入して、他端
中空部を閉塞する。
Further, a wire-shaped seal plug lO having a diameter slightly larger than the inner diameter of the filtration membrane is inserted into the hollow portion at the other end of the filtration membrane 9 to close the hollow portion at the other end.

さらに当該濾過膜9の下方部に、当該濾過膜から滴り落
ちる濾過水11を全て受は入れるためのメスシリンダー
12を設置する。
Further, a graduated cylinder 12 is installed below the filter membrane 9 to receive all the filtered water 11 dripping from the filter membrane.

なお濾過水槽1および検水槽2の上部にはそれぞれ圧力
指示計13を付設するとともに、両槽1および2の上部
にそれぞれ弁14および15を有する不活性ガス流入管
16を連通ずる。
A pressure indicator 13 is attached to the upper part of the filtered water tank 1 and the water test tank 2, respectively, and an inert gas inlet pipe 16 having valves 14 and 15 is connected to the upper part of both tanks 1 and 2, respectively.

次に本発明における汚染指標の測定手順を説明する。Next, a procedure for measuring a contamination index in the present invention will be explained.

まず測定に用いる試験用限外濾過膜9と同様の限外濾過
膜あるいは、試験用限外濾過膜9より濾過性能が優れて
いる濾過膜、換言すれば当該限外濾過膜9の濾過孔径よ
り小さい濾過孔径を有する濾過膜を用いて、あらかじめ
たとえば純水等を被処理水として濾過し、当該濾過水を
得ておく。
First, an ultrafiltration membrane similar to the test ultrafiltration membrane 9 used for measurement, or a filtration membrane with better filtration performance than the test ultrafiltration membrane 9, in other words, a filtration membrane with a filtration pore size larger than that of the ultrafiltration membrane 9. For example, pure water or the like is filtered in advance as water to be treated using a filtration membrane having a small filtration pore size to obtain filtrated water.

一方新品の試験用限外濾過膜9を第1図のフローに準じ
て測定装置にセットし、前述の操作によりあらかじめ得
た濾過水を濾過水槽に入れ密閉した後、弁14および3
を開口して濾過水槽1に不活性ガス、たとえば窒素ガス
を用いて一定圧力をかけ、当該圧力により濾過水槽1内
の濾過水を試験用限外濾過膜9で濾過する。
On the other hand, a new ultrafiltration membrane 9 for testing is set in the measuring device according to the flow shown in FIG.
is opened and a constant pressure is applied to the filtration tank 1 using an inert gas, such as nitrogen gas, and the filtered water in the filtration tank 1 is filtered by the test ultrafiltration membrane 9 using the pressure.

試験用限外濾過膜9の外側から滴り落ちる濾過水11を
メスシリンダー12に受けることにより、一定時間内に
メスシリンダー12に受けた濾過水量から濾過流速Aを
測定する。
By receiving the filtered water 11 dripping from the outside of the test ultrafiltration membrane 9 into the graduated cylinder 12, the filtration flow rate A is measured from the amount of filtered water received by the graduated cylinder 12 within a certain period of time.

当該濾過流速Aは、膜面に汚染物質が全く付着していな
り’VAの、かつ濾過中においても膜面を汚染すること
なく水を濾過する際の濾過流速であり、いわゆるブラン
クに相当する。なお濾過流速Aを測定する際の圧力は使
用する試験用限外濾過膜9の孔径によって異なるが、た
とえば分画分子量が10.000前後のものを用いた場
合、1〜2 kgf/dで充分であり、また濾過時間は
5分程度で充分である。
The filtration flow rate A is the filtration flow rate when water is filtered without any contaminants attached to the membrane surface and without contaminating the membrane surface even during filtration, and corresponds to a so-called blank. Note that the pressure when measuring the filtration flow rate A varies depending on the pore size of the test ultrafiltration membrane 9 used, but for example, when using one with a molecular weight cut-off of around 10.000, 1 to 2 kgf/d is sufficient. , and a filtration time of about 5 minutes is sufficient.

次に汚染指標を求めようとする検水を検水槽2に入れ、
密閉した後、弁15および4を開口して検水槽2に同じ
ように窒素ガスを用いて圧力をかけ、一定量の検水を前
記濾過流速Aの測定に用いた試験用限外濾過膜9で濾過
する。
Next, put the sample water to determine the contamination index into the test tank 2,
After sealing, valves 15 and 4 were opened to apply pressure to the test water tank 2 using nitrogen gas in the same way, and a certain amount of test water was used to measure the filtration flow rate A. filter.

当該検水の濾過により、検水中の汚染物質の量に応じて
その膜面が汚染される。
By filtering the test water, the membrane surface becomes contaminated depending on the amount of contaminants in the test water.

したがって検水中に含まれる汚染物質の量が比較的多い
場合は、濾過すべき検水量は少なくてよく、またその汚
染物質の量が比較的少ない場合は、濾過すべき検水量を
多くする。
Therefore, if the amount of contaminants contained in the sample water is relatively large, the amount of sample water to be filtered may be small, and if the amount of contaminants is relatively small, the amount of sample water to be filtered may be increased.

たとえば試験用限外濾過膜9として、外径1.21−1
内径0.8鰭、長さ200鶴の分画分子量13゜000
の中空糸状限外濾過膜を用い、検水として、市水を砂濾
過装置およびイオン交換装置で処理した純水を用いる場
合は、100mJ前後とする。
For example, as the test ultrafiltration membrane 9, the outer diameter is 1.21-1
Inner diameter 0.8 fin, length 200 crane, molecular weight cut off 13°000
When using a hollow fiber ultrafiltration membrane and using pure water obtained by treating city water with a sand filtration device and an ion exchange device as water test, the amount of water should be around 100 mJ.

このような操作により検水を濾過し、検水中の汚染物質
を膜面で捕捉した後、前述した濾過流速Aを測定したと
同じ条件で弁14.3を開口して濾過水槽1内の濾過水
を試験用限外濾過膜9で濾過し、その時の濾過流速Bを
測定する。
After the sample water is filtered through such operations and the contaminants in the sample water are captured on the membrane surface, the valve 14.3 is opened under the same conditions as those used to measure the filtration flow rate A described above, and the filtration in the filtration water tank 1 is carried out. Water is filtered through the test ultrafiltration membrane 9, and the filtration flow rate B at that time is measured.

以上の説明で明らかなように、検水中の汚染物質の量に
応じて試験用限外濾過膜9は汚染されているから、濾過
流速Bは検水中の汚染物質の量に反比例することとなり
、ブランクとして測定した濾過流速Aと一定量の検水を
濾過した後の濾過流速Bとの関係から検水の汚染指標を
求めることができる。
As is clear from the above explanation, the test ultrafiltration membrane 9 is contaminated depending on the amount of contaminants in the test water, so the filtration flow rate B is inversely proportional to the amount of contaminants in the test water. The contamination index of the sample water can be determined from the relationship between the filtration flow rate A measured as a blank and the filtration flow rate B after filtering a certain amount of sample water.

なお濾過流速Aと濾過流速Bを測定するに際しては、濾
過圧力を全く同一とするとともに、濾過温度も同一とす
ることが好ましい。これは温度差による水の粘度が相違
することによる誤差を排除するためであり、同一の温度
で濾過することにより、各濾過流速の粘度換算の計算を
省略できる。
In addition, when measuring the filtration flow rate A and the filtration flow rate B, it is preferable that the filtration pressure be exactly the same and the filtration temperature also be the same. This is to eliminate errors caused by differences in water viscosity due to temperature differences, and by filtering at the same temperature, calculation of viscosity conversion of each filtration flow rate can be omitted.

本発明における汚染指標(便宜上Ulとする)の表示と
してはUI−濾過流速A−濾過流速Bとして表示するこ
ともできる。この場合、UIが大なる程、検水中の汚染
物質量は多いこととなる。
The contamination index (Ul for convenience) in the present invention can also be displayed as UI-filtration flow rate A-filtration flow rate B. In this case, the larger the UI, the greater the amount of contaminants in the sample water.

しかしながらUIとしては、濾過流速Bと濾過流速Aと
の比あるいは(1)式より当該比を百分率で表示するこ
とが好ましい。
However, as a UI, it is preferable to display the ratio between the filtration flow rate B and the filtration flow rate A, or the ratio according to equation (1) as a percentage.

UIを(1)式で求めた場合、この値が大なる程、検水
中の汚染物質量は少ないこととなる。すなわち(1)弐
におけるUIがたとえば100の場合は、濾過流速Aと
濾過流速Bとが等しいことを示し、試験用限外濾過膜に
検水を濾過しても全く当該限外濾過膜が汚染されてない
ということであり、検水中に汚染物質が全く含まれてい
ないことを示す。
When UI is calculated using equation (1), the larger the value, the smaller the amount of contaminants in the sample water. In other words, if the UI in (1) 2 is, for example, 100, it means that the filtration flow rate A and the filtration flow rate B are equal, and even if the sample water is filtered through the test ultrafiltration membrane, the ultrafiltration membrane will not be contaminated at all. This means that no contaminants are present in the sample water.

本発明に用いる試験用限外濾過膜としては分画分子量3
,000〜50.000の範囲の孔径を有する限外濾過
膜を用いることが好ましい。なお分画分子量が3,00
0以下の孔径の小さい限外濾過膜を用いると、濾過圧力
が大きくなりすぎ濾過水槽1あるいは検水槽2とがかな
り高圧の圧力容器となり、測定装置のコストが高くなる
ばかりでなく、測定時間もかなり長くなるので好ましく
なく、また分画分子量が50,000以上の孔径の大き
い限外濾過膜を用いると、検水中の比較的微細な汚染物
質が限外濾過膜を通過してしまい、測定誤差が大きくな
り、従来の0.2〜0.45μmのフィルターを用いる
SDI値等と何ら変わるところがなくなるので好ましく
ない。
The ultrafiltration membrane for testing used in the present invention has a molecular weight cutoff of 3.
Preferably, an ultrafiltration membrane having a pore size in the range from .000 to 50.000 is used. In addition, the molecular weight cut-off is 3,00
If an ultrafiltration membrane with a small pore size of 0 or less is used, the filtration pressure will be too high, and the filtration tank 1 or the test tank 2 will become a pressure vessel with quite high pressure, which will not only increase the cost of the measuring device but also shorten the measurement time. This is not preferable as it becomes quite long, and if an ultrafiltration membrane with a large pore size with a molecular weight cutoff of 50,000 or more is used, relatively fine contaminants in the sample water will pass through the ultrafiltration membrane, resulting in measurement errors. is undesirable because it becomes large and there is no difference from the SDI value etc. using a conventional 0.2 to 0.45 μm filter.

通常は分画分子量が10,000程度の試験用限外濾過
膜を用いることが好ましい。
It is usually preferable to use a test ultrafiltration membrane with a molecular weight cut-off of about 10,000.

なお使用する試験用限外濾過膜の形状は中空糸状、平膜
状あるいはチューブラ−状等、いかなるものも用いるこ
とができるが、第1図および第2図に示したごと(、内
圧式の中空糸状のものを用いた方が測定装置が簡単とな
るので好ましい。
The ultrafiltration membrane used for testing can be of any shape, such as hollow fiber, flat membrane, or tubular. It is preferable to use a thread-like material because the measuring device is simpler.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

実施例−1 原水に凝集剤として硫酸アルミニウムを添加しながら濾
過するタイプの簡易除濁濾過装置と、その後段に2床3
塔式純水製造装置を配置した水処理装置の3系列からそ
れぞれ得た3種類の純水(I)、(n)、(III)を
検水とし、ASTM法に準拠した汚染指標(SDI値)
と本発明の汚染指標(UI値)をそれぞれ測定した。
Example-1 A simple turbidity filtration device that filters raw water while adding aluminum sulfate as a flocculant, and 2 beds 3 at the rear stage.
Three types of pure water (I), (n), and (III) obtained from three lines of water treatment equipment equipped with tower-type pure water production equipment were used as test water, and the pollution index (SDI value) in accordance with the ASTM method was determined. )
and the contamination index (UI value) of the present invention were measured.

(1)ASTM法によるSDI値の測定方法0.45μ
mの試験用フィルターを用い、2.’ 1 kgr/c
o! (30p s i)の圧力で検水を濾過し、濾過
水250mlを得る時間を測定し、これをt。
(1) Measuring method of SDI value by ASTM method 0.45μ
Using a test filter of 2. '1 kgr/c
o! The test water was filtered at a pressure of (30 psi), the time to obtain 250 ml of filtered water was measured, and this was measured at t.

(秒)とする。t、を測定した後も濾過を続行し、T分
間検水を濾過した後(1+の時間も当該T分間に含む)
に、同じように濾過水250mlを得る時間を測定し、
これをtz(秒)とする。
(seconds). After measuring t, continue filtration and filter the test water for T minutes (time of 1+ is also included in the T minutes)
, measure the time to obtain 250ml of filtered water in the same way,
Let this be tz (seconds).

当該1+(秒)とtz(秒)とT(分)とを用い以下の
計算式によりSDI値を求める。
Using the 1+ (seconds), tz (seconds), and T (minutes), calculate the SDI value using the following calculation formula.

Tを15分間として測定した各純水(1)  (II)
(■)のSDI値を第1表に示した。
Each pure water measured with T as 15 minutes (1) (II)
The SDI values of (■) are shown in Table 1.

(2)本発明によるUl値の測定方法 内径0.8龍、外径1.2m、長さ200龍の分画分子
量13,000の中空糸状の試験用限外濾過膜を用い、
当該限外濾過膜を第1図および第2図に示したような測
定装置にセントした。次いで当該試験用限外濾過膜と全
く同じ限外濾過膜を多数本束ねたモジュールであらかじ
め純水を濾過することにより得た濾過水を濾過水槽に入
れ、窒素ガスを用いて]、 Okg f / crAの
圧力で当該濾過水を濾過し、その時の濾過流速A (m
β/m1n)を測定した。
(2) Method for measuring Ul value according to the present invention Using a hollow fiber test ultrafiltration membrane with an inner diameter of 0.8 m, an outer diameter of 1.2 m, a length of 200 m, and a molecular weight cutoff of 13,000,
The ultrafiltration membrane was placed in a measuring device as shown in FIGS. 1 and 2. Next, filtered water obtained by previously filtering pure water with a module made by bundling a large number of ultrafiltration membranes identical to the ultrafiltration membrane for the test was put into a filtered water tank, and using nitrogen gas], Okg f / The filtered water is filtered at a pressure of crA, and the filtration flow rate A (m
β/m1n) was measured.

次いで検水100mlを当該試験用限外濾過膜で濾過し
た後、濾過流速Aを測定したと全く同じ圧力および温度
で前記濾過水を濾過し、その時の濾過流速B (m I
t 7m i n)を測定した。
Next, after filtering 100 ml of test water through the test ultrafiltration membrane, the filtered water was filtered at exactly the same pressure and temperature as when the filtration flow rate A was measured, and the filtration flow rate B (m I
t7min) was measured.

濾過流速Aと濾過流速Bとを用い、以下の計算式よりI
JI値を求める。
Using the filtration flow rate A and the filtration flow rate B, I
Find the JI value.

このような方法により測定した各純水(I)(II) 
 (III)のUl値を第1表に示した。
Each pure water (I) (II) measured by such method
The Ul values of (III) are shown in Table 1.

第1表 実施例−2 実施例−1の(2)で示した本発明の汚染指標の測定方
法により測定したtJ I値がそれぞれ98.92.8
4.76の4種類の純水(なおいずれの純水もSDI値
は葺である。)を用いて、以下の実験を行った。
Table 1 Example-2 The tJI values measured by the contamination index measuring method of the present invention shown in Example-1 (2) were 98.92.8, respectively.
The following experiment was conducted using four types of pure water of 4.76 (the SDI values of all pure waters are the same).

すなわち分画分子ff113,000の中空糸状限外濾
過膜を多数本用いた濾過面積0.2Mの内圧式モジュー
ルを用いる4系列の限外濾過膜装置に、前記UI値が異
なる4種類の純水をそれぞれクロスフローで3ケ月間濾
過を行った。
In other words, four types of pure water having different UI values are applied to four lines of ultrafiltration membrane devices using an internal pressure module with a filtration area of 0.2M using a large number of hollow fiber ultrafiltration membranes with a molecular fractionation of ff 113,000. Each was filtered for 3 months using crossflow.

なお濾過圧力はI、Okg f / co!で初期にお
ける非透過水量と透過水量はそれぞれ5127H140
〜50m!/Hであった。
The filtration pressure is I, Okg f/co! The amount of non-permeated water and the amount of permeated water at the initial stage are 5127H140, respectively.
~50m! /H.

同一圧力下における濾過初期の透過水流量と、3ケ月間
を経た後の透過水流量をそれぞれの純水について測定し
、この値を第2表に示した。
The permeate flow rate at the initial stage of filtration and the permeate flow rate after three months under the same pressure were measured for each pure water, and the values are shown in Table 2.

第2表 なお第2表における目詰まり速度は、以下の計算式より
算出した。
Table 2 The clogging speed in Table 2 was calculated using the following formula.

〈効果〉 以上の実施例で明らかなごとく、従来の汚染指標である
SDI値で測定した場合、全く同じ数値を示す純水であ
っても、本発明の汚染指標の測定方法で測定すると、明
らかに差が生じている。したがって本発明の測定方法は
従来の測定方法では判別不可能な汚染指標でも明確に判
別できる。
<Effects> As is clear from the above examples, even if pure water shows exactly the same value when measured using the SDI value, which is a conventional pollution index, when measured using the method of measuring the pollution index of the present invention, it becomes clear. There is a difference. Therefore, the measuring method of the present invention can clearly identify contamination indicators that cannot be determined using conventional measuring methods.

また実施例−2で示したごと°く、本発明の方法により
測定した汚染指標(Ul値)と限外濾過膜装置の目詰ま
り速度とは明らかな相関関係がなりたつので、本発明の
汚染指標を測定することにより、限外濾過膜装置等の膜
濾過装置の運転管理を効果的に行うことができる他、前
処理装置の設置の必要性が判断できたり、種々の用途に
応用することができる。
Furthermore, as shown in Example 2, there is a clear correlation between the pollution index (Ul value) measured by the method of the present invention and the clogging rate of the ultrafiltration membrane device. By measuring , it is possible to effectively manage the operation of membrane filtration devices such as ultrafiltration membrane devices, as well as to determine the necessity of installing pre-treatment equipment, and to apply it to various uses. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はいずれも本発明の実施態様を示す
図面であり、第1図は本発明に用いる測定装置のフロー
を示す説明図であり、第2図は試験用限外濾過膜の一部
切欠拡大断面図である。 ■・・・濾過水槽      2・・・検水槽3.4・
・・弁       5.6・・・流出管7・・・合流
管       8・・・注射針9・・・試験用限界濾
過膜 1o・・・密栓11・・・濾過水      1
2・・・メスシリンダー13・・・圧力指示計    
14.15・・・弁16・・・不活性ガス流入管 第1図
Both Figures 1 and 2 are drawings showing embodiments of the present invention, Figure 1 is an explanatory diagram showing the flow of the measuring device used in the present invention, and Figure 2 is an ultrafiltration membrane for testing. FIG. ■...Filtering water tank 2...Testing tank 3.4.
... Valve 5.6 ... Outflow pipe 7 ... Merging pipe 8 ... Syringe needle 9 ... Ultrafiltration membrane for testing 1o ... Seal plug 11 ... Filtered water 1
2...Measured cylinder 13...Pressure indicator
14.15... Valve 16... Inert gas inflow pipe Figure 1

Claims (1)

【特許請求の範囲】 1、試験用限外濾過膜に、あらかじめ得た当該試験用限
外濾過膜と同様の限外濾過膜の濾過水あるいは当該試験
用限外濾過膜より濾過性能が優れている濾過膜の濾過水
を、一定の圧力で通過させた際の濾過流速Aを測定し、
引き続き当該試験用限外濾過膜に一定量の検水を通過さ
せて検水中の汚染物質を当該試験用限外濾過膜で濾過し
、しかる後に当該試験用限外濾過膜に前記濾過流速Aを
測定した時と同じ圧力で前記濾過水を再び通過させた際
の濾過流速Bを測定し、当該濾過流速Aと当該濾過流速
Bとを用いて汚染指標を求めることを特徴とする膜濾過
装置における汚染指標の測定方法。 2、濾過流速Bと濾過流速Aとの比から汚染指標を求め
る特許請求の範囲第1項記載の膜濾過装置における汚染
指標の測定方法。 3、分画分子量が3,000〜50,000の範囲の孔
径を有する試験用限外濾過膜を用いる特許請求の範囲第
1項または第2項記載の膜濾過装置における汚染指標の
測定方法。
[Scope of Claims] 1. The test ultrafiltration membrane contains filtrated water from an ultrafiltration membrane similar to the test ultrafiltration membrane obtained in advance or which has a better filtration performance than the test ultrafiltration membrane. Measure the filtration flow rate A when filtered water is passed through the filtration membrane at a constant pressure,
Subsequently, a certain amount of test water is passed through the test ultrafiltration membrane to filter out contaminants in the test water, and then the filtration flow rate A is applied to the test ultrafiltration membrane. A membrane filtration device characterized in that a filtration flow rate B is measured when the filtered water is passed through again at the same pressure as when it was measured, and a contamination index is determined using the filtration flow rate A and the filtration flow rate B. How to measure pollution indicators. 2. A method for measuring a contamination index in a membrane filtration device according to claim 1, wherein the contamination index is determined from the ratio of the filtration flow rate B and the filtration flow rate A. 3. A method for measuring a contamination index in a membrane filtration device according to claim 1 or 2, using a test ultrafiltration membrane having a pore size with a molecular weight cut-off of 3,000 to 50,000.
JP62121401A 1987-05-20 1987-05-20 Method for measuring contamination index of water filtered by membrane filter Expired - Lifetime JP2525807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62121401A JP2525807B2 (en) 1987-05-20 1987-05-20 Method for measuring contamination index of water filtered by membrane filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62121401A JP2525807B2 (en) 1987-05-20 1987-05-20 Method for measuring contamination index of water filtered by membrane filter

Publications (2)

Publication Number Publication Date
JPS63286749A true JPS63286749A (en) 1988-11-24
JP2525807B2 JP2525807B2 (en) 1996-08-21

Family

ID=14810266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62121401A Expired - Lifetime JP2525807B2 (en) 1987-05-20 1987-05-20 Method for measuring contamination index of water filtered by membrane filter

Country Status (1)

Country Link
JP (1) JP2525807B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154648A (en) * 2011-01-21 2012-08-16 Nomura Micro Sci Co Ltd Method and apparatus for measuring number of microparticle in ultrapure water
JP2016159240A (en) * 2015-03-03 2016-09-05 水ing株式会社 Membrane clogging degree evaluation method of water to be treated

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106248550A (en) * 2016-08-09 2016-12-21 哈尔滨工业大学 Base joint grouting glue water creep appearance and method based on this base joint grouting glue water creep appearance test base joint grouting glue sealing property

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154648A (en) * 2011-01-21 2012-08-16 Nomura Micro Sci Co Ltd Method and apparatus for measuring number of microparticle in ultrapure water
JP2016159240A (en) * 2015-03-03 2016-09-05 水ing株式会社 Membrane clogging degree evaluation method of water to be treated

Also Published As

Publication number Publication date
JP2525807B2 (en) 1996-08-21

Similar Documents

Publication Publication Date Title
EP2319612B1 (en) Method for testing membrane separation modules
Boerlag et al. Prediction of flux decline in membrane systems due to particulate fouling
Choi et al. A systematic approach to determine the fouling index for a RO/NF membrane process
Alhadidi et al. Effect of testing conditions and filtration mechanisms on SDI
US20100319441A1 (en) Water Quality Assessment Sensor, Water Quality Assessment Method for Feed Water Using Water Quality Assessment Sensor, and Operation Management Method for Water Treatment Facility
Bodzek et al. Comparison of various membrane types and module configurations in the treatment of natural water by means of low-pressure membrane methods
Howe et al. Effect of membrane configuration on bench-scale MF and UF fouling experiments
Kim et al. A two-fiber, bench-scale test of ultrafiltration (UF) for investigation of fouling rate and characteristics
JP2012196590A (en) Filtration membrane, cleaning means of filtration membrane, and selection method of pretreat means
JPS63286749A (en) Method for measuring contamination index of membrane filter device
CN112752604B (en) Method for inspecting separation membrane module
JP5863176B2 (en) Method for evaluating water to be treated, membrane treatment apparatus, water treatment plant, and operation method thereof
TWI409448B (en) Process for measurements of concentration of dissolved organic nitrogen (don) with low concentration in water
JPH049117B2 (en)
EP3056259B1 (en) Device for measuring membrane fouling index
Nahrstedt et al. New insights into silt density index and modified fouling index measurements
CN215311499U (en) Testing device and system for compatibility of water treatment medicament and filtering membrane
JPS60183018A (en) Specimen water filtering apparatus for water quality measuring instrument
JP4517615B2 (en) Evaluation method and apparatus for reverse osmosis membrane feed water and operation management method for water treatment apparatus
JPH11165046A (en) Defect detecting method of hollow fiber membrane module
JP3690818B2 (en) Membrane separator
CN219050918U (en) Dead-end filtration membrane reaction unit
Boerlage et al. Monitoring particulate fouling in membrane systems
JPH0615271A (en) Filter device for waterworks by permeating membrane
EP2998014A1 (en) Point-of-use water purifier with polysulfone hollow fibres

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term