JPS63286578A - Device for producing thin film - Google Patents

Device for producing thin film

Info

Publication number
JPS63286578A
JPS63286578A JP12018687A JP12018687A JPS63286578A JP S63286578 A JPS63286578 A JP S63286578A JP 12018687 A JP12018687 A JP 12018687A JP 12018687 A JP12018687 A JP 12018687A JP S63286578 A JPS63286578 A JP S63286578A
Authority
JP
Japan
Prior art keywords
thin film
electrode
window
substrate
light introduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12018687A
Other languages
Japanese (ja)
Inventor
Makoto Shimoda
誠 下田
Hiroshi Miyadera
博 宮寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12018687A priority Critical patent/JPS63286578A/en
Publication of JPS63286578A publication Critical patent/JPS63286578A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the clouding of the light introducing window of a vacuum vessel and to effectively carry out a light excited reaction by impressing voltage on an electrode placed in front of the window so as to form an electric field and to stick produced fine particles to the electrode and the inner wall of the vessel. CONSTITUTION:In a device for producing a thin film by a light excited reaction, excitation light 30 enters the vacuum vessel 1 through the light introducing window 3 and passes over a substrate 2 held on a support stand 4. At this time, gaseous starting material introduced into the vessel 1 is excited and deposits on the window 31, etc., as fine particles and radicals. In order to prevent the clouding of the window 31 and to increase the rate of deposition of a thin film, a clouding preventing electrode 32 insulated from the vessel 1 with an insulator 21 is placed on the inside of the window 31 and connected to a power source 33 and voltage is impressed on the electrode 32 to such a degree that glow discharge is not caused. An ununiform electric field is formed between the inner wall of the vessel 1 and the electrode 32, so fine particles, etc., produced by a light excited reaction can be stuck to the electrode 32 or the inner wall of the vessel 1 and captured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は薄膜製造装置に係り、特に光励起反応を利用し
た薄膜製造装置の光導入窓曇りを防止するに好適な薄膜
製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film manufacturing apparatus, and more particularly to a thin film manufacturing apparatus suitable for preventing fogging of a light introduction window of a thin film manufacturing apparatus that utilizes a photoexcitation reaction.

〔従来の技術〕[Conventional technology]

従来の光励起反応を利用した薄膜製造装置では、光導入
窓の曇り防止対策が最重要課題のひとつとなっている。
One of the most important issues in conventional thin film manufacturing equipment that utilizes photoexcitation reactions is to prevent fogging of the light introduction window.

その対策としては、非揮発性の物質を薄く窓に塗布して
ガスの吸着を抑制する方法や第2図に示すように、光を
吸収しないガスを吹き付ける方法が最も一般的である。
The most common countermeasures include applying a thin layer of nonvolatile material to the window to suppress gas adsorption, and spraying a gas that does not absorb light as shown in Figure 2.

第2図で真空槽1内には基板2が保持され、原料ガスは
原料ガスボンベ3から供給される。基板2を保持してい
る基板保持台4には基板を一定の温度に昇温する過熱機
構が内蔵されている。他の原料ガスは原料ガス供給口5
から供給される。光励起反応用の励起光は水銀ランプ6
から真空槽1内に供給され、原料ガスは活性化され、そ
の一部は基板上に堆積する。このとき、光導入窓31に
この活性化された原料ガスや励起反応に伴い発生した微
粒子が付着堆積しないように不活性ガス、例えば、アル
ゴン、ヘリウムおよび窒素などが導入口8から供給され
ており、真空槽内壁に沿うように流し込むと、この保護
ガス(矢印9)は、内壁に沿いながら排出ロアへ向かい
、排出される。しかし、この方法では光導入窓への堆積
を防止するには、多量の不活性ガスを導入する必要があ
り、反応圧力が高くなる欠点がある。他の方法として、
特開昭60.−52013では光導入窓にエツチングガ
スを吹き付けて窓に析出した膜を除去する方法、特開昭
60−52014では光導入窓の内側に移動可能な窓を
設け、真空槽内に設けた洗浄真空槽内で除去する方法お
よび特公昭60−6540では、光導入窓内側に透明フ
ィルムを移動可能に設けて順次新しい面を出すことで窓
への析出を防ぐ方法などが開示されている。
In FIG. 2, a substrate 2 is held in a vacuum chamber 1, and source gas is supplied from a source gas cylinder 3. The substrate holder 4 that holds the substrate 2 has a built-in heating mechanism that raises the temperature of the substrate to a constant temperature. For other source gases, source gas supply port 5
Supplied from. The excitation light for the photoexcitation reaction is a mercury lamp 6.
The raw material gas is supplied into the vacuum chamber 1, activated, and a part of it is deposited on the substrate. At this time, an inert gas such as argon, helium, nitrogen, etc. is supplied from the inlet 8 to prevent the activated raw material gas and fine particles generated due to the excited reaction from adhering and depositing on the light introduction window 31. When the protective gas (arrow 9) is poured along the inner wall of the vacuum chamber, the protective gas (arrow 9) moves along the inner wall toward the discharge lower and is discharged. However, this method has the disadvantage that it is necessary to introduce a large amount of inert gas in order to prevent deposition on the light introduction window, which increases the reaction pressure. As another method,
Japanese Patent Application Publication 1986. -52013 discloses a method of spraying etching gas onto the light introduction window to remove a film deposited on the window, and JP-A-60-52014 discloses a method in which a movable window is provided inside the light introduction window and a cleaning vacuum is installed in a vacuum chamber. Japanese Patent Publication No. 60-6540 discloses a method of removing the particles in a tank, and a method of preventing precipitation on the window by movably disposing a transparent film inside the light introduction window and sequentially exposing new surfaces.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

光励起反応は半導体素子の高集積化に伴い不純物が少な
い真空中で行なうことが多くなって来ていることを考え
ると、上記従来技術では、いずれも不純物を発生させる
原因になったり、真空度を低下させる原因になるという
欠点がある。
Considering that photoexcitation reactions are increasingly being carried out in vacuum with few impurities as semiconductor devices become more highly integrated, the above conventional techniques may cause impurities to be generated or reduce the degree of vacuum. It has the disadvantage of causing a decrease in

また、薄膜製造装置に電極を設けて、不純物を除去しよ
うとする方法として、特開昭61−200865に記載
されているように、基板を試料台に導入する系および試
料台を設けた試料室の真空槽の内面に電極板を設け、電
極板に直流高電圧を印加して真空槽内に浮遊する塵を補
集してウェハー上への塵の付着を防ぐことがある。この
例を第3図に示す。試料の基板2を試料導入室13の試
料導入台14上に載せた後予備排気を行ない、次いでこ
れを試料室17内部の試料ステージ16に装着する。成
料室17は安価な鉄で形成し、真空内面に接して厚さ1
龍程度のパーマロイ電極板20を張設しである。そこで
、この電極板20を絶縁碍子21で接地電位から絶縁し
、高電圧導入端子から例えばプラス数kVの直流電圧を
印加する。これにより電極板20は接地電位に対して高
電位となり、試料室17内の基板2近傍に浮遊するマイ
ナス電荷を持ったゴミは電極板20に付着する。このよ
うにして、微粒子は除去されることになる。しかし、こ
の公知例では、微粒子が持つ電荷をマイナスだけに限定
しており、実際にはどちらの電荷を持つことになるかは
その反応時の条件により異なるので、この公知例ですべ
ての微粒子を除去出来るとは限らず、しかも、この公知
例では光励起反応に伴う光導入窓の曇り防止には触れて
いない。
In addition, as a method for removing impurities by installing electrodes in a thin film manufacturing apparatus, as described in Japanese Patent Laid-Open No. 61-200865, there is a system for introducing a substrate into a sample stage and a sample chamber equipped with a sample stage. An electrode plate is provided on the inner surface of the vacuum chamber, and a DC high voltage is applied to the electrode plate to collect dust floating in the vacuum chamber and prevent the dust from adhering to the wafer. An example of this is shown in FIG. After the sample substrate 2 is placed on the sample introduction stage 14 of the sample introduction chamber 13, preliminary evacuation is performed, and then it is mounted on the sample stage 16 inside the sample chamber 17. The material chamber 17 is made of inexpensive iron and has a thickness of 1 mm in contact with the vacuum inner surface.
A dragon-sized permalloy electrode plate 20 is stretched. Therefore, this electrode plate 20 is insulated from the ground potential by an insulator 21, and a DC voltage of, for example, plus several kV is applied from a high voltage introduction terminal. As a result, the electrode plate 20 has a high potential with respect to the ground potential, and the negatively charged dust floating near the substrate 2 in the sample chamber 17 adheres to the electrode plate 20. In this way, particulates will be removed. However, in this known example, the charge that the fine particles have is limited to only negative ones, and which charge they actually have depends on the conditions during the reaction, so this known example limits the charge that the fine particles have to only negative ones. Moreover, this known example does not mention the prevention of fogging of the light introduction window due to the photoexcitation reaction.

本発明の目的は、光励起反応を用いた薄膜製造装置に於
いて、光導入窓の曇りを防止した薄膜製造装置を提供す
ることにある。
An object of the present invention is to provide a thin film manufacturing apparatus using a photoexcitation reaction in which fogging of a light introduction window is prevented.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、光導入窓の前面に電圧を印加した電極を設
けて、電界を形成することにより、光励起反応により、
発生した微粒子を電極や真空槽の内壁に付着させること
により、達成される。
The above purpose is achieved by providing an electrode to which a voltage is applied in front of the light introduction window and forming an electric field, thereby causing a photoexcitation reaction.
This is achieved by attaching the generated fine particles to the electrodes or the inner wall of the vacuum chamber.

さらに、前記電極をパージ用のガスを流すことのできる
中空の電極兼ガスパイプとすることにより、前記微粒子
の除去以外にラジカルによる光導入窓の曇を防止できる
ようにしたり、或いは、前記電極を棒状で、かつ、前記
保持台上の基板が電界中になるように配置された構成と
することにより、前記微粒子の除去以外にラジカルによ
る光導入窓の曇を防止できるとともに、薄膜の堆積速度
を向上させるようにして、上記目的を一層良好に達成し
、さらに、付加的効果を期待することができる。
Furthermore, by making the electrode a hollow electrode and gas pipe through which a purge gas can flow, it is possible to prevent the light introduction window from fogging due to radicals in addition to removing the fine particles, or to make the electrode into a rod shape. In addition, by arranging the substrate on the holding table in an electric field, in addition to removing the fine particles, it is possible to prevent the light introduction window from fogging due to radicals, and to improve the deposition rate of the thin film. By doing so, the above objectives can be achieved even better, and additional effects can be expected.

〔作 用〕[For production]

本発明の光導入窓の内側に前記真空槽と電気的に絶縁さ
れた電極、及び、これを電圧を印加するだめの電源を設
けた構成に対応する作用を第4図に示す模式図に基づい
て説明する。この模式図は光励起反応装置の光導入窓お
よび窓曇り防止部分を拡大した図である。励起光30は
光導入窓31を透過して基板保持台4に保持された基板
2上を通過する。このとき、真空槽内に導入されている
原料ガスは励起され、微粒子やラジカルとなる。この微
粒子の一部は基板上に付着堆積して薄膜を形成するが、
大部分は周囲の真空槽内壁や光導入窓へ付着堆積する。
The operation corresponding to the structure in which an electrode electrically insulated from the vacuum chamber and a power source for applying voltage to the electrode are provided inside the light introducing window of the present invention is based on the schematic diagram shown in FIG. 4. I will explain. This schematic diagram is an enlarged view of the light introduction window and the window fog prevention portion of the photoexcitation reaction device. The excitation light 30 is transmitted through the light introduction window 31 and passes over the substrate 2 held on the substrate holder 4 . At this time, the raw material gas introduced into the vacuum chamber is excited and becomes fine particles and radicals. Some of these fine particles adhere and deposit on the substrate to form a thin film,
Most of it adheres and deposits on the surrounding inner walls of the vacuum chamber and the light introduction window.

しかし、絶縁碍子21で真空槽1と電気的に絶縁された
窓曇り防止電極32に電源33から供給されたグロー放
電を発生しない程度の電圧を印加すると、真空槽1の内
壁と前記窓曇り防止電極32の間に不平等電界を形成し
、光励起反応にともない発生した微粒子がこの不平等電
界内にはいると、電荷を持った微粒子であればクーロン
力により、前記窓曇り防止電極32かあるいは真空槽内
壁に付着補集される。また(電荷を持たない微粒子であ
れば、グラディエント力により、前記窓曇り防止電極3
2に補集される。
However, when a voltage supplied from the power source 33 that does not generate glow discharge is applied to the window fog prevention electrode 32 which is electrically insulated from the vacuum chamber 1 by the insulator 21, the inner wall of the vacuum chamber 1 and the window fog prevention electrode 32 are electrically insulated from the vacuum chamber 1. An unequal electric field is formed between the electrodes 32, and when fine particles generated due to a photoexcitation reaction enter this unequal electric field, if the fine particles have an electric charge, they will be blown away by the window fogging prevention electrode 32 or It is collected on the inner wall of the vacuum chamber. In addition, (if it is a fine particle that does not have an electric charge, the window fog prevention electrode 3
Collected in 2.

このとき光励起反応で生成した微粒子の挙動をHe−N
eシートレーザによる可視化により観察すると、電極に
電圧を印加しない場合には、光励起反応で発生した微粒
子はガスの流れに乗って移動する。この状態に電圧を印
加すると、前記微粒子はガスの流れから分離されて電極
方向へ移動することがわかる。
At this time, the behavior of the fine particles generated by the photoexcitation reaction was determined by He-N
When observed through visualization using an e-sheet laser, when no voltage is applied to the electrodes, the particles generated by the photoexcitation reaction move along with the gas flow. It can be seen that when a voltage is applied in this state, the fine particles are separated from the gas flow and move toward the electrode.

このようにして、光励起反応によって、発生した微粒子
は前記窓曇り防止電極32かあるいは真空槽1内壁に付
着堆積するので、前記光導入窓31に付着堆積すること
が抑制できる。
In this manner, the generated fine particles are deposited on the window fog prevention electrode 32 or the inner wall of the vacuum chamber 1 due to the photoexcitation reaction, so that deposition on the light introduction window 31 can be suppressed.

また、本発明において、前記電極を内部にパージ用のガ
スを流すための中空部材で構成された電極兼ガスパイプ
とした場合は、光励起反応によって発生した微粒子のみ
ではなく、その際に発生したラジカルによる光導入窓の
曇も抑制できる。
In addition, in the present invention, when the electrode is an electrode-cum-gas pipe composed of a hollow member for flowing purge gas inside, it is possible to eliminate not only the fine particles generated by the photoexcitation reaction but also the radicals generated at that time. It is also possible to suppress fogging of the light introducing window.

さらに、本発明において、前記電極を前記基板保持台の
上部に位置し、前記保持台上の基板が電界中になるよう
に配置された棒状電極前記電極とした場合は、上記の場
合と同様にラジカルによる光導入窓の曇も抑制できるの
みでなく、薄膜の堆積速度が向上する。
Furthermore, in the present invention, when the electrode is a rod-shaped electrode located above the substrate holding stand and arranged so that the substrate on the holding stand is in an electric field, the same as in the above case is applied. Not only can fogging of the light introduction window caused by radicals be suppressed, but also the deposition rate of the thin film can be improved.

〔実施例〕〔Example〕

以下本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

真空槽1内には基板2の温度を一定値に昇温するための
加熱機構29を内蔵した基板保持台4が設けられている
。原料ガスは原料ボンベ22を浴槽23で所定の温度に
制御することにより、あるいはガス状の原料ガスは直接
マスフローコントローラー24で所定のガス量をガス供
給ノズル25から、真空槽1内に供給される。励起光3
0は励起光源26から投射され、レンズ34で集光され
て、光導入窓31を透過して真空槽1内に導入される。
Inside the vacuum chamber 1, there is provided a substrate holding table 4 having a built-in heating mechanism 29 for raising the temperature of the substrate 2 to a constant value. The raw material gas is supplied into the vacuum chamber 1 by controlling the raw material cylinder 22 to a predetermined temperature in the bathtub 23, or by directly controlling the gaseous raw material gas to a predetermined amount by the mass flow controller 24 from the gas supply nozzle 25. . Excitation light 3
0 is projected from the excitation light source 26, focused by the lens 34, transmitted through the light introduction window 31, and introduced into the vacuum chamber 1.

この励起光30は真空槽1内に導入された原料ガスを励
起して、微粒子やラジカルを発生させる。これらが所定
の温度に昇温した基板2上に堆積して薄膜を形成する。
This excitation light 30 excites the raw material gas introduced into the vacuum chamber 1 and generates fine particles and radicals. These are deposited on the substrate 2 heated to a predetermined temperature to form a thin film.

そのときの薄膜の厚さは膜厚測定端子27によって測定
され、その信号は膜厚制御器28で解析され、所定の厚
さになるように制御される。光励起反応時の反応圧は排
気装置40と供給される原料ガスの供給量とで制御され
ると同時に、基板2および真空槽1内壁に付着堆積しな
かった微粒子および反応に関与しなかった原料ガスは排
気装置40で真空槽1外へ排気され、有害成分は無害化
処理装置を経て排出される。真空槽l内の光導入窓31
前面に設けられた窓曇り防止電極32には、電源33か
ら真空槽1と電気的に絶縁するために設けられた絶縁碍
子21を経て電圧が印加されている。
The thickness of the thin film at that time is measured by the film thickness measuring terminal 27, and the signal thereof is analyzed by the film thickness controller 28 and controlled to have a predetermined thickness. The reaction pressure during the photoexcitation reaction is controlled by the exhaust device 40 and the amount of raw material gas supplied, and at the same time, the particulates that did not adhere to and accumulate on the substrate 2 and the inner wall of the vacuum chamber 1 and the raw material gas that did not participate in the reaction are removed. is exhausted to the outside of the vacuum chamber 1 by an exhaust device 40, and harmful components are discharged through a detoxification treatment device. Light introduction window 31 in vacuum chamber l
A voltage is applied to the window fog prevention electrode 32 provided on the front surface from a power source 33 via an insulator 21 provided for electrical insulation from the vacuum chamber 1.

原料ガスとして、11.5℃の浴槽につけた容器に入っ
た鉄カルボニル(Fe(Co) s)をヘリウムキャリ
ヤーでIOCCM流し、反応圧をI Torrとし、レ
ーザ光としてアルゴンフッ素(Arc)  レーザ光(
193nm)を用い、照射時間は8分間として実験した
As a raw material gas, iron carbonyl (Fe(Co)s) in a container placed in a bath at 11.5°C was flowed through IOCCM with a helium carrier, the reaction pressure was set to I Torr, and argon fluorine (Arc) laser light (
193 nm), and the irradiation time was 8 minutes.

(実施例1) 光導入窓曇り防止電極としては銅製の端部を丸めた1鶴
角の電極を20鶴間隔で平行にかつ、レーザ光と平行に
設置した。電極に電圧を印加しない場合の光の透過度は
初期に比べて10%にまで低下したが、電極に+300
vを印加した場合には50%までにしか低下しなかった
。しかし、これでは十分な効果を上げることはできなか
った。そこで、このときの電極を取りだして詳細に観察
すると、電界が集中している曲率半径が小さい電極表面
上に鉄の微粒子と考えられる黒い着色が見られ、不平等
電界の部分に微粒子が付着することが確認できた。
(Example 1) As the anti-fogging electrode for the light introduction window, copper electrodes each having a square shape with rounded ends were installed parallel to each other at intervals of 20 squares and parallel to the laser beam. The light transmittance when no voltage was applied to the electrode decreased to 10% compared to the initial value, but when
When v was applied, it decreased only to 50%. However, this was not able to achieve a sufficient effect. Therefore, when we take out the electrode at this time and observe it in detail, we see black coloring, which is thought to be fine iron particles, on the electrode surface where the radius of curvature is small and where the electric field is concentrated, and the fine particles adhere to the areas where the electric field is uneven. This was confirmed.

そこで、次に、この不平等電界を形成する電極としてよ
り効率的な構成を見出すべく実験した。
Next, we conducted experiments to find a more efficient configuration for the electrodes that form this unequal electric field.

(実施例2) 不平等電界の例として、同軸円筒系を採用し、φ1.6
の5US316製の棒の先端が光導入部(φ40)の中
心にくるように設置した。この電極に実施例1と同様に
+300vを印加した場合には光の透過度は80%であ
り、初期から20%しか低下しないことがわかった。こ
の時の光導入窓の曇り状態を電極に電圧を印加しない場
合と比較した。すると、電圧を印加しない場合には酸化
鉄と考えられる茶褐色の付着が著しく光が透過し難い状
態になっているの′が観察されるのに対して、電圧を印
加した場合には着色が極めて少なく十分光が透過する状
態にあることがわかり、窓の曇り状態が著しく改善され
ていることが明らかとなった。すなわち、本実施例によ
れば、反応圧を下げることなく、電圧を印加することで
反応時間を5倍に延長できる効果がある。
(Example 2) As an example of an unequal electric field, a coaxial cylindrical system is adopted, and φ1.6
A rod made of 5US316 was installed so that the tip of the rod was located at the center of the light introduction part (φ40). It was found that when +300V was applied to this electrode as in Example 1, the light transmittance was 80%, which was a decrease of only 20% from the initial level. The cloudy state of the light introduction window at this time was compared with the case where no voltage was applied to the electrodes. When no voltage was applied, it was observed that the brown deposits, thought to be iron oxide, were extremely difficult for light to pass through, whereas when a voltage was applied, the coloring was extremely difficult. It was found that the window was in a state where sufficient light was transmitted, and it became clear that the fogging condition of the window had been significantly improved. That is, according to this example, the reaction time can be extended five times by applying a voltage without lowering the reaction pressure.

(実施例3) 実施例2の条件で印加電圧の極性をマイナスに変えて、
電圧極性の影響を検討した。その結果、光の透過度はプ
ラスを印加した場合と同様に初期から20%しか低下し
なかった。したがって、本実施例によれば、印加電圧の
極性に関わりなく、反応時間を延長できる効果がある。
(Example 3) Under the conditions of Example 2, the polarity of the applied voltage was changed to negative,
The influence of voltage polarity was investigated. As a result, the light transmittance decreased by only 20% from the initial level, similar to when a positive voltage was applied. Therefore, according to this embodiment, the reaction time can be extended regardless of the polarity of the applied voltage.

(実施例4) 次に、印加電圧を更に上昇して、光導入窓前面でだけプ
ラズマが発生する条件、すなわち、印加電圧を一850
vとして実験した。この場合の光の透過度は初期に比べ
てわずか5%しか低下せず、この条件では反応時間を2
0倍に延長でき、効果が大きいことがわかった。このと
き、目視でプラズマの状態を観察すると、光導入窓前面
だけでしか観察できなかった。したがって、他の部分へ
の影響は小さいと確認できた。このときの光導入窓の曇
り状態を電圧を印加しない場合と比較すると、電圧を印
加した場合には光導入窓31への酸化鉄と考えられる着
色が少なくなり、窓の曇り状態が著しく改善されている
ことが明らかとなった。本実施例によれば、反応時間を
20倍に延長できる効果がある。
(Example 4) Next, the applied voltage was further increased to create a condition where plasma is generated only in front of the light introduction window, that is, the applied voltage was increased to -850.
The experiment was conducted as v. The light transmittance in this case is only 5% lower than the initial value, and under these conditions the reaction time is 2.
It was found that the effect could be extended to 0 times, and the effect was great. At this time, when visually observing the state of the plasma, it could only be observed in front of the light introduction window. Therefore, it was confirmed that the influence on other parts was small. Comparing the fogging state of the light introduction window at this time with the case where no voltage is applied, when the voltage is applied, the coloring that is thought to be iron oxide on the light introduction window 31 is reduced, and the fogging state of the window is significantly improved. It became clear that According to this example, there is an effect that the reaction time can be extended by 20 times.

(実施例5) 前記実施例では窓曇り防止電極32は電圧を印加するだ
けであったが、本実施例では、前記窓曇り防止電極32
を棒に変えて中空とすることにより、この電極をアルゴ
ン、ヘリウム、窒素ガスなどの不活性ガスを導入する不
活性ガスパイプを兼ねる構成とする。この場合には第5
図に示した前記窓曇り防止電極32の先端部は開口部に
なっており、この部分から前記不活性ガスが導入される
ようになっている。ただし、この先端部分が開口部にな
っていなくても光導入窓31の近傍へ導入されるような
構造になっていれば本発明の意図するところと等しいこ
とはいうまでもない。
(Example 5) In the above embodiment, the window fog prevention electrode 32 only applied a voltage, but in this embodiment, the window fog prevention electrode 32
By changing the electrode to a rod and making it hollow, the electrode can be configured to double as an inert gas pipe for introducing an inert gas such as argon, helium, or nitrogen gas. In this case, the fifth
The tip of the window fog prevention electrode 32 shown in the figure is an opening, through which the inert gas is introduced. However, it goes without saying that even if this tip portion is not an opening, as long as the structure is such that the light is introduced into the vicinity of the light introduction window 31, the purpose of the present invention is achieved.

本実施例によれば、本発明の主目的である光励起反応で
発生した微粒子の除去だけでなく、その際に発生したラ
ジカルによる光導入窓31の曇り防止に効果が有ること
はいうまでもない。
It goes without saying that this embodiment is effective not only in removing fine particles generated in the photoexcitation reaction, which is the main purpose of the present invention, but also in preventing fogging of the light introduction window 31 caused by radicals generated at that time. .

特に、弗素、塩素系のガスを用いた場合には、エツチン
グが行われるために、光導入窓の曇り防止に一層効果的
であることは言うまでもない。
In particular, when a fluorine or chlorine gas is used, etching is performed, and it goes without saying that this is more effective in preventing fogging of the light introducing window.

(実施例6) 本発明のさらに他の実施例を第7図の写真に示す。この
図が第1図と異なるのは窓曇り防止電極32を備えた棒
を基板保持台4の上部に設置し、保持台上の基板2が電
界中になるように構成したことである。このような構成
において、反応圧力を30Torrとし、基板温度を5
0℃、印加電圧を一350vとして、実験したところ窓
の曇り防止効果は前記実施例と同様であったが、第7図
の写真に示すように、電圧を印加しない場合(a)に比
較して印加した場合(b)には表面状態が大きく変化し
、堆積物の粒子径が太き(なっており、粒子が成長して
いることがわかる。すなわち、基板3上に堆積した薄膜
の堆積速度が約10倍に向上することがわかった。
(Example 6) Still another example of the present invention is shown in the photograph of FIG. This figure differs from FIG. 1 in that a rod equipped with a window fog prevention electrode 32 is installed on the top of the substrate holder 4, so that the substrate 2 on the holder is placed in an electric field. In this configuration, the reaction pressure was 30 Torr and the substrate temperature was 5 Torr.
An experiment was conducted at 0°C and the applied voltage was -350V, and the anti-fogging effect on the window was the same as in the previous example, but as shown in the photograph in Figure 7, compared to (a) when no voltage was applied. In case (b), the surface condition changes significantly and the particle size of the deposit becomes thicker, indicating that the particles are growing. In other words, the thin film deposited on the substrate 3 It was found that the speed was improved by about 10 times.

本実施例によれば、薄膜の堆積速度を向上させるという
効果がある。
According to this embodiment, there is an effect of improving the deposition rate of the thin film.

もちろん、この場合に第6図に示したように前記窓曇り
防止電極32にパイプをもちい、このパイプに原料ガス
を導入する配管を接続し、かつ、このパイプの基板2上
に位置する部分に原料ガス供給用の穴をあけ、前記電極
が原料ガスを供給する原料ガスノズルを兼ねる構成とす
ると、本実施例と同様な効果を生ずることはいうまでも
ない。
Of course, in this case, as shown in FIG. Needless to say, if a hole is made for supplying the raw material gas and the electrode is configured to also serve as a raw material gas nozzle for supplying the raw material gas, the same effects as in this embodiment can be produced.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電界の効果により、光励起反応により
発生した微粒子やラジカルを除去できるので、光導入窓
の曇りを防止でき、光励起反応を効果的に実施できると
いう効果があり、さらに、棒状電極を基板が電界中にな
るように配置することにより、薄膜の堆積速度を向上さ
せ得る効果もある。
According to the present invention, fine particles and radicals generated by a photoexcitation reaction can be removed by the effect of an electric field, so that fogging of the light introduction window can be prevented and the photoexcitation reaction can be carried out effectively.Furthermore, the rod-shaped electrode By arranging the substrate so that it is in an electric field, there is also the effect of increasing the deposition rate of the thin film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図、第2.3図は従来
例の構成図、第4図は本発明の主要部分の模式図、第5
.6図は本発明の他の実施例の構成図、第7図は電圧印
加の有無による薄膜堆積物の粒子構造を示す写真である
。 1・・・真空槽、2・・・基板、3・・・原料ガスボン
ベ、4・・・基板保持台、9・・・不活性ガス、21・
・・碍子、25・・・ガス供給ノズル、30・・・励起
光、31・・・光導入窓、32・・・曇り防止電極、3
2′・・・曇り防止電極兼不活性ガスパイプ、32″・
・・曇り防止電極兼原料ガスノズル、33・・・電源。
Fig. 1 is a block diagram of an embodiment of the present invention, Figs. 2 and 3 are block diagrams of a conventional example, Fig. 4 is a schematic diagram of the main parts of the present invention, and Fig. 5 is a block diagram of an embodiment of the present invention.
.. FIG. 6 is a block diagram of another embodiment of the present invention, and FIG. 7 is a photograph showing the grain structure of a thin film deposit with and without voltage application. DESCRIPTION OF SYMBOLS 1... Vacuum chamber, 2... Substrate, 3... Raw material gas cylinder, 4... Substrate holding stand, 9... Inert gas, 21...
... Insulator, 25 ... Gas supply nozzle, 30 ... Excitation light, 31 ... Light introduction window, 32 ... Anti-fog electrode, 3
2′... Anti-fog electrode and inert gas pipe, 32″・
...Anti-fogging electrode and raw material gas nozzle, 33...Power source.

Claims (1)

【特許請求の範囲】 1、原料ガスを供給するノズルと、基板をある一定温度
まで昇温可能な基板保持台、光導入窓および、これらを
少なくとも5×10^−^3Torr以下の真空度まで
排気可能な真空槽を少なくとも構成要素とする薄膜製造
装置に於いて、前記光導入窓の内側に前記真空槽と電気
的に絶縁された電極、及び、これに電圧を印加するため
の電源を設けたことを特徴とする薄膜製造装置。 2、電極が、端部を丸めた複数個の電極を光導入窓の内
側近傍に、かつ、光導入窓から導入される光線と平行に
所定間隔で配置されたものであることを特徴とする特許
請求の範囲第1項記載の薄膜製造装置。 3、原料ガスを供給するノズルと、基板をある一定温度
まで昇温可能な基板保持台、光導入窓および、これらを
少なくとも5×10^−^3Torr以下の真空度まで
排気可能な真空槽を少なくとも構成要素とする薄膜製造
装置に於いて、前記光導入窓の内側に前記真空槽と電気
的に絶縁され、かつ、内部にパージ用のガスを流すため
の中空部材で構成された電極兼ガスパイプ、及び、これ
に電圧を印加するための電源を設けたことを特徴とする
薄膜製造装置。 4、電極兼ガスパイプが、基板と平行に設置されその両
端が、光導入窓の近傍において開口していることを特徴
とする特許請求の範囲第3項記載の薄膜製造装置。 5、パージ用のガスが窒素、アルゴンなどの不活性ガス
であり、前記電極兼ガスパイプが、光導入窓の全面でグ
ロー放電が発生する領域になるように配置されているこ
とを特徴とする特許請求の範囲第3項又は第4項記載の
薄膜製造装置。 6、原料ガスを供給するノズルと、基板をある一定温度
まで昇温可能な基板保持台、光導入窓および、これらを
少なくとも5×10^−^3Torr以下の真空度まで
排気可能な真空槽を少なくとも構成要素とする薄膜製造
装置に於いて、前記光導入窓の内側に前記真空槽と電気
的に絶縁され、かつ、前記基板保持台の上部に位置し、
前記保持台上の基板が電界中になるように配置された棒
状電極、及び、これに電圧を印加するための電源を設け
たことを特徴とする薄膜製造装置。 7、棒状電極が原料ガスを供給するための空洞を有し端
部が閉塞され、かつ、前記真空槽内の基板に面した部分
に穴が穿設された構成であることを特徴とする特許請求
の範囲第6項記載の薄膜製造装置。
[Claims] 1. A nozzle for supplying raw material gas, a substrate holding table capable of heating the substrate to a certain temperature, a light introduction window, and a vacuum level of at least 5×10^-^3 Torr or less. In a thin film manufacturing apparatus having at least an evacuable vacuum chamber as a component, an electrode electrically insulated from the vacuum chamber and a power source for applying voltage thereto are provided inside the light introduction window. A thin film manufacturing device characterized by: 2. The electrodes are characterized in that a plurality of electrodes with rounded ends are arranged near the inside of the light introduction window and at predetermined intervals in parallel to the light beam introduced from the light introduction window. A thin film manufacturing apparatus according to claim 1. 3. A nozzle for supplying raw material gas, a substrate holder that can heat the substrate to a certain temperature, a light introduction window, and a vacuum chamber that can evacuate these to a vacuum level of at least 5 x 10^-^3 Torr or less. In the thin film manufacturing apparatus serving as at least a component, an electrode/gas pipe is provided inside the light introduction window and is electrically insulated from the vacuum chamber, and is configured with a hollow member for flowing a purge gas inside. 1. A thin film manufacturing apparatus comprising: and a power source for applying voltage thereto. 4. The thin film manufacturing apparatus according to claim 3, wherein the electrode/gas pipe is installed parallel to the substrate and both ends thereof are open in the vicinity of the light introducing window. 5. A patent characterized in that the purge gas is an inert gas such as nitrogen or argon, and the electrode/gas pipe is arranged so that the entire surface of the light introduction window is an area where glow discharge occurs. A thin film manufacturing apparatus according to claim 3 or 4. 6. A nozzle for supplying raw material gas, a substrate holder that can heat the substrate to a certain temperature, a light introduction window, and a vacuum chamber that can evacuate these to a vacuum level of at least 5 x 10^-^3 Torr or less. In the thin film manufacturing apparatus which is at least a component, the light introduction window is electrically insulated from the vacuum chamber and located above the substrate holding table;
A thin film manufacturing apparatus comprising: a rod-shaped electrode disposed so that the substrate on the holding table is placed in an electric field; and a power source for applying a voltage to the rod-shaped electrode. 7. A patent characterized in that the rod-shaped electrode has a cavity for supplying raw material gas, the end thereof is closed, and a hole is bored in the part facing the substrate in the vacuum chamber. A thin film manufacturing apparatus according to claim 6.
JP12018687A 1987-05-19 1987-05-19 Device for producing thin film Pending JPS63286578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12018687A JPS63286578A (en) 1987-05-19 1987-05-19 Device for producing thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12018687A JPS63286578A (en) 1987-05-19 1987-05-19 Device for producing thin film

Publications (1)

Publication Number Publication Date
JPS63286578A true JPS63286578A (en) 1988-11-24

Family

ID=14780039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12018687A Pending JPS63286578A (en) 1987-05-19 1987-05-19 Device for producing thin film

Country Status (1)

Country Link
JP (1) JPS63286578A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5048113A (en) * 1989-02-23 1991-09-10 Ricoh Company, Ltd. Character recognition post-processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5048113A (en) * 1989-02-23 1991-09-10 Ricoh Company, Ltd. Character recognition post-processing method

Similar Documents

Publication Publication Date Title
US20120037182A1 (en) Particle removal apparatus and method and plasma processing apparatus
US8216663B2 (en) Surface-modified member, surface-treating process and apparatus therefor
JPH08139010A (en) Charged beam apparatus with cleaning function and method of cleaning charged beam apparatus
JP6175721B2 (en) Ozone generator and ozone generation method
JP2010103455A (en) Plasma processing apparatus
TW200823977A (en) Plasma doping method and plasma doping apparatus
US11626269B2 (en) Chamber seasoning to improve etch uniformity by reducing chemistry
US7214413B2 (en) Method and device for generating an activated gas curtain for surface treatment
KR20200140393A (en) Generation of hydrogen reactive species for processing of workpieces
US20200075313A1 (en) Oxide Removal From Titanium Nitride Surfaces
JP3516523B2 (en) Plasma processing equipment
EP0458085B1 (en) Plasma CVD apparatus
JP2869384B2 (en) Plasma processing method
JP3639868B2 (en) Method and apparatus for processing fine particle dust in plasma
JPS63286578A (en) Device for producing thin film
JP2006253190A (en) Neutral particle beam processing apparatus and method of neutralizing charge
JPH0322051B2 (en)
JP4902054B2 (en) Sputtering equipment
JPH01283359A (en) Plasma treatment apparatus
JPS62130524A (en) Plasma processing apparatus
JP2006222242A (en) Equipment and method for producing semiconductor
JPH05275350A (en) Semiconductor manufacturing equipment
JP3574373B2 (en) Plasma processing apparatus and plasma processing method
JPH06280027A (en) Plasma treatment method and device
JP2900546B2 (en) Liquid crystal alignment processing equipment