JPS63285864A - Electrode for battery - Google Patents

Electrode for battery

Info

Publication number
JPS63285864A
JPS63285864A JP62120245A JP12024587A JPS63285864A JP S63285864 A JPS63285864 A JP S63285864A JP 62120245 A JP62120245 A JP 62120245A JP 12024587 A JP12024587 A JP 12024587A JP S63285864 A JPS63285864 A JP S63285864A
Authority
JP
Japan
Prior art keywords
battery
electrode
electrolyte
conductor
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62120245A
Other languages
Japanese (ja)
Inventor
Atsushi Shimizu
敦 清水
Kazunori Yamataka
山高 一則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP62120245A priority Critical patent/JPS63285864A/en
Publication of JPS63285864A publication Critical patent/JPS63285864A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the capacity of a battery and moreover to make high rate discharge possible by supporting a composite comprising conductive polymer and anionic polymer electrolyte in a porous conductor. CONSTITUTION:This electrode is prepared by supporting a composite comprising a conductive polymer (A) and an anionic polymer electrolyte (B) in a porous conductor (C). Polypyrrole and others are used as the polymer (A), polystyrene sulfonic acid anion and others as the electrolyte (B), and a felt-shaped molding made of carbon fibers formed by vapor phase deposition as the conductor (C). The composite is supported in the conductor (C) by using the conductor (C) as an anode and electrolyzing an aqueous solution containing monomers of the polymer (A) and the electrolyte (B) as an electrolytic solution to form the electrode. The electrode obtained is used in a battery using a metal such as lithium as the counter electrode.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、新規な硫池用゛成極に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a novel polarization for sulfur ponds.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

従来、正極活物質として導電性高分子を用いた電池とし
て、8hynthetic Metals 、 vol
、/♂、part l 、 2 jり(/977)、に
示される電池が挙げられる。該電池における導電性高分
子はボリビU−ルであり、負極活物質はリチウムである
Conventionally, as a battery using a conductive polymer as a positive electrode active material, 8hynthetic Metals, vol.
, /♂, part l, 2 jri (/977), are listed. The conductive polymer in this battery is Volivil, and the negative electrode active material is lithium.

該ポリピロールは酸化還元により支持゛電解質の陰イオ
ンの取り込み放出を行うので、電池の放電が進行するに
つれて、両極間に支持電解質が蓄積する。該支持電解質
を溶解させるため(二は、多量の有機溶媒が必要となる
。ところが一般に有機溶媒は電解質を溶解する力が弱く
、たとえ溶けても十分な導電性を得られにくい。このた
め重負荷(=耐える電池を得るためには、液層をきわめ
て薄くするなど特別の工夫が必要となり、従って多量の
溶媒を使用できず前記要求とは相反する。以上の理由か
ら、該電池のシステムで軽量で(大容量で)しかも重負
荷(=耐える電池を得ることは困難である。
Since the polypyrrole takes in and releases anions from the supporting electrolyte through redox, the supporting electrolyte accumulates between the two electrodes as the battery discharge progresses. In order to dissolve the supporting electrolyte (second), a large amount of organic solvent is required. However, organic solvents generally have a weak ability to dissolve the electrolyte, and even if they dissolve, it is difficult to obtain sufficient conductivity. (=In order to obtain a durable battery, special measures such as making the liquid layer extremely thin are required, and therefore a large amount of solvent cannot be used, which conflicts with the above requirements.For the above reasons, it is necessary to make the battery system lightweight. It is difficult to obtain a battery that can withstand a large capacity and a heavy load.

本発明者らは、この様な従来技術が持つ問題点を解決す
べく鋭意研究を行った結果、導電性高分子とアニオン性
高分子゛峨解質よりなる複合体が、酸化還元に伴いカチ
オンの放出取込を行う性質に着目し、該複合体を多隙性
導電体(二担持せしめて7次電池あるいは2次′4池の
正極として用いると、放電によって負極活物質より生じ
るカチオンが該複合体中に収り込まれ電解液中に蓄積せ
ず、したがって少量の溶媒で電池を構成でき、しかも該
正極は内部抵抗が低いために大電流が取り出せることを
見い出し、本発明を完成するに至った。
The inventors of the present invention have conducted extensive research to solve the problems of the conventional technology, and have found that a complex consisting of a conductive polymer and an anionic polymer/adduct can undergo cations due to redox. Focusing on the property of releasing and taking in ions, when this composite is used as a positive electrode of a 7th battery or a 2nd battery by supporting a porous conductor (2), the cations generated from the negative electrode active material during discharge are It was discovered that the battery is contained in the composite and does not accumulate in the electrolytic solution, so a battery can be constructed with a small amount of solvent, and that a large current can be extracted because the positive electrode has a low internal resistance, and in completing the present invention. It's arrived.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、多隙性導電体に、導電性高分子とアニオン性
高分子電解質よりなる複合体を担持した構造を特徴とす
る電池用電極である。
The present invention is a battery electrode characterized by a structure in which a porous conductor supports a composite consisting of a conductive polymer and an anionic polymer electrolyte.

本発明において導電性高分子とは、その主鎖がπ共役系
から成りたつことにより導電性を発現する高分子である
。例を挙げると、ポリアセチレン、ポリ(/、乙−へブ
タジイン)、ポリジアセチレン、ポリピロール、ポリマ
ーの繰り返し単位が(R+は水素1京子、アルキル基ま
たはアリール基を表わし、R4はアルキル基またはアリ
ール基を表わす。 R2、R3、RII、 R,、R7
及びR8は水素原子、アルキル基、アリール基、カルボ
キシル基またはスルホン酸基を表わす。)で表わされる
ポリ(ピロール誘導体)、ポリチェニレン、ポリマーの
繰り返し単位が (R9〜RI4は水素原子、アルキル基、アリール基、
カルボキシル基またはスルホン酸基を表わす。)で表わ
されるポリ(チェニレン誘導体)、ポリ(p−フェニレ
ン)、 ボ9 (m−フェニレン)、ポリ(p−フェニ
レンスルフィド)、ポリ(m−フェニレンスルフィト)
、ポリ(p−フェニレンオキシF)1.j?!J(p−
フェニレンビニレン)、ポリアニリン、ポリマーの繰り
返し単位が、(R111−R14は水素原子、アルキル
基、アリール基、カルボキシル基またはスルホン酸基を
表わす。)で表わされるポリ(アニリン誘導体)などが
挙げられる。この中でも特にポリピロール、ポリ(ビロ
ール誘導体)、ポリアニリン、ポリ(アニリン誘導体)
が好ましい。
In the present invention, a conductive polymer is a polymer that exhibits conductivity because its main chain is composed of a π-conjugated system. For example, repeating units of polyacetylene, poly(/, hebutadiyne), polydiacetylene, polypyrrole, and polymers (R+ represents 1 kyoko hydrogen, an alkyl group, or an aryl group, and R4 represents an alkyl group or an aryl group) Represents: R2, R3, RII, R,, R7
and R8 represents a hydrogen atom, an alkyl group, an aryl group, a carboxyl group or a sulfonic acid group. ) Poly(pyrrole derivative), polythenylene, repeating unit of polymer (R9 to RI4 are hydrogen atoms, alkyl groups, aryl groups,
Represents a carboxyl group or a sulfonic acid group. ) poly(chenylene derivative), poly(p-phenylene), bo9(m-phenylene), poly(p-phenylene sulfide), poly(m-phenylene sulfite)
, poly(p-phenyleneoxy F)1. j? ! J(p-
phenylene vinylene), polyaniline, and poly(aniline derivatives) in which the repeating unit of the polymer is represented by (R111 to R14 represent a hydrogen atom, an alkyl group, an aryl group, a carboxyl group, or a sulfonic acid group). Among these, especially polypyrrole, poly(virol derivatives), polyaniline, poly(aniline derivatives)
is preferred.

本発明(二おいてアニオン性高分子電解質とは、イオン
解離により陰イオンとなる高分子である。
In the present invention (2), an anionic polymer electrolyte is a polymer that becomes an anion through ionic dissociation.

例を挙げると、ポリアクリル酸アニオン、ポリメタグリ
ル酸アニオン、ポリスチレンスルホン酸アニオン、ポリ
エチレンスルホン酸アニオン、ポリビニル硫酸アニオン
、ポリ(フルオロカーボンスルホン酸アニオン)等が挙
げられる。この中でも特(=、ポリスチレンスルホン酸
アニオン、ポリエチレンスルホン酸アニオン、ポリビニ
ル硫酸アニオンおよびこれらのポリマーの水素原子がフ
ッ素原子と置換したポリマーが好ましい。
Examples include polyacrylate anion, polymethacrylate anion, polystyrene sulfonate anion, polyethylene sulfonate anion, polyvinyl sulfate anion, poly(fluorocarbon sulfonate anion), and the like. Among these, particularly preferred are polystyrene sulfonate anions, polyethylene sulfonate anions, polyvinyl sulfate anions, and polymers in which the hydrogen atoms of these polymers are substituted with fluorine atoms.

本発明(二おいて多隙性導電体とは、その表面および/
または内部に多数の間隙または空孔を有し、このため(
=表面積が非常);大であり、かつ導電性を有するもの
である。例を挙げると、炭素繊維、炭素クイスカー、金
属繊維、金属クイスカー等よりなる編織布、紙、不織体
、フェルト等のシート状あるいは塊状成形体、炭素粉末
、金属粉末よりなるシート状、板状あるいは塊状成形体
等である。
In the present invention (2), a porous conductor refers to its surface and/or
or have a large number of gaps or pores inside, and therefore (
= very large surface area) and has electrical conductivity. Examples include woven fabrics made of carbon fibers, carbon quiskers, metal fibers, metal quiskers, etc.; sheet-like or lump-like molded products such as paper, non-woven materials, and felt; sheet-like and plate-like products made of carbon powder and metal powder; Alternatively, it may be a block-like molded product.

この中でも炭素繊維、炭素クイスカー、炭素粉末よりな
る多隙性導電体が好ましく、気相法炭素繊維よりなる多
隙性導電体は特に好ましい。
Among these, porous conductors made of carbon fibers, carbon quiskers, and carbon powder are preferred, and porous conductors made of vapor-grown carbon fibers are particularly preferred.

該多隙性導電体を作成するには、例えば、繊維状素材を
用いた場合はその素材の機械的な絡み合いを利用して、
上記した形状に成形すればよく、またこの時必要に応じ
て結着剤を用いてもよい。
In order to create the porous conductor, for example, if a fibrous material is used, the mechanical entanglement of the material is used,
It may be formed into the above-described shape, and a binder may be used at this time if necessary.

また粉末状素材を用いた場合は、通常粉末電池活物質を
成形する方法、例えば結着剤を用いて圧縮成形する方法
をとればよい。
Further, when a powder material is used, a method of molding a powder battery active material, for example, a method of compression molding using a binder may be used.

本発明の電池用電極を作成する(ユは例えば電解による
方法が挙げられる。即ち、多隙性導電体を陽極とし、導
電性高分子の七ツマ−およヒアニオン性高分子電解質を
含む水溶液な電解溶液として電解を行うと、該多隙性導
電体上(二導竜性高分子とアニオン性高分子電解質より
なる複合体が担持する。これはアニオン性高分子電解質
が導電性高分子のドーパントになるからである。上記方
法を用いる場合、導電性高分子のモノマーとしては、水
溶液で東金が可能なものであればよく、例を挙げると、
一般式が、 (R+は水素原子、アルキル基またはアリール基を表わ
す。R4はアルキル基またはアリール基を表わす。R2
、R1、R1、−1R,及びRsは水素原子、アルキル
基、アリール基、カルボキシル基またはスルホン酸基を
表わす。)で表わされるビロールあるいはビロール誘導
体、又は一般式が R−箱 (R15〜Rj14は水素原子、アルキル基、アリール
基、カルボキシル基またはスルホン酸基を表わす。)で
表わされるアニリンあるいはアニリン誘導体等である。
The battery electrode of the present invention is prepared by electrolysis. In other words, a porous conductor is used as an anode, and an aqueous solution containing a conductive polymer and a hyanionic polymer electrolyte is prepared. When electrolysis is carried out using an electrolytic solution, a composite consisting of a dihydrogen polymer and an anionic polymer electrolyte is supported on the porous conductor. When using the above method, the monomer for the conductive polymer may be any monomer that can be prepared in an aqueous solution; for example,
The general formula is (R+ represents a hydrogen atom, an alkyl group or an aryl group. R4 represents an alkyl group or an aryl group. R2
, R1, R1, -1R, and Rs represent a hydrogen atom, an alkyl group, an aryl group, a carboxyl group, or a sulfonic acid group. ), or aniline or aniline derivatives whose general formula is R-box (R15 to Rj14 represent a hydrogen atom, an alkyl group, an aryl group, a carboxyl group, or a sulfonic acid group). .

導電性高分子の七ツマ−としてビロールな用いた場合ビ
ロールの電解液中の濃度はθ、j〜!重量%が好ましい
。またアニオン性高分子電解質の電解液中の濃度は7〜
70重量%が好ましい。
When virol is used as a conductive polymer, the concentration of virol in the electrolyte is θ,j~! Weight percent is preferred. In addition, the concentration of anionic polymer electrolyte in the electrolyte is 7~
70% by weight is preferred.

電流密度は7.0〜20 mAIcrAが好ましい。温
度は一/!−,gθ℃が好ましい。この様にして作成し
た電池用電極は酸化還元に伴い陽イオンを放出あるいは
取込む機能を持つので、金属′電極を対極として電池を
構成することが可能である。蛍属奄極として例えばリチ
ウムを用いた場合、正極と負極を隔てる有機溶媒は単に
リチウム陽イオンの通路であるから、少量でよくまたこ
のため(=正極と負極を極めて近く置くことができるた
めに電解液の抵抗を低くできるので軽量で(大容量で)
しかも重負荷に耐える電池を得ることができる。また本
発明の電池用電極は多隙性の構造を保っているのでその
内部抵抗が1へ<重負荷用の電池電極とじて有利である
The current density is preferably 7.0 to 20 mAIcrA. The temperature is one/! -, gθ°C is preferred. Since the battery electrode prepared in this manner has the function of releasing or taking in cations as a result of redox, it is possible to construct a battery using a metal electrode as a counter electrode. For example, when lithium is used as the electrode, the organic solvent that separates the positive and negative electrodes is simply a passageway for lithium cations, so only a small amount is required. It is lightweight (large capacity) because the resistance of the electrolyte can be lowered.
Furthermore, a battery that can withstand heavy loads can be obtained. Furthermore, since the battery electrode of the present invention maintains a porous structure, its internal resistance is less than 1, which is advantageous as a battery electrode for heavy loads.

〔発明の効果〕〔Effect of the invention〕

本発明による電池用電極は、酸化還元く−伴いカチオン
を放出あるいは取込みを行う機能を持ち、また内部抵抗
が低いので、リチウム等の金属を対極として電池を構成
した場合大容量でしかも重負荷に耐える一次電池もしく
は二次電池を構成することが可能である。
The battery electrode according to the present invention has the function of releasing or taking in cations during oxidation-reduction and has low internal resistance, so when a battery is constructed using a metal such as lithium as a counter electrode, it has a large capacity and can withstand heavy loads. It is possible to construct a durable primary or secondary battery.

〔実施例〕〔Example〕

以下(=実施例を挙げ本発明をさらに詳しく説明する。 The present invention will be explained in more detail below with reference to Examples.

実施例/ 陽極として、白金端子を付けた気相法炭素繊維(以下、
VGCFと略記する。)よりなるフェルト状成形体(/
j嘘×/j■、厚さ約0.3 all 、重量70〜)
を用い、陰極として白金板(/ j m X/ ! r
m )を用いて、ビロール0.♂チ、ポリスチレンスル
ホン酸ナトリワムコ、Z俤を含む/j?の水溶液を/θ
mA llt時間電解し、ポリピロール・ポリスチレン
スルホン酸複合体(以下、PPY・R88と略記する。
Example/ As an anode, vapor grown carbon fiber (hereinafter referred to as
It is abbreviated as VGCF. ) felt-like molded body (/
j lie×/j■, thickness approx. 0.3 all, weight 70~)
using a platinum plate (/ j m X/ ! r
m) using virol 0. Contains ♂chi, polystyrene sulfonate sodium WAMCO, and Zyong/j? An aqueous solution of /θ
Electrolyzed for mAllt hours, a polypyrrole/polystyrene sulfonic acid complex (hereinafter abbreviated as PPY/R88) was obtained.

)をVGCFに担持させ、該′磁極を790℃、3時間
真空乾燥させ目的の電池用・磁極を得た。ppy−ps
sの担持量は79.す■であった。
) was supported on VGCF, and the magnetic pole was vacuum-dried at 790° C. for 3 hours to obtain the intended battery magnetic pole. ppy-ps
The supported amount of s is 79. It was ■.

該電極を正極とし、808ネツト上にリチウムを圧着し
たものを負極とし、/ mot/lの過塩素酸リチウム
のプロピレンカーボネート溶液を電油溶媒として、アル
ゴン雰囲気下で電池を組み立てた。
A battery was assembled in an argon atmosphere using this electrode as a positive electrode, a negative electrode formed by pressing lithium onto 808 net, and a /mot/l propylene carbonate solution of lithium perchlorate as an electrolyte solvent.

なお該電池には基準電極としてリチクム竜極を組み入れ
た。
Note that Lyticum Ryugyoku was incorporated into the battery as a reference electrode.

該電池を放電電流(ID)=、2mA、充電電流(10
) = 2 mA、上端電位(Vu) = 3.乙V(
基準Li電極よりの値)、下端電位CVL) = /、
!■(基準Li電極よりの値)で充放電を繰り返したと
ころjθプサイル以上安定した特性を示し、PPY・R
88担持VGCF電極の容量密度はQ 、2 Ab、勾
を示した。また充放電のクーロン効率は700%であっ
た。充放電特性の一部を第1図(二示す。
Discharging current (ID) = 2 mA, charging current (10
) = 2 mA, upper end potential (Vu) = 3. Otsu V (
Value from reference Li electrode), lower end potential CVL) = /,
! ■When charging and discharging were repeated at (value from the reference Li electrode), it showed stable characteristics over jθ psi,
The capacitance density of the 88-supported VGCF electrode exhibited a gradient of Q,2Ab. Further, the coulombic efficiency of charging and discharging was 700%. A part of the charge/discharge characteristics is shown in Figure 1 (2).

実施例コ 実施例/と同様な方法で電池用電極を作成し電池を構成
した。作成時の電解条件と電池特性を第1表I:示した
Example 7 A battery electrode was prepared in the same manner as in Example 2, and a battery was constructed. The electrolytic conditions and battery characteristics at the time of preparation are shown in Table 1.

充放電試験はIn =2mA、 io ==4tmA、
 Vu =3.7 V 、 VL = /、j Vで行
ったところ安定した特性を示し、クーロン効率はlθθ
チであった。
The charge/discharge test was In =2mA, io ==4tmA,
When conducted at Vu = 3.7 V, VL = /, j V, it showed stable characteristics, and the Coulombic efficiency was lθθ
It was Chi.

実施例3〜5 実施例/と同様な方法により第1表に示す条件で電池用
電極を作成し電池を構成した。第1表ζ二本す電極評価
条件で該電池の評価を行い、その結果を第7表に示す。
Examples 3 to 5 Electrodes for batteries were prepared in the same manner as in Example 1 under the conditions shown in Table 1, and batteries were constructed. The battery was evaluated under the two electrode evaluation conditions shown in Table 1. The results are shown in Table 7.

実施例2 実施例/と同様な方法により@/表に示す条件で電池用
電極を作成し電池を構成した。第1表(二示す電極評価
条件で該電池の評価を行い、その結果を第1表に示す。
Example 2 Electrodes for a battery were prepared in the same manner as in Example under the conditions shown in the table, and a battery was constructed. The battery was evaluated under the electrode evaluation conditions shown in Table 1 (2), and the results are shown in Table 1.

また、放電特性を第2図に示す。Further, the discharge characteristics are shown in FIG.

実施例7〜IO 実施例/と同様な方法により第7表に示す条件で電池用
電極を作成し電池を構成した。第1表ζ二本す電極評価
条件で該電池の評価を行い、その結果を第7表に示す。
Examples 7 to IO Battery electrodes were prepared under the conditions shown in Table 7 in the same manner as in Example 1, and batteries were constructed. The battery was evaluated under the two electrode evaluation conditions shown in Table 1. The results are shown in Table 7.

実施例//〜/6 実施例/と同様な方法(二より第7表に示す条件で電池
用電極を作成し電池を構成した。第1表に示す電極評価
条件で該電池の評価を行い、その結果を第7表に示す。
Examples//~/6 A battery electrode was prepared and a battery was constructed using the same method as in Example (2) under the conditions shown in Table 7. The battery was evaluated under the electrode evaluation conditions shown in Table 1. , the results are shown in Table 7.

(以下余白)(Margin below)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例/における電池の充放電特性を表わし、
第2図は実施例乙における電池の充放電特性を表わす。
FIG. 1 shows the charging and discharging characteristics of the battery in Example/,
FIG. 2 shows the charging and discharging characteristics of the battery in Example B.

Claims (1)

【特許請求の範囲】[Claims] 多隙性導電体に、導電性高分子とアニオン性高分子電解
質よりなる複合体を担持した構造を特徴とする電池用電
A battery electrode characterized by a structure in which a porous conductor supports a composite consisting of a conductive polymer and an anionic polymer electrolyte.
JP62120245A 1987-05-19 1987-05-19 Electrode for battery Pending JPS63285864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62120245A JPS63285864A (en) 1987-05-19 1987-05-19 Electrode for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62120245A JPS63285864A (en) 1987-05-19 1987-05-19 Electrode for battery

Publications (1)

Publication Number Publication Date
JPS63285864A true JPS63285864A (en) 1988-11-22

Family

ID=14781425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62120245A Pending JPS63285864A (en) 1987-05-19 1987-05-19 Electrode for battery

Country Status (1)

Country Link
JP (1) JPS63285864A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013232388A (en) * 2011-06-29 2013-11-14 Nitto Denko Corp Nonaqueous electrolyte secondary battery and positive electrode sheet for the same
WO2013172222A1 (en) * 2012-05-14 2013-11-21 日東電工株式会社 Electricity storage device, positive electrode and porous sheet used in electricity storage device, and method for improving dope rate
JP2014035836A (en) * 2012-08-07 2014-02-24 Nitto Denko Corp Nonaqueous electrolyte secondary battery and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61281458A (en) * 1985-05-07 1986-12-11 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPS6398973A (en) * 1986-10-15 1988-04-30 Showa Denko Kk Secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61281458A (en) * 1985-05-07 1986-12-11 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPS6398973A (en) * 1986-10-15 1988-04-30 Showa Denko Kk Secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013232388A (en) * 2011-06-29 2013-11-14 Nitto Denko Corp Nonaqueous electrolyte secondary battery and positive electrode sheet for the same
KR20140039244A (en) * 2011-06-29 2014-04-01 닛토덴코 가부시키가이샤 Nonaqueous electrolyte secondary battery and cathode sheet therefor
JP2016201373A (en) * 2011-06-29 2016-12-01 日東電工株式会社 Nonaqueous electrolyte secondary battery and positive electrode sheet for the same
JP2018081930A (en) * 2011-06-29 2018-05-24 日東電工株式会社 Nonaqueous electrolyte secondary battery and positive electrode sheet for the same
KR20190028559A (en) * 2011-06-29 2019-03-18 닛토덴코 가부시키가이샤 Nonaqueous electrolyte secondary battery and cathode sheet therefor
WO2013172222A1 (en) * 2012-05-14 2013-11-21 日東電工株式会社 Electricity storage device, positive electrode and porous sheet used in electricity storage device, and method for improving dope rate
JP2014035836A (en) * 2012-08-07 2014-02-24 Nitto Denko Corp Nonaqueous electrolyte secondary battery and method for manufacturing the same

Similar Documents

Publication Publication Date Title
Abdelhamid et al. Storing energy in plastics: a review on conducting polymers & their role in electrochemical energy storage
CN104582820B (en) Semi-permeable membrane with high-molecular compound as the redox flow batteries of redox couple and for storing electric energy
KR100284914B1 (en) Secondary Battery and Manufacturing Process Thereof
KR100586819B1 (en) Electrode and Electrochemical Cell therewith
CN1990525B (en) Electrolytic membrane, process for producing the same, membrane electrode assembly, fuel cell and method of operating the same
JPH0454350B2 (en)
US20180331363A1 (en) Hybrid Flow Battery for Storing Electrical Energy and Use Thereof
Zhang et al. A nitrogen-containing all-solid-state hyperbranched polymer electrolyte for superior performance lithium batteries
WO1988008210A1 (en) Sheet-like electrode, method of producing the same, and secondary cell
JPH01261470A (en) Conductive polymer and its production
SE512579C2 (en) Polymer gel electrode, and process for its preparation
KR101061934B1 (en) Proton conductors, single ion conductors and their manufacturing methods and electrochemical capacitors
Hou et al. Compatible composite electrolyte membrane Li7La3Zr2O12/SB-PVDF for solid-state lithium ion battery
JP2003151632A (en) Gel electrolyte and nonaqueous electrolyte battery using the same
JPS63285864A (en) Electrode for battery
CN109888183B (en) Preparation method and application of organic-inorganic hybrid film
KR101595829B1 (en) Seperator membrane made of ion-conducting polymer comprising partially branched multiblock copolymer and redox flow batteries comprising the same
JPH05314979A (en) Reversible electrode
CN103515654B (en) The manufacture method of a kind of copolymer solid electrolyte
JP3089707B2 (en) Solid electrode composition
JPS63160154A (en) Battery
JP4156495B2 (en) Gel electrolyte, its production method and its use
JP3349191B2 (en) Battery electrode
JPS63110561A (en) Battery
JPH0374052A (en) Battery using polyaniline