JPS6398973A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPS6398973A
JPS6398973A JP61244380A JP24438086A JPS6398973A JP S6398973 A JPS6398973 A JP S6398973A JP 61244380 A JP61244380 A JP 61244380A JP 24438086 A JP24438086 A JP 24438086A JP S6398973 A JPS6398973 A JP S6398973A
Authority
JP
Japan
Prior art keywords
alkali metal
battery
secondary battery
conductive polymer
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61244380A
Other languages
Japanese (ja)
Inventor
Masao Kobayashi
小林 征男
Masataka Takeuchi
正隆 武内
Mutsumi Kameyama
亀山 むつみ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Hitachi Ltd filed Critical Showa Denko KK
Priority to JP61244380A priority Critical patent/JPS6398973A/en
Publication of JPS6398973A publication Critical patent/JPS6398973A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a secondary battery having high energy density by using alkali metal, alkali metal alloy, conductive polymer, or a composite of alkali metal or alkali metal alloy with conductive polymer in a negative electrode. CONSTITUTION:A negative electrode is formed with alkali metal, alkali metal alloy, conductive polymer, or a composite of conductive polymer with alkali metal or alkali metal alloy. A positive electrode is formed with a composite of conductive polymer with polymer electrolyte. The alloy used in the negative electrode is manufactured by both electrochemical and chemical processes, but the alloy manufactured by electrochemical process is preferable. Thereby, energy density is high, self-discharge rate is low, and discharge voltage is made flat.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、エネルギー密度が高く、自己放電率が小さく
、サイクル寿命が長く、かつ充・放電効率(クーロン効
率)の良好な二次電池に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a secondary battery that has high energy density, low self-discharge rate, long cycle life, and good charge/discharge efficiency (Coulombic efficiency). .

〔従来の技術) 主鎖に共役二重結合を有づる高分子化合物(共役高分子
)を?i極に用いた、いわゆるポリマー電池は、高エネ
ルギー密度二次電池として期待されている。ポリマー電
池に関してはすでに多くの報告がなされており、例えば
、ビー・ジエー・ナイグレイ等、ジャーナル・オブ・ザ
・ケミカル・ソサイアテイ、ケミカル・コミュニケーシ
ョン。
[Prior art] A polymer compound (conjugated polymer) that has a conjugated double bond in its main chain? The so-called polymer battery used for the i-electrode is expected to be a high energy density secondary battery. There have already been many reports regarding polymer batteries, such as those published by B.G. Nigley, Journal of the Chemical Society, and Chemical Communication.

1919年、第 594頁(P、 J、 N igre
y等、J、 C,S、 、 chem。
1919, page 594 (P, J, Nigre
y et al., J.C.S., chem.

Conmun、 、ユ旺五 594) 、ジャーナル・
エレクトロケミカル・ソサイアティ、 1981年、第
1651頁(J、EIectrochem、  Soc
、、 198j1651)、〔エイ・ジー・マツクダイ
アーミド等、ポリマー・プレブリンツ、第25巻、ナン
バー2.第248頁(1984年)  (A、G、Ha
cDiarmid et atlPolymerPrc
prints、 25〜412.2480984))、
佐々木等、電気化学協会用50回大会要旨集、123 
(1983)、電気化学協会第51大会要旨集、228
 (1984) ) 、特開昭56−136469号、
同 57−121168号、同59−3810号、同5
9−3872号、同59−3873号、同59−196
566号、同59−196573号、同59−2033
68号、同59−203369号等をその一部としてあ
げることができる。
Commun, , Yu Wangwu 594), Journal
Electrochemical Society, 1981, p. 1651 (J, EIelectrochem, Soc.
,, 198j1651), [A.G. Matsuku Diarmid et al., Polymer Preprints, Vol. 25, No. 2. No. 248 (1984) (A, G, Ha
cDiarmid et atlPolymerPrc
prints, 25-412.2480984)),
Sasaki et al., 50th Conference Abstracts for the Electrochemical Society, 123.
(1983), Proceedings of the 51st Conference of the Electrochemical Society, 228.
(1984) ), JP-A-56-136469,
No. 57-121168, No. 59-3810, No. 5
No. 9-3872, No. 59-3873, No. 59-196
No. 566, No. 59-196573, No. 59-2033
No. 68, No. 59-203369, etc. can be mentioned as some of them.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記共役高分子をを電極に用いたポリマー電池
では、(1)高エネルギー密度、(B)低自己放電、0
高充・放電効率、および■長サイクル寿命を同時に満足
りるものは得られていなかった。
However, in a polymer battery using the above conjugated polymer as an electrode, (1) high energy density, (B) low self-discharge,
It has not been possible to obtain anything that simultaneously satisfies high charge/discharge efficiency and (1) long cycle life.

本発明者等は、上記4つの電池性能を同時に満足する二
次電池を得るべく、その電極材料について種々検討した
結果、例えば、〔頁頭等、高分子学会予稿集亙N[13
、612(1986) )、〔細円等、第53回電気化
学協会大会要旨集、D 121 (1986))等によ
って公知の高分子電解質と、主鎖に共役二重結合を有す
る共役高分子との複合体が極めて有効であることを発見
した。
In order to obtain a secondary battery that satisfies the above four battery performances at the same time, the inventors of the present invention have conducted various studies on electrode materials, and have found that, for example,
, 612 (1986)), [Hosaen et al., Abstracts of the 53rd Electrochemical Society of Japan Conference, D 121 (1986)], etc., the polymer electrolyte and the conjugated polymer having a conjugated double bond in the main chain. found that the complex was extremely effective.

本発明は上記の発見に基づいて開発されたもので、上記
4つの電池特性の共に優れた二次電池を提供することを
目的とする。
The present invention was developed based on the above discovery, and an object of the present invention is to provide a secondary battery that is excellent in all of the above four battery characteristics.

(問題点を解決するための手段) 本発明は上記の目的を達成すべくなされたもので、その
要旨は、正極、負極及び非水電解液からなる二次電池に
おいて負極が(1)アルカリ金属、Oi)アルカリ金属
合金、080電導性高分子及び(へ)電導性高分子とア
ルカリ金属またはアルカリ金属合金との複合体とから選
ばれた物質、正極が電導性高分子と高分子電解質の複合
体からなる二次電池にある。
(Means for Solving the Problems) The present invention has been made to achieve the above object, and its gist is that in a secondary battery consisting of a positive electrode, a negative electrode, and a non-aqueous electrolyte, the negative electrode is (1) made of an alkali metal. , Oi) a substance selected from alkali metal alloys, 080 conductive polymers, and (to) complexes of conductive polymers and alkali metals or alkali metal alloys; the positive electrode is a composite of a conductive polymer and a polymer electrolyte; It is located in a secondary battery consisting of the body.

〔発明の具体的構成および作用〕[Specific structure and operation of the invention]

以下本発明の詳細な説明する。 The present invention will be explained in detail below.

本発明の二次電池に用いられる負極は(1)アルカリ金
属、(B)アルカリ金属合金、0電導性高分子または(
へ)アルカリ金属もしくはアルカリ金属合金と電導性高
分子との複合体である。
The negative electrode used in the secondary battery of the present invention is (1) an alkali metal, (B) an alkali metal alloy, a zero conductive polymer, or (
f) It is a composite of an alkali metal or an alkali metal alloy and a conductive polymer.

(1)アルカリ金属としては、Li、Ha、に等があげ
られ、(m)アルカリ金属合金としては、LION合金
、Ll/HQ合金、IJ/Zn合金、Ll/Cd合金、
u/sn合金、Li/Pb合金およびこれら合金に用い
られたアルカリ金属を含む3種以上の金属の合金、例え
ばしi/Aj/l’に+、  Li/M/Sn、  L
l/M/Pb、  L+/AN/Zn、 Li/AI/
Hg等があげられる。
(1) Examples of alkali metals include Li, Ha, etc. (m) Examples of alkali metal alloys include LION alloy, Ll/HQ alloy, IJ/Zn alloy, Ll/Cd alloy,
u/sn alloys, Li/Pb alloys, and alloys of three or more metals containing alkali metals used in these alloys, such as i/Aj/l'+, Li/M/Sn, L
l/M/Pb, L+/AN/Zn, Li/AI/
Examples include Hg.

これらの合金は電気化学的方法および化学的方法のいず
れの方法で製造したものでもよいが、電気化学的に合金
化したものがより好ましい。
These alloys may be manufactured by either an electrochemical method or a chemical method, but those alloyed electrochemically are more preferable.

また、0電導性高分子としては、ポリピロール、ポリご
ロール誘導体、ポリチオフェン、ポリチオフェン誘導体
、ポリキノリン、ボリアセン、ポリパラフェニレン、ポ
リバラフェニレン誘導体、ポリアセチレン等があげられ
る。さらに、(ト)アルカリ金属もしくはアルカリ金属
合金と電導性高分子との複合体としては、Ll/M合金
と上記各種電導性高分子、例えばポリパラフェニレンま
たはポリアセチレンとの複合体があげられる。これらの
うちで好ましいものとしては、例えばポリアセチレン、
ポリパラフェニレン、Li / #合金、Li / M
 /−合金、Ll//V合金とボリアセンまたはボリパ
ラフ1ニレンとの複合体があげられる。ここでいう複合
体とは、アルカリ金属またはアルカリ土類合金と電導性
高分子の均一な況合物、積層体および基体となる成分を
使の成分で修飾した修飾体を意味する。
Further, examples of zero-conductivity polymers include polypyrrole, polygorole derivatives, polythiophene, polythiophene derivatives, polyquinoline, boriacene, polyparaphenylene, polyparaphenylene derivatives, polyacetylene, and the like. Furthermore, (g) composites of alkali metals or alkali metal alloys and conductive polymers include composites of Ll/M alloys and the above-mentioned various conductive polymers, such as polyparaphenylene or polyacetylene. Among these, preferred are, for example, polyacetylene,
Polyparaphenylene, Li/# alloy, Li/M
/- alloy, a complex of Ll//V alloy and boriacene or boriparaf-1-nylene. The term "composite" as used herein means a homogeneous mixture of an alkali metal or alkaline earth alloy and a conductive polymer, a laminate, and a modified product in which the base component is modified with the other component.

本発明の二次電池の正極に用いられる電導性高分子とし
ては主鎖に共役二重結合を右するものであれば特に制限
はないが、その具体例としては、ボリアセン、ポリアセ
ノアセン、ポリアセチレン。
The conductive polymer used in the positive electrode of the secondary battery of the present invention is not particularly limited as long as it has a conjugated double bond in its main chain, but specific examples include boriacene, polyacenoacene, and polyacetylene.

ポリアニリン、ポリカルバゾール レン、ポリフラン、ポリ− (1.6−へブタジェン)
、ポリイソチアナフテン、ポリパラフェニレン、ポリパ
ラフェニレンサルファイド、ポリ−ベリーナフタレン、
ポリピリダジン、ポリピロール。
Polyaniline, polycarbazolene, polyfuran, poly(1,6-hebutadiene)
, polyisothianaphthene, polyparaphenylene, polyparaphenylene sulfide, poly-berynaphthalene,
Polypyridazine, polypyrrole.

ポリキノリン、ポリセレノフェン、ポリチオフェン、ポ
リ−(トリフェニルメタン)及びこれ等の誘導体をあげ
ることができる。
Examples include polyquinoline, polyselenophene, polythiophene, poly-(triphenylmethane) and derivatives thereof.

本発明の二次電池の正極に用いられる高分子′電解質は
、数平均分子量が500以上で、分子内にカルボキシル
アニオン ルアニオンを少なくとも1ヶ以上含有するものであれば
特に制限は無いが通常、次の一般式で表わされるものが
用いられる。
The polymer electrolyte used in the positive electrode of the secondary battery of the present invention is not particularly limited as long as it has a number average molecular weight of 500 or more and contains at least one carboxyl anion in the molecule, but usually, The following general formula is used.

〔但し、X、Yは水素原子または炭素数が10ケ以下の
アルキル基、Zは−cco−、−oso3 −または−
3(h−rあり、a、bは0または10以下の正の整数
、Qはメチレン基(−Ct+2− )またはフェニレン
基(→(D→)、nは3以上の正の整数である。〕 これら高分子電解質としては、例えば数平均分子量が5
00以上のポリアクリル酸アニオン、ポリメタクリル酸
アニオン、ポリビニルスルホン酸アニオン、ポリアリル
スルホン酸アニオン、ポリスチレンスルホン酸アニオン
等を挙げることができる。
[However, X and Y are hydrogen atoms or alkyl groups having 10 or less carbon atoms, and Z is -cco-, -oso3- or -
3 (with hr, a and b are 0 or a positive integer of 10 or less, Q is a methylene group (-Ct+2-) or a phenylene group (→(D→), n is a positive integer of 3 or more). ] These polymer electrolytes, for example, have a number average molecular weight of 5.
00 or more polyacrylic acid anions, polymethacrylic acid anions, polyvinylsulfonic acid anions, polyallylsulfonic acid anions, polystyrene sulfonic acid anions, and the like.

電導性高分子と複合化する上記高分子電解質の苗は特に
制限は無いが、通常、電導性高分子100重吊部に対し
て高分子電解質1〜500重石部、好ましくは2〜20
011部、特に好ましくは4〜100重量部である。
There are no particular restrictions on the seedlings of the polymer electrolyte to be composited with the conductive polymer, but usually 1 to 500 parts of the polymer electrolyte, preferably 2 to 20 parts of the polymer electrolyte per 100 parts of the conductive polymer.
011 parts by weight, particularly preferably 4 to 100 parts by weight.

また、本発明の二次電池の正極に用いられる複合体の製
造には種々な方法が考えられるが、通常、高分子電解質
の存在下に主導性高分子を公知の方法で化学的または電
気化学的に合成することによって得られる。この際、高
分子電解質は重合溶液に溶解していることが望ましいが
、溶解しないスラリー状態であっても差し支えない。
Various methods can be considered for producing the composite used for the positive electrode of the secondary battery of the present invention, but usually, the leading polymer is chemically or electrochemically prepared in the presence of a polymer electrolyte using a known method. It can be obtained by synthetically. At this time, it is desirable that the polymer electrolyte be dissolved in the polymerization solution, but it may be in the form of a slurry in which it is not dissolved.

上記本発明の二次電池の電極には、当該業者に良く知ら
れているように他の適当な導電材料、例えばカーボンブ
ラック、アセチレンブラック、金属粉、金属繊維、炭素
11111を混合してもよい。また、ポリエチレン、変
性ポリエチレン、ポリプロピレン、ポリテトラフルオロ
エチレン、エチレンーブロビレンージエンーターボリマ
ー(EPDM)、スルホン化EPDM等の熱可塑性樹脂
で補強してもよい。
The electrode of the secondary battery of the present invention may be mixed with other suitable conductive materials, such as carbon black, acetylene black, metal powder, metal fiber, carbon 11111, as is well known to those skilled in the art. . Further, it may be reinforced with a thermoplastic resin such as polyethylene, modified polyethylene, polypropylene, polytetrafluoroethylene, ethylene-propylene-dieneter polymer (EPDM), or sulfonated EPDM.

本発明の二次電池の電解液の支持電解質は、アルカリ金
属塩である。アルカリ金属塩のアルカリ金属としては、
Ll、NaおよびKの金属があげられ、特にL1金属が
好ましい。
The supporting electrolyte of the electrolytic solution of the secondary battery of the present invention is an alkali metal salt. As the alkali metal of the alkali metal salt,
Mention may be made of the metals Ll, Na and K, with the metal L1 being particularly preferred.

支持電解質の代表的なアニオン成分としては、例えばC
lO4−、PF5−、ASFs −。
Typical anion components of the supporting electrolyte include, for example, C
lO4-, PF5-, ASFs-.

ASF< −+ SO3CF3−、BF4−1およびB
R4(但し、Rは炭素数が1〜10のアルキル基または
アリール基)等があげられる。
ASF < −+ SO3CF3−, BF4−1 and B
Examples include R4 (wherein R is an alkyl group or aryl group having 1 to 10 carbon atoms).

支持電解質としてのアルカリ金属塩としては、例えばL
tPFs 、LI3bF6 、Li(JO4゜LIAS
Fs 、CF3803 Ll、LI3F4 。
As the alkali metal salt as a supporting electrolyte, for example, L
tPFs, LI3bF6, Li(JO4゜LIAS
Fs, CF3803Ll, LI3F4.

’B (BLJ)4.LIB (Et)z  (BU)
2 。
'B (BLJ)4. LIB (Et)z (BU)
2.

NaPF5 、NaBF4.NaASFs 。NaPF5, NaBF4. NaASFs.

NaB (Bu)4.KB (Bu)4 、KASFs
などをあげることができるが、必ずしもこれらに限定さ
れるものではない。これらのアルカリ金属塩は一種類ま
たは二種類以上を混合して使用してもよい。
NaB (Bu)4. KB (Bu)4, KASFs
Examples include, but are not necessarily limited to these. These alkali metal salts may be used alone or in combination of two or more.

アルカリ金属塩の濃度は、正極及び負極に用いる物質の
種類、陰極の種類、充電条件、作動温度、支持電解質の
種類および有機溶媒の種類等によって異なるので一概に
は規定することはできないが、−・般には0.5〜10
モル/Jの範囲内であることが好ましい。電解液は均一
系でも不均一系でもよい。
The concentration of the alkali metal salt cannot be unconditionally defined because it varies depending on the type of material used for the positive and negative electrodes, the type of cathode, charging conditions, operating temperature, type of supporting electrolyte, type of organic solvent, etc.・Generally 0.5 to 10
It is preferably within the range of mol/J. The electrolyte may be homogeneous or heterogeneous.

本発明の二次電池の電解液の溶媒として単独または混合
して用いられる有機溶媒としては次のものがあげられる
Examples of organic solvents that can be used alone or in combination as a solvent for the electrolyte of the secondary battery of the present invention include the following.

アルキレン ニトリル:例、クロトニトリル(液状範囲
、−51,1℃〜120℃)トリアルキル ボレート二
個、ホウ酸トリメチル、(CI−h O) 3 B (
液状範囲、−29,3℃〜67℃)テトラアルキル シ
リケート二個、ケイ酸テトラメヂル、(CH30)4S
 i (沸点、121℃)ニトロアルカン:例、ニトロ
メタン、 CH3NO2(液状範囲、−17℃〜100.8℃)ア
ルキルニトリル:例、アセトニトリル、CH3ON (
液状範囲、−45℃〜81.6℃)ジアルキルアミド二
個、ジメチルボルムアミド、11cON (CH3) 
2 (液状範囲、−60,48℃〜149℃)ラクタム:例
、N−メチルピロリドン (液状範囲、−16℃〜202℃) モノカルボン酸エステル二個、酢酸エチル(液状範囲、
−83,6℃〜77、06℃)オルトエステル:例、ト
リメチルオルトホルメート、 HC(OCH3)3  (沸点、103℃)ラクトン二
例、γ−ブチロラクトン (液状範囲、−42℃〜206℃) ジアルキル ネート、QC(OCH3)2 (液状範囲、2℃〜90℃) アルキレン カーボネート:例、プロピレンカーボネー
ト、 (液状範囲、−48℃〜242℃) モノエーテル二側、ジエチルエーテル (液状範囲、−116℃〜34、5℃)ポリエーテル:
例、1,1−および1,2−ジメトキシエタン(液状範
囲、それぞれ−113.2℃〜64、5℃および一58
〜83℃) 環式エーテル二個、テトラヒドロフラン(液状範囲、−
65℃〜61℃):1.3−ジオキソラン(液状範囲、
−95℃〜78℃)ニトロ芳香族二個、ニトロベンゼン (液状範囲、5.7℃〜210. 8℃)芳香族カルボ
ン酸ハロゲン化物:例、塩化ベンゾイル(液状範囲、0
℃〜197℃)、臭化ベンゾイルく液状範囲、−24℃
〜218℃)芳香族スルホン酸ハロゲン化物:例、ベン
ゼンスルホニル クロライド(液状範囲、14、5℃〜
251℃) 芳香族ホスホン酸二ハロゲン化物:例、ベンゼンホスホ
ニル ジクロライド(沸点、258℃)芳香族チオホス
ホン酸二ハロゲン化物二部、ベンゼン チオホスホニル
 ジクロライド(沸点、圧力5. 8gで124℃) (融点、22℃) 3−メチルスルホラン (融点、−1℃)アルキル ス
ルホン酸ハロゲン化物二側、メタン スルホニル クロ
ライド (沸点、161℃) アルキル カルボン酸ハロゲン化物:例、塩化アヒチル
(液状節回、−112℃〜50.9℃)、臭化アセチル
(液状範囲、−96℃〜16℃)、塩化プロピオニル(
液状範囲、−94℃〜80℃)飽和複素環式化合物二個
、テトラヒドロチオフェン(液状範囲、−96℃〜12
1℃)=3−メチル−2−オキサゾリドン(融点、15
.9℃)ジアルキル スルファミン酸 ハロゲン化物二
個、ジメチル スルファミル クロライド (沸点、圧力16#WH17で80℃)アルキル ハロ
スルホネート:例、クロロスルホン酸エチル(沸点、 
151℃) 不飽和複素環カルボン酸ハロゲン化物二例、塩化2−フ
ロイル(液状範囲、−2℃〜113℃)五員不飽和複素
環式化合物二個、1−メブルビロール(沸点、114℃
)、2.4−ジメチルチアゾール(沸点、144℃)、
フラン(液状範囲、−85.65℃〜31.36℃)、 二塩括カルボン酸のエステルおよび/またはへ〇グン化
物:例、エチル オキサリル クロライド (沸点、135℃) 混合アルキルスルボン酸ハロゲン化物/カルボン酸ハロ
ゲン化物:例、クロロスルホニルアセチル クロライド (沸点、圧力10噛11gで98℃) ジアルキル スルホキシド二個、ジメチルスルホキシド
 (液状範囲、18.4℃〜189℃)ジアルキルサル
フエート二個、ジメチルサルフ」−1・(液状範囲、−
31.75℃〜188. 5℃)ジアルキル サルファ
イド:例、ジメチルサルファイド (沸点、126℃) アルキレン サルファイト二側、エヂレングリコール 
サルファイド(液状範囲、−11℃〜173℃) ハロゲン化アルカン二個、塩化メチレン(液状範囲、−
95℃〜40℃)1,3−ジクロロプロパン(液状範囲
、−99. 5℃〜120. 4℃)前記のうりで好ま
しい有機溶媒はスルホラン、クロトニトリル、ニトロベ
ンゼン、テトラヒドロフラン、メチル置換テトラヒドロ
フラン、1,3−ジオキソラン、3−メチル−2−オキ
サゾリドン、プロピレンまたはエチレンカーボネート、
スルホラン、γ−ブブーロラクトン、エチレングリコー
ル ザルファイト、ジメチルサルファイド、ジメチル 
スルホキシド、および1.1−ならびに1.2−ジメト
キシエタンであり、特に好ましくはプロピレンカーボネ
ートと1.2−ジメトキシエタン、およびスルホランと
1.2−ジメトキシエタンの混合溶媒をあげることがで
きる。なぜならば、これらは電池成分に対して化学的に
最も不活性であると思われ、また広い液状範囲を有する
からであり、特にこれらは正極活物質を高度に、しかも
効率的に利用可能とするからである。
Alkylene nitrile: e.g., crotonitrile (liquid range, -51.1°C to 120°C), 2 trialkyl borates, trimethyl borate, (CI-h O) 3 B (
Liquid range, -29.3°C to 67°C) 2 tetraalkyl silicates, tetramethyl silicate, (CH30)4S
i (boiling point, 121°C) nitroalkanes: e.g., nitromethane, CH3NO2 (liquid range, -17°C to 100.8°C) alkylnitrile: e.g., acetonitrile, CH3ON (
Liquid range, -45°C to 81.6°C) 2 dialkylamides, dimethylborumamide, 11cON (CH3)
2 (liquid range, -60,48°C to 149°C) Lactam: Example, N-methylpyrrolidone (liquid range, -16°C to 202°C) Two monocarboxylic acid esters, ethyl acetate (liquid range,
-83,6°C to 77,06°C) Orthoesters: Examples, trimethyl orthoformate, HC(OCH3)3 (boiling point, 103°C) Lactone two examples, γ-butyrolactone (liquid range, -42°C to 206°C) Dialkylnate, QC(OCH3)2 (liquid range, 2°C to 90°C) Alkylene carbonate: e.g., propylene carbonate, (liquid range, -48°C to 242°C) Monoether diside, diethyl ether (liquid range, -116 ℃~34,5℃) Polyether:
Examples, 1,1- and 1,2-dimethoxyethane (liquid range, -113.2°C to 64°C, 5°C and -58°C, respectively)
~83℃) 2 cyclic ethers, tetrahydrofuran (liquid range, -
65°C to 61°C): 1,3-dioxolane (liquid range,
-95°C to 78°C) 2 nitroaromatics, nitrobenzene (liquid range, 5.7°C to 210.8°C) Aromatic carboxylic acid halides: e.g., benzoyl chloride (liquid range, 0
℃~197℃), benzoyl bromide liquid range, -24℃
~218℃) Aromatic sulfonic acid halide: e.g., benzenesulfonyl chloride (liquid range, 14.5℃ ~
251°C) Aromatic phosphonic acid dihalide: Example, benzenephosphonyl dichloride (boiling point, 258°C) Aromatic thiophosphonic acid dihalide (2 parts), benzene thiophosphonyl dichloride (boiling point, 124°C at a pressure of 5.8 g) (melting point, 22°C) 3-methylsulfolane (melting point, -1°C) Alkyl sulfonic acid halide, methane sulfonyl chloride (boiling point, 161°C) Alkyl carboxylic acid halide: e.g., ahythyl chloride (liquid temperature, -112°C ~ 50.9°C), acetyl bromide (liquid range, -96°C to 16°C), propionyl chloride (
liquid range, -94°C to 80°C) two saturated heterocyclic compounds, tetrahydrothiophene (liquid range, -96°C to 12°C)
1°C) = 3-methyl-2-oxazolidone (melting point, 15
.. 9℃) dialkyl sulfamic acid halides, dimethyl sulfamyl chloride (boiling point, pressure 16#WH17 at 80℃) alkyl halosulfonate: e.g., ethyl chlorosulfonate (boiling point,
151°C) Two unsaturated heterocyclic carboxylic acid halides, 2-furoyl chloride (liquid range, -2°C to 113°C) Two five-membered unsaturated heterocyclic compounds, 1-mebruvirol (boiling point, 114°C)
), 2,4-dimethylthiazole (boiling point, 144°C),
Furan (liquid range, -85.65°C to 31.36°C), esters and/or hemagnides of di-salt carboxylic acids: e.g., ethyl oxalyl chloride (boiling point, 135°C), mixed alkylsulfonic acid halides /Carboxylic acid halides: Examples, chlorosulfonylacetyl chloride (boiling point, 98°C at pressure 10g to 11g), 2 dialkyl sulfoxides, dimethyl sulfoxide (liquid range, 18.4°C to 189°C) 2 dialkyl sulfates, dimethyl sulfate ”-1・(liquid range, −
31.75℃~188. 5℃) Dialkyl sulfide: Example, dimethyl sulfide (boiling point, 126℃) Alkylene sulfite side, ethylene glycol
Sulfide (liquid range, -11°C to 173°C) 2 halogenated alkanes, methylene chloride (liquid range, -173°C)
(95°C to 40°C) 1,3-dichloropropane (liquid range, -99.5°C to 120.4°C) Among the above, preferred organic solvents include sulfolane, crotonitrile, nitrobenzene, tetrahydrofuran, methyl-substituted tetrahydrofuran, 1, 3-dioxolane, 3-methyl-2-oxazolidone, propylene or ethylene carbonate,
Sulfolane, γ-buburolactone, ethylene glycol sulfite, dimethyl sulfide, dimethyl
sulfoxide, and 1,1- and 1,2-dimethoxyethane, and particularly preferred are mixed solvents of propylene carbonate and 1,2-dimethoxyethane, and mixed solvents of sulfolane and 1,2-dimethoxyethane. Because they appear to be the most chemically inert toward battery components and have a wide liquid range, they particularly allow for highly and efficient use of cathode active materials. It is from.

本発明の二次電池の充電方法は特に制限は無いが、通常
(1)定電流法(M)定電圧法0パルス電流払及び(へ
)パルス電圧法等の方法及びこれ笠の方法を組み合Vた
方法が用いられる。
There are no particular limitations on the charging method for the secondary battery of the present invention, but it usually combines methods such as (1) constant current method, (M) constant voltage method, 0 pulse current charging, and (to) pulse voltage method, and the method described above. A combined method is used.

本発明においては、必要ならばポリエチレン、ポリプロ
ピレンのごとき合成樹脂製の多孔質膜や天然m雑紙を隔
膜として用いでも差し支えない。
In the present invention, if necessary, a porous membrane made of a synthetic resin such as polyethylene or polypropylene or natural miscellaneous paper may be used as the diaphragm.

また、本発明の二次電池に用いられる電極のある種のも
のは、酸素または水と反応して電池の性能を低下させる
場合もあるので、電池は密閉式にして実質的に無酸素お
よび無水の状態であることが望ましい。
In addition, some of the electrodes used in the secondary battery of the present invention may react with oxygen or water and reduce the performance of the battery, so the battery should be sealed and substantially oxygen-free and water-free. It is desirable that the condition is as follows.

〔実施例〕〔Example〕

以下、実施例および比較例をあげて本発明をさらに詳細
に説明する。
Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例1 〈複合体の製造〉 予め脱酸素した蒸留水400−を1Jの三つロフラスコ
に入れ、撹拌下約1時間、窒素ガスをバブリングさせた
。その後、系内を窒素ガス雰囲気下にし、温度計、コン
デンサーを取り付け、次いでフラスコを水と氷で冷却し
て溶液温度を15℃にした。これに、アニリン20(コ
とポリビニル硫I!2(数平均分子量が約1万のもの)
50gを加えた。次いで、過硫酸アンモニウム220を
徐々に加え、撹拌下、内温を25℃以下に保ちながら、
5時間反応さけた。反応終了後、緑褐色の反応液をi濾
過し、真空乾燥して濃緑色の生成物15qを得た。得ら
れた濃緑色の生成物を10%アンモニア水300d中に
浸し、−夜室温で撹拌後i濾過した。次いで10001
dの蒸留水で洗浄した後、80℃で15時間真空乾燥し
た。
Example 1 <Production of composite> 400 g of distilled water that had been deoxidized in advance was placed in a 1 J three-necked flask, and nitrogen gas was bubbled through it for about 1 hour while stirring. Thereafter, the inside of the system was placed under a nitrogen gas atmosphere, a thermometer and a condenser were attached, and then the flask was cooled with water and ice to bring the solution temperature to 15°C. To this, add aniline 20 (Co and polyvinyl sulfur I!2 (number average molecular weight is about 10,000)
Added 50g. Next, 220% ammonium persulfate was gradually added, while stirring and keeping the internal temperature below 25°C.
The reaction was allowed to proceed for 5 hours. After the reaction was completed, the greenish-brown reaction liquid was filtered and dried under vacuum to obtain a dark green product 15q. The resulting dark green product was immersed in 300 d of 10% aqueous ammonia, stirred overnight at room temperature, and then filtered. then 10001
After washing with distilled water (d), vacuum drying was performed at 80° C. for 15 hours.

その後、さらに1.2−ジメトキシエタン1000dの
中に浸漬して5時間室温で撹拌1濾過し、さらに500
mの1,2−ジメトキシエタンで洗浄し、80℃で15
時間真空乾燥後、さらに220℃で5時間乾燥した。得
られた黄色粉末の硫黄原子の分析より、このポリアニリ
ン中には23重量%のポリビニル硫酸又はポリビニル硫
酸アニオンが含まれていることが分った。
After that, it was further immersed in 1,000 d of 1,2-dimethoxyethane, stirred at room temperature for 5 hours, filtered, and further immersed in 1,2-dimethoxyethane.
Wash with m 1,2-dimethoxyethane and incubate at 80°C for 15 min.
After vacuum drying for an hour, it was further dried at 220°C for 5 hours. Analysis of the sulfur atoms in the obtained yellow powder revealed that this polyaniline contained 23% by weight of polyvinyl sulfate or polyvinyl sulfate anion.

〈電池実験〉 前記の方法で得られたポリアニリンとポリビニル硫酸の
複合体の粉末を既知の方法により、直径2011III
の円板状に加圧成形したもの、リチウム箔(厚さ200
μm)から切り扱いた直径20朧の円板状のものを、そ
れぞれ正極および負極の活物質として電池を構成した。
<Battery experiment> The powder of the composite of polyaniline and polyvinyl sulfate obtained by the above method was prepared using a known method to obtain a powder with a diameter of 2011III.
Lithium foil (thickness 200mm)
A battery was constructed using disk-shaped pieces with a diameter of 20 µm, which were cut from 20 μm, as active materials for the positive and negative electrodes, respectively.

第1図は、本発明の一見体例である二次電池の特性測定
用電池セルの断面概略図であり、1は負極用白金リード
線、2は直径20mm、80メツシユの0極白金網東電
体、3は直径20mの負極、4は直径201Mの円形の
多孔性ポリプロピレン製隔膜で、電解液を充分含浸でき
る厚さにしたもの、5は直径20ttmの円板状正極、
6は直径20#、80メツシユの正極白金網集電体、7
は正極リード線、8はねじ込み式ポリテトラフルオロエ
チレン製容器を示す。
FIG. 1 is a schematic cross-sectional view of a battery cell for measuring the characteristics of a secondary battery, which is an example of the present invention, in which 1 is a platinum lead wire for the negative electrode, 2 is a 0-electrode platinum wire with a diameter of 20 mm, and 80 meshes. , 3 is a negative electrode with a diameter of 20 m, 4 is a circular porous polypropylene diaphragm with a diameter of 201 m, and is thick enough to be sufficiently impregnated with the electrolyte, 5 is a disc-shaped positive electrode with a diameter of 20 ttm,
6 is a positive electrode platinum wire mesh current collector with a diameter of 20# and 80 mesh; 7
8 indicates a positive electrode lead wire, and 8 indicates a screw-type polytetrafluoroethylene container.

まず、前記、正極白金網集電体6を容器8の凹部の下部
に入れ、さらに正極5を正極白金網集電体6の上に重ね
、その上に多孔性ポリプロピレン製隔膜を重ね、電解液
を充分含浸させた後、9殉3を重ね、さらにその上に負
極白金網集電体2を載置し、容器8を締めつけて電池を
作製した。
First, the positive electrode platinum wire mesh current collector 6 is placed in the lower part of the concave portion of the container 8, the positive electrode 5 is placed on top of the positive electrode platinum wire mesh current collector 6, a porous polypropylene diaphragm is placed on top of the positive electrode platinum wire mesh current collector 6, and the electrolytic solution is After sufficiently impregnating the battery, 9 layers 3 were stacked, and the negative electrode platinum wire current collector 2 was further placed thereon, and the container 8 was tightened to produce a battery.

電解液としては、常法に従って蒸留脱水したプロピレン
カーボネートと1,2−ジメトキシエタン(体積比が1
=1)の混合♂媒に溶解したLi B F 4の2モル
/1溶液を用いた。
The electrolyte was propylene carbonate and 1,2-dimethoxyethane (volume ratio: 1), which had been distilled and dehydrated according to a conventional method.
A 2 mol/1 solution of Li B F 4 dissolved in a mixed male medium of =1) was used.

このようにして作製した電池を用いて、一定電流下(1
、0mA/IJり 、電池電圧1.5V〜4、OVの範
囲で充・放電を繰り返した。
Using the battery prepared in this way, the battery was used under a constant current (1
, 0 mA/IJ, and battery voltages ranging from 1.5 V to 4.0 V were repeatedly charged and discharged.

その結果、放電容量は活物質単位重量当り192W −
h r、”Kyテsす、マタ、tll?li?fffi
tfim人放電容凹の50%に低下するまでのサイクル
数(以下“サイクル寿命″という)は671回であった
。さらに、充電したままで1週間放置したところ、その
自己放電率は4.6%であった。
As a result, the discharge capacity was 192W per unit weight of active material.
h r, “Kytessu, mata, tll?li?fffi
The number of cycles until the tfim discharge capacity decreased to 50% (hereinafter referred to as "cycle life") was 671. Furthermore, when the battery was left charged for one week, its self-discharge rate was 4.6%.

比較例1 ポリビニル硫1509の代わりに、42wt%のHB 
F 4水溶液100dを加えた以外は、実施例1と全く
同じにして、ポリアニリンを合成し、これを後処理して
電極成型を行ない、電池実験を行なった。その結果、電
池の最大放電容量は153W−hr/Kg、サイクル寿
命は407回で、さらに、li間後の自己放電率は18
.5%であった。
Comparative Example 1 42wt% HB instead of polyvinyl sulfur 1509
Polyaniline was synthesized in exactly the same manner as in Example 1, except that 100 d of F 4 aqueous solution was added, and it was post-treated to form an electrode, and a battery experiment was conducted. As a result, the maximum discharge capacity of the battery was 153 W-hr/Kg, the cycle life was 407 times, and the self-discharge rate after 12 hours was 18
.. It was 5%.

実施例2〜4 ポリビニル硫酸50!iFの代わりに、各種高分子電解
質をそれぞれの吊を用いた以外は実施例1と全く同じに
して電池実験を行ない最大放電容51゜サイクル寿命、
1週間後の自己放電率を測定した。
Examples 2-4 Polyvinyl sulfate 50! A battery experiment was conducted in exactly the same manner as in Example 1 except that various polymer electrolytes were used in place of iF, and a maximum discharge capacity of 51° cycle life was obtained.
The self-discharge rate was measured after one week.

結果を第1表に示す。The results are shown in Table 1.

実施例5 く複合体の製造〉においてアニリンの代わりに、ビロー
ルを用いた以外は、実施例1と全く同じにして複合体を
製造し、電極に成形した後電池実験を行なった。その結
果、この電池の最大放電容量は189W−hr/KLサ
イクル寿命611回。
Example 5 A composite was manufactured in exactly the same manner as in Example 1, except that virol was used instead of aniline in <Production of Composite>. After molding into an electrode, a battery experiment was conducted. As a result, the maximum discharge capacity of this battery was 189W-hr/KL cycle life 611 times.

1週間後の自己放電率は5.3%であった。The self-discharge rate after one week was 5.3%.

比較例2 〈複合体の製造〉でポリビニル硫酸を用い<2かった以
外は、実施例1と全く同じにして複合体を製造し、電池
実験を行なった。その結果、この電池の最大放電容量は
150W−h r/に9. Fjイクル寿命325回、
1週間後の自己放電率は20.1%であった。
Comparative Example 2 A composite was produced in exactly the same manner as in Example 1, except that polyvinyl sulfuric acid was used in <Production of Composite>, and a battery experiment was conducted. As a result, the maximum discharge capacity of this battery was 150 W-hr/9. Fj cycle life 325 times,
The self-discharge rate after one week was 20.1%.

実施例6〜8 〈電池実験〉で負極物質としてリヂウムの代わりに、秤
々なものを用いた以外は、実施例1と全く同じにして電
池実験を行なった。結果を第2表に示す。
Examples 6 to 8 Battery experiments were conducted in exactly the same manner as in Example 1, except that lithium was used instead of lithium as the negative electrode material. The results are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の二次電池は、高エネルギー密
度を有し、自己放電率が小さく、放電時の電圧の平坦性
が良好である。また、本発明の二次電池は、軽量、小型
で、かつ高いエネルギー密度を右するからポータプル機
器、電気自動車、ガソリン自動車および電力貯蔵用バッ
テリーとして最適である。
As described above, the secondary battery of the present invention has high energy density, low self-discharge rate, and good voltage flatness during discharge. Furthermore, the secondary battery of the present invention is lightweight, compact, and has a high energy density, making it ideal for use in portable devices, electric vehicles, gasoline vehicles, and power storage batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一具体例である二次電池の特性測定用
電池の断面概略図である。 1・・・負極用白金リード線 2・・・負極用白金網集電体 3・・・i極 4・・・多孔性ポリプロピレン製隔膜 5・・・正極 6・・・正極用白金網集電体 7・・・正極リード線
FIG. 1 is a schematic cross-sectional view of a battery for measuring characteristics of a secondary battery, which is a specific example of the present invention. 1... Platinum lead wire for negative electrode 2... Platinum wire mesh current collector for negative electrode 3... i-electrode 4... Porous polypropylene diaphragm 5... Positive electrode 6... Platinum wire mesh current collector for positive electrode Body 7...Positive lead wire

Claims (1)

【特許請求の範囲】[Claims] 正極、負極及び非水電解液からなる二次電池において負
極が(i)アルカリ金属、(ii)アルカリ金属合金、
(iii)電導性高分子及び(iv)電導性高分子とア
ルカリ金属またはアルカリ金属合金との複合体とから選
ばれた物質、正極が電導性高分子と高分子電解質の複合
体からなることを特徴とする二次電池。
In a secondary battery consisting of a positive electrode, a negative electrode, and a non-aqueous electrolyte, the negative electrode is (i) an alkali metal, (ii) an alkali metal alloy,
(iii) a conductive polymer and (iv) a composite of a conductive polymer and an alkali metal or an alkali metal alloy; Characteristic secondary batteries.
JP61244380A 1986-10-15 1986-10-15 Secondary battery Pending JPS6398973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61244380A JPS6398973A (en) 1986-10-15 1986-10-15 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61244380A JPS6398973A (en) 1986-10-15 1986-10-15 Secondary battery

Publications (1)

Publication Number Publication Date
JPS6398973A true JPS6398973A (en) 1988-04-30

Family

ID=17117822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61244380A Pending JPS6398973A (en) 1986-10-15 1986-10-15 Secondary battery

Country Status (1)

Country Link
JP (1) JPS6398973A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285864A (en) * 1987-05-19 1988-11-22 Asahi Chem Ind Co Ltd Electrode for battery
US20150340698A1 (en) * 2012-12-28 2015-11-26 Nitto Denko Corporation Positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using positive electrode, and method for manufacturing nonaqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285864A (en) * 1987-05-19 1988-11-22 Asahi Chem Ind Co Ltd Electrode for battery
US20150340698A1 (en) * 2012-12-28 2015-11-26 Nitto Denko Corporation Positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using positive electrode, and method for manufacturing nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
US4803138A (en) Nonaqueous secondary battery
JPS6355868A (en) Operation of secondary cell
JPS6398973A (en) Secondary battery
JPS63178442A (en) Secondary battery
JPS6355861A (en) Secondary battery
JPS6398972A (en) Secondary battery
JPS61279061A (en) Secondary battery
JPS61279073A (en) Nonaqueous secondary battery
JPS6282649A (en) Secondary battery
JPS6282648A (en) Secondary battery
JPH02172162A (en) Nonaqueous electrolyte secondary battery
JPS61198557A (en) Secondary battery
JPS61284071A (en) Nonaqueous secondary battery
JPS63133451A (en) Secondary battery
JPS62100941A (en) Secondary cell
JPS6282670A (en) Charging method for nonaqueous secondary battery
JPS62264561A (en) Nonaqueous solvent secondary battery
JPS61279059A (en) Nonaqueous secondary battery
JPS62259350A (en) Secondary cell
JPS61279057A (en) Secondary battery
JPS63198256A (en) Secondary battery
JPS6235465A (en) Nonaqueous secondary cell
JPS62180956A (en) Secondary cell
JPS62108459A (en) Secondary cell
JPS63250069A (en) Secondary battery