JPS6328463B2 - - Google Patents

Info

Publication number
JPS6328463B2
JPS6328463B2 JP57050038A JP5003882A JPS6328463B2 JP S6328463 B2 JPS6328463 B2 JP S6328463B2 JP 57050038 A JP57050038 A JP 57050038A JP 5003882 A JP5003882 A JP 5003882A JP S6328463 B2 JPS6328463 B2 JP S6328463B2
Authority
JP
Japan
Prior art keywords
weight
ethylene
content
para
propylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57050038A
Other languages
Japanese (ja)
Other versions
JPS58168649A (en
Inventor
Yasunobu Katagiri
Hideyo Morita
Tomohiko Akagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP57050038A priority Critical patent/JPS58168649A/en
Publication of JPS58168649A publication Critical patent/JPS58168649A/en
Publication of JPS6328463B2 publication Critical patent/JPS6328463B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高剛性の成形品に好適なポリプロピレ
ン組成物に関し、更に詳しくは結晶性エチレン−
プロピレンブロツク共重合体を主成分とし、特に
剛性および耐熱変形性に優れ、衝撃強度が大きく
しかも軽量の成形品を与えることができるポリプ
ロピレン組成物に関するものである。 従来、家電や自動車等のプラスチツク工業部品
材料としてはABS、ノリルなどが主として使用
されている。しかしこれらのポリマーは高価であ
るか、衝撃強度、剛性あるいは耐熱変形性が不充
分であり、プラスチツク工業部品材料として充分
満足のいくものではない。 一方、結晶性ポリプロピレンは軽量で安価、且
つ耐薬品性に優れており大量に使用されている
が、前記のポリマーに比べると剛性、耐熱変形性
に劣る。この欠点を改良するために、一般に無機
フイラーが充填されている。しかし、この無機フ
イラー充填ポリプロピレンは衝撃強度が小さく、
これから成形された成形品の密度が大きいという
欠点を有している。 このため、従来公知の無機フイラー充填ポリプ
ロピレンは耐衝撃性が特に要求されない用途には
使用することができるが、剛性とともに耐衝撃性
が同時に要求される用途には使用することができ
なかつたのである。 そこでこの発明者らは、ABS、ノリルと比べ
て密度が同程度かむしろ小さく、しかも剛性、耐
熱変形性および耐衝撃性が同程度かそれ以上のポ
リプロピレン組成物を得ることを目的として鋭意
研究した結果、この発明における特定の結晶性エ
チレン−プロピレンブロツク共重合体に無定形エ
チレン−プロピレン共重合体と粉末状無機充填剤
とを特定の割合で配合することによつて前記の目
的が達成されることを見出し、この発明を完成し
た。 すなわち、この発明は、エチレン含有量20重量
%以下、メルトフローレイト(MFR)0.05〜1.5
g/10分、常温パラ−キシレン可溶分4.5〜15重
量%、該常温パラ−キシレン可溶分の、エチレン
含有量25〜45重量%、固有粘度〔η〕(デカリン、
135℃)3〜5dl/gの結晶性エチレン−プロピ
レンブロツク共重合体(a)、ムーニー粘度ML1+4
(100℃)5〜200の無定形エチレン−プロピレン
共重合体(b)、および平均粒径0.05〜3.5ミクロン
の粉末状無機充填剤(c)よりなり、前記各成分(a)、
(b)および(c)の合計100重量%中に(b)が3〜6重量
%、(c)が15〜22重量%の割合で各々配合されてな
るポリプロピレン組成物に関するものである。 この発明のポリプロピレン組成物は、密度が
1.05g/cm3以下、曲げ弾性率が25000Kg/cm2以上、
23℃のアイゾツト衝撃強度(ノツチ付き)が30
Kg・cm/cm以上、熱変形温度が117℃以上であり、
無機フイラー充填ポリプロピレン本来の剛性、耐
熱変形性などを保持したままで、耐衝撃性が大巾
に改善され、しかも軽量化された成形品に成形す
ることができる。 この発明のポリプロピレン組成物において使用
される結晶性エチレン−プロピレンブロツク共重
合体(a)は、エチレン含有量が20重量%以下のもの
で、メルトフローレイト(MFR)が0.05〜1.5
g/10分のもので、常温パラ−キシレン可溶分
(無定形エチレン−プロピレン共重合体と低分子
量ポリマーとからなる)が4.5〜15重量%のもの
で、且つ該常温パラ−キシレン可溶分のエチレン
含有量が25〜45重量%であり、該常温パラ−キシ
レン可溶分の固有粘度〔η〕(デカリン、135℃)
が3〜5dl/gのものである。特にこの発明のポ
リプロピレン組成物において好適に使用される結
晶性エチレン−プロピレンブロツク共重合体は、
エチレン含有量が3〜15重量%のもので、メルト
フローレイト(MFR)が0.1〜1.5g/10分のもの
で、常温パラ−キシレン可溶分が7〜12重量%の
もので、且つ該常温パラ−キシレン可溶分のエチ
レン含有量が30〜40重量%であり、該常温パラ−
キシレン可溶分の固有粘度〔η〕(デカリン、135
℃)が3〜5dl/gのものである。使用される結
晶性エチレン−プロピレンブロツク共重合体が前
記の規定の範囲外のものであると、目的とする剛
性および耐熱変形性に優れ、衝撃強度が大きく、
軽量な成形品を提供するポリプロピレン組成物を
得ることができない。 この発明のポリプロピレン組成物によつて成形
品に成形したときに良好な物性を示す理由は明ら
かではないが、この発明で使用する特定の結晶性
エチレン−プロピレンブロツク共重合体と無定形
エチレン−プロピレン共重合体と粉末状無機充填
剤との間に何らかの強い相互作用が生じているも
のと考えられる。 前記結晶性エチレン−プロピレンブロツク共重
合体(a)は、該結晶性エチレン−プロピレンブロツ
ク共重合体(a)、無定形エチレン−プロピレン共重
合体(b)および粉末状無機充填剤(c)の合計100重量
%中に好適には75〜82重量%配合される。上記の
配合量が75重量%未満の場合または82重量%を越
える場合には、成形品の剛性および耐熱変形性が
低下したり成形品の耐衝撃性が低下する傾向があ
る。結晶性エチレン−プロピレンブロツク共重合
体はその合計量が前記範囲内であれば2種以上用
いてもよい。 この発明のポリプロピレン組成物において使用
される無定形エチレン−プロピレン共重合体(b)
は、ムーニー粘度ML1+4(100℃)が5〜200(好ま
しくは10〜100)であり、好ましくはエチレン含
有量が50〜85重量%のものである。上記のムーニ
ー粘度ML1+4(100℃)が5未満の場合には、成形
品の剛性および耐衝撃性が低下し、200を越える
場合には混練による無定形エチレン−プロピレン
共重合体の均一分散が困難になる。 前記無定形エチレン−プロピレン共重合体(b)
は、前記各成分(a)、(b)および(c)の合計100重量%
中に3〜6重量%配合される。上記の配合量が3
重量%未満の場合には成形品の衝撃強度が小さく
なり、6重量%を越える場合には成形品の剛性お
よび耐熱変形性を低下する。無定形エチレン−プ
ロピレン共重合体はその合計量が前記範囲内であ
れば2種以上用いてもよい。 この発明のポリプロピレン組成物において使用
される粉末状無機充填剤としては、炭酸カルシウ
ム、硫酸バリウム、タルク、シリカ、酸化チタ
ン、マイカ、ケイソウ土、クレーなどが挙げられ
る。 前記の粉末状無機充填剤は平均粒径が0.05〜
3.5ミクロンのものが使用される。ここでいう平
均粒径とは粒度分布積分曲線にて50%点の粒径で
ある。上記の粉末状無機充填剤の中でも、平均粒
径が1〜3.5ミクロンのタルクおよび平均粒径が
0.05〜0.2ミクロンの炭酸カルシウムが好適に使
用される。上記の平均粒径が0.05μ未満の場合に
は混練による粉末状無機充填剤の均一分散が困難
になり、上記の平均粒径が3.5ミクロンを越える
場合には成形品の剛性および衝撃強度が低下す
る。 前記粉末状無機充填剤(c)は前記各成分(a)、(b)お
よび(c)の合計100重量%中に15〜22重量%、好ま
しくは15〜20重量%配合される。上記の配合量が
15重量%未満の場合には成形品の剛性が低下する
とともに熱変形温度が低くなり、上記の配合量が
22重量%を越える場合には成形品の衝撃強度が低
下するとともに密度が大きくなり、また組成物の
成形性が低下する。粉末状無機充填剤は未処理の
まま使用してもよいが混練時の分散性を向上させ
る目的で各種の有機チタネート系カツプリング
剤、シラン系カツプリング剤、脂肪酸、ビニル性
不飽和結合を有するカルボン酸、脂肪酸金属塩、
脂肪酸エステル、脂肪酸アミドなどで粒子表面を
被覆処理したものを使用してもよい。粉末状無機
充填剤はその合計量が前記範囲内であれば2種以
上用いてもよい。 この発明のポリプロピレン組成物は、バンバリ
ーミキサー、二軸押出機、FCMなどの混練機を
用いて製造することができる。通常は上記混練機
で混練してペレツト状の組成物にした後加工に供
する。ペレツト状の組成物は予め粉末状無機充填
剤を高濃度マスターバツチとして混練した(ベー
スポリマーには前記結晶性エチレン−プロピレン
ブロツク共重合体あるいは無定形エチレン−プロ
ピレン共重合体を用いる。)ものと追加の結晶性
エチレン−プロピレンブロツク共重合体と無定形
エチレン−プロピレン共重合体とで希釈して製造
してもよく、あるいは直接各成分を混練して製造
してもよい。 この発明のポリプロピレン組成物によつて得ら
れる効果を損わない程度に他の樹脂、他のゴムあ
るいは他の無機充填剤を適量この発明のポリプロ
ピレン組成物に配合することができる。 また、この発明のポリプロピレン組成物から成
形される成形品の諸性能を更に向上せしめるため
に、組成物の各成分の混合時に、あるいは各成分
の混合後に、あるいはポリマー成分にあらかじめ
添加しておく方法により、2,6−ジ第三ブチル
フエノール、2,6−ジ第三ブチル−4−エチル
フエノール、2,6−ジ第三ブチル−4−n−ブ
チルフエノール、2,6−ジ第三ブチル−α−ジ
メチルアミノ−パラ−クレゾール、6−(4−ヒ
ドロキシ−3,5−ジ第三ブチルアニリノ)−2,
4−ビスオクチル−チオ−1,3,5−トリアジ
ン、n−オクタデシル−3−(4′−ヒドロキシ−
3′,5′−ジ第三ブチルフエニル)プロピオネー
ト、2,6−ジ第三ブチル−4−メチルフエノー
ル(BHT)、トリス−(2−メチル−4−ヒドロ
キシ−5−第三ブチルフエニル)ブタン、テトラ
キス−〔メチレン 3−(3′,5′−ジ第三ブチル−
4′−ヒドロキシフエニル)プロピオネート〕メタ
ン、1,3,5−トリメチル−2,4,6−トリ
ス(3,5−ジ第三ブチル−4−ヒドロキシベン
ジル)ベンゼン、ジラウリルチオジプロピオネー
トなどの酸化防止剤;2−ヒドロキシ−4−n−
オクトキシベンゾフエノン、2−ヒドロキシ−4
−オクタデシロキシベンゾフエノン、4−ドデシ
ロキシ−2−ヒドロキシベンゾフエノン、ニツケ
ル−ビス−(オルソエチル−3,5−ジ第三ブチ
ル−4−ヒドロキシベンジル)ホスホネート、2
−ヒドロキシ−4−n−オクトキシベンゾフエノ
ン、2−(2′−ヒドロキシ−3′−第三ブチル−5′−
メチルフエニル)−5−クロロベンゾトリアゾー
ル、2−(2′−ヒドロキシ−3′,5′−ジ第三ブチル
−フエニル)−5−クロロベンゾトリアゾール、
ビス−(2,6−ジメチル−4−ピペリジル)セ
バケートなどの紫外線吸収剤;三酸化アンチモ
ン、トリクレジルホスフエート、ハロゲン化アル
キルトリアジン、デカブロムジフエニルエーテ
ル、塩素化ポリエチレンなどの難燃剤;カーボン
ブラツク、酸化チタンなどの顔料;安息香酸マグ
ネシウムのような塗装性改良剤;プロセス油のよ
うな可塑剤;脂肪酸金属塩のような滑剤;ポリオ
キシエチレンアルキルエーテルのような帯電防止
剤などを配合することもできる。 この発明のポリプロピレン組成物からそれ自体
公知の方法、例えば射出成形法、押出成形、圧縮
成形、真空成形、圧空成形により成形して、剛性
と耐熱変形性とに優れ、衝撃強度が大きく軽量で
耐久性の良好な高剛性の成形品を得ることができ
る。 以下に実施例および比較例を示す。以下の記載
において「部」、「%」はそれぞれ「重量部」、「重
量%」を意味し、メルトフローレイト(MFR)
はASTM D1238(230℃、2.16Kg)に、密度は
ASTM D1505に、曲げ弾性率はASTM D790
に、アイゾツト衝撃強度はASTM D256に、熱
変形温度はASTM D648に、ムーニー粘度ML1+4
(100℃)はJISK6300に従つて測定した。結晶性
ポリプロピレンの常温(約20℃)パラ−キシレン
可溶分は、ポリマー5gをパラ−キシレン500ml
中に約1%の酸化防止剤とともに加えて加熱下に
完全に溶解させた後、一昼夜常温で放置し、析出
した不溶分を遠心分離して除き可溶分溶液をアセ
トン中に投入し、析出した不溶分を減圧乾燥して
得た。その可溶分のエチレン含有量はガードナー
法により求め、その固有粘度〔η〕はデカリンを
溶媒として135℃にて求めた。 実施例 1 エチレン含有量5.5%、メルトフローレイト
(MFR)1.0g/10分、常温パラ−キシレン可溶
分8.2%、常温パラ−キシレン可溶分の、エチレ
ン含有量33.0%、固有粘度〔η〕3.7dl/gの結
晶性エチレン−プロピレンブロツク共重合体(以
下EPコポリマーAと記す)75部と、ムーニー粘
度ML1+4(100℃)65、固有粘度〔η〕2.25dl/g
(デカリン、135℃、以下同じ)、エチレン含有量
74%の無定形エチレン−プロピレン共重合体(以
下EPR−Aと記す)5部と、平均粒径2.5μのタル
ク20部と、テトラキス−〔メチレン 3−(3′,
5′−ジ第三ブチル−4′−ヒドロキシフエニル)プ
ロピオネート〕メタン0.2部と、BHT0.1部とをヘ
ンシエルミキサーにて1分間混合後、神戸製鋼所
製2FCMにて最高設定温度220℃で混練して押出
し、ペレツト化した。 得られたペレツト状のポリプロピレン組成物の
メルトフローレイト(MFR)、およびこの組成物
から射出成形によつて得た試験片についての密
度、曲げ弾性率、アイゾツト衝撃強度および熱変
形温度を第1表に示す。 参考のために、プラスチツク工業部品材料とし
て使用されている市販のノリル、およびABSの
物性をまとめて第1表に示す。 実施例 2 結晶性エチレン−プロピレンブロツク共重合体
として、エチレン含有量6%、MFR0.3g/10
分、常温パラ−キシレン可溶分8.2%、常温パラ
−キシレン可溶分の、エチレン含有量32.0%、固
有粘度〔η〕3.9dl/gの結晶性エチレン−プロ
ピレンブロツク共重合体(以下EPコポリマーB
と記す)を用いた他は実施例1と同様に実施し
た。結果をまとめて第1表に示す。
The present invention relates to a polypropylene composition suitable for highly rigid molded articles, and more specifically, to a polypropylene composition suitable for highly rigid molded articles.
The present invention relates to a polypropylene composition containing a propylene block copolymer as a main component, which has particularly excellent rigidity and heat deformation resistance, and is capable of producing lightweight molded articles with high impact strength. Conventionally, ABS, Noryl, etc. have been mainly used as materials for plastic industrial parts such as home appliances and automobiles. However, these polymers are expensive, have insufficient impact strength, stiffness or heat deformation resistance, and are not fully satisfactory as materials for plastic industrial parts. On the other hand, crystalline polypropylene is used in large quantities because it is lightweight, inexpensive, and has excellent chemical resistance, but it is inferior in rigidity and heat deformation resistance compared to the above-mentioned polymers. To remedy this drawback, they are generally filled with inorganic fillers. However, this inorganic filler-filled polypropylene has low impact strength and
It has the disadvantage that the density of the molded product molded from this is high. For this reason, conventionally known inorganic filler-filled polypropylene can be used in applications where impact resistance is not particularly required, but it cannot be used in applications where both rigidity and impact resistance are required. . Therefore, the inventors conducted intensive research with the aim of obtaining a polypropylene composition with a density comparable to or even lower than that of ABS and Noryl, and with rigidity, heat deformation resistance, and impact resistance comparable to or higher than that of ABS and Noryl. As a result, the above object is achieved by blending the amorphous ethylene-propylene copolymer and the powdered inorganic filler with the specific crystalline ethylene-propylene block copolymer in the present invention in a specific ratio. He discovered this and completed this invention. That is, this invention has an ethylene content of 20% by weight or less and a melt flow rate (MFR) of 0.05 to 1.5.
g/10 minutes, para-xylene soluble content at room temperature 4.5 to 15% by weight, ethylene content 25 to 45% by weight of the para-xylene soluble content at room temperature, intrinsic viscosity [η] (decalin,
135°C) 3-5 dl/g crystalline ethylene-propylene block copolymer (a), Mooney viscosity ML 1+4
(100°C) 5 to 200% amorphous ethylene-propylene copolymer (b), and a powdered inorganic filler (c) with an average particle size of 0.05 to 3.5 microns, each of the above components (a),
This invention relates to a polypropylene composition in which (b) is blended in a proportion of 3 to 6% by weight and (c) is blended in a proportion of 15 to 22% by weight in a total of 100% by weight of (b) and (c). The polypropylene composition of this invention has a density of
1.05g/cm 3 or less, bending elastic modulus 25000Kg/cm 2 or more,
Izot impact strength (notched) at 23℃ is 30
Kg・cm/cm or more, heat distortion temperature is 117℃ or more,
While retaining the inherent rigidity and heat deformation resistance of polypropylene filled with inorganic fillers, the impact resistance is greatly improved, and it is possible to mold into lightweight molded products. The crystalline ethylene-propylene block copolymer (a) used in the polypropylene composition of the present invention has an ethylene content of 20% by weight or less and a melt flow rate (MFR) of 0.05 to 1.5.
g/10 minutes, the content soluble in para-xylene at room temperature (consisting of an amorphous ethylene-propylene copolymer and a low molecular weight polymer) is 4.5 to 15% by weight, and the para-xylene soluble at room temperature The ethylene content is 25 to 45% by weight, and the intrinsic viscosity [η] of the para-xylene soluble component at room temperature (Decalin, 135℃)
is 3 to 5 dl/g. In particular, the crystalline ethylene-propylene block copolymer preferably used in the polypropylene composition of the present invention is
It has an ethylene content of 3 to 15% by weight, a melt flow rate (MFR) of 0.1 to 1.5g/10 minutes, a content soluble in para-xylene at room temperature of 7 to 12% by weight, and The ethylene content of the room temperature para-xylene soluble portion is 30 to 40% by weight, and the room temperature para-xylene
Intrinsic viscosity of xylene soluble component [η] (decalin, 135
°C) is 3 to 5 dl/g. If the crystalline ethylene-propylene block copolymer used is outside the range specified above, it will have excellent rigidity and heat deformation resistance, high impact strength, and
It is not possible to obtain polypropylene compositions that provide lightweight molded articles. Although the reason why the polypropylene composition of this invention exhibits good physical properties when molded into a molded article is not clear, the specific crystalline ethylene-propylene block copolymer used in this invention and the amorphous ethylene-propylene It is considered that some kind of strong interaction occurs between the copolymer and the powdered inorganic filler. The crystalline ethylene-propylene block copolymer (a) is composed of the crystalline ethylene-propylene block copolymer (a), the amorphous ethylene-propylene copolymer (b) and the powdered inorganic filler (c). It is preferably blended in an amount of 75 to 82% by weight in a total of 100% by weight. When the above-mentioned amount is less than 75% by weight or exceeds 82% by weight, the molded article tends to have lower rigidity and heat deformation resistance, and has a lower impact resistance. Two or more types of crystalline ethylene-propylene block copolymers may be used as long as the total amount is within the above range. Amorphous ethylene-propylene copolymer (b) used in the polypropylene composition of this invention
has a Mooney viscosity ML 1+4 (at 100° C.) of 5 to 200 (preferably 10 to 100) and preferably has an ethylene content of 50 to 85% by weight. If the above Mooney viscosity ML 1+4 (100℃) is less than 5, the rigidity and impact resistance of the molded product will decrease, and if it exceeds 200, the amorphous ethylene-propylene copolymer will become uniform during kneading. Difficult to disperse. The amorphous ethylene-propylene copolymer (b)
is 100% by weight of the above components (a), (b) and (c)
It is blended in an amount of 3 to 6% by weight. The above blending amount is 3
If it is less than 6% by weight, the impact strength of the molded article will be reduced, and if it exceeds 6% by weight, the rigidity and heat deformation resistance of the molded article will be reduced. Two or more types of amorphous ethylene-propylene copolymers may be used as long as the total amount is within the above range. Powdered inorganic fillers used in the polypropylene composition of the present invention include calcium carbonate, barium sulfate, talc, silica, titanium oxide, mica, diatomaceous earth, clay, and the like. The above powdered inorganic filler has an average particle size of 0.05~
A 3.5 micron one is used. The average particle size here refers to the particle size at the 50% point on the particle size distribution integral curve. Among the powdered inorganic fillers mentioned above, talc with an average particle size of 1 to 3.5 microns and talc with an average particle size of 1 to 3.5 microns are
Calcium carbonate between 0.05 and 0.2 microns is preferably used. If the above average particle size is less than 0.05 μm, it will be difficult to uniformly disperse the powdered inorganic filler through kneading, and if the above average particle size exceeds 3.5 μm, the rigidity and impact strength of the molded product will decrease. do. The powdered inorganic filler (c) is blended in an amount of 15 to 22% by weight, preferably 15 to 20% by weight, in a total of 100% by weight of the components (a), (b) and (c). The above compounding amount is
If it is less than 15% by weight, the rigidity of the molded product will decrease and the heat distortion temperature will decrease, making it difficult to maintain the above blending amount.
When the amount exceeds 22% by weight, the impact strength of the molded article decreases, the density increases, and the moldability of the composition decreases. Powdered inorganic fillers may be used untreated, but in order to improve dispersibility during kneading, various organic titanate coupling agents, silane coupling agents, fatty acids, and carboxylic acids having vinyl unsaturated bonds may be used. , fatty acid metal salts,
Particle surfaces coated with fatty acid ester, fatty acid amide, etc. may also be used. Two or more types of powdered inorganic fillers may be used as long as the total amount is within the above range. The polypropylene composition of the present invention can be produced using a kneader such as a Banbury mixer, twin screw extruder, or FCM. Usually, the composition is kneaded in the above-mentioned kneading machine to form a pellet-like composition, which is then subjected to processing. The pellet-like composition is prepared by kneading a powdered inorganic filler in the form of a high-concentration masterbatch (the above-mentioned crystalline ethylene-propylene block copolymer or amorphous ethylene-propylene copolymer is used as the base polymer) and additional materials. It may be produced by diluting the crystalline ethylene-propylene block copolymer and the amorphous ethylene-propylene copolymer, or it may be produced by directly kneading each component. Appropriate amounts of other resins, other rubbers, or other inorganic fillers can be blended into the polypropylene composition of the present invention to the extent that the effects obtained by the polypropylene composition of the present invention are not impaired. In addition, in order to further improve the various performances of molded articles molded from the polypropylene composition of the present invention, there is also a method of adding the polypropylene composition at the time of mixing, after mixing each component, or to the polymer component in advance. 2,6-di-tert-butylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,6-di-tert-butyl-4-n-butylphenol, 2,6-di-tert-butyl -α-dimethylamino-para-cresol, 6-(4-hydroxy-3,5-di-tert-butylanilino)-2,
4-bisoctyl-thio-1,3,5-triazine, n-octadecyl-3-(4'-hydroxy-
3',5'-di-tert-butylphenyl) propionate, 2,6-di-tert-butyl-4-methylphenol (BHT), tris-(2-methyl-4-hydroxy-5-tert-butylphenyl) butane, tetrakis -[Methylene 3-(3',5'-di-tert-butyl-
4'-hydroxyphenyl)propionate] methane, 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene, dilaurylthiodipropionate, etc. Antioxidant; 2-hydroxy-4-n-
Octoxybenzophenone, 2-hydroxy-4
-octadecyloxybenzophenone, 4-dodecyloxy-2-hydroxybenzophenone, nickel-bis-(orthoethyl-3,5-di-tert-butyl-4-hydroxybenzyl)phosphonate, 2
-hydroxy-4-n-octoxybenzophenone, 2-(2'-hydroxy-3'-tert-butyl-5'-
methylphenyl)-5-chlorobenzotriazole, 2-(2'-hydroxy-3',5'-di-tert-butyl-phenyl)-5-chlorobenzotriazole,
UV absorbers such as bis-(2,6-dimethyl-4-piperidyl) sebacate; flame retardants such as antimony trioxide, tricresyl phosphate, halogenated alkyl triazine, decabrom diphenyl ether, and chlorinated polyethylene; carbon Pigments such as black and titanium oxide; paintability improvers such as magnesium benzoate; plasticizers such as process oil; lubricants such as fatty acid metal salts; and antistatic agents such as polyoxyethylene alkyl ether. You can also do that. The polypropylene composition of the present invention is molded by a method known per se, such as injection molding, extrusion molding, compression molding, vacuum molding, or pressure molding, and has excellent rigidity and heat deformation resistance, high impact strength, light weight, and durability. A highly rigid molded product with good properties can be obtained. Examples and comparative examples are shown below. In the following description, "parts" and "%" mean "parts by weight" and "% by weight", respectively, and melt flow rate (MFR)
According to ASTM D1238 (230℃, 2.16Kg), the density is
ASTM D1505, flexural modulus is ASTM D790
, Izot impact strength to ASTM D256, heat distortion temperature to ASTM D648, Mooney viscosity ML 1+4
(100°C) was measured according to JISK6300. The para-xylene soluble portion of crystalline polypropylene at room temperature (approximately 20℃) is obtained by mixing 5 g of polymer with 500 ml of para-xylene.
After adding about 1% of antioxidant to the solution and completely dissolving it under heating, leave it at room temperature for a day and night, remove the precipitated insoluble matter by centrifugation, and pour the soluble matter solution into acetone to precipitate. The insoluble matter was dried under reduced pressure. The ethylene content of the soluble portion was determined by the Gardner method, and the intrinsic viscosity [η] was determined at 135°C using decalin as a solvent. Example 1 Ethylene content 5.5%, melt flow rate (MFR) 1.0 g/10 min, normal temperature para-xylene soluble content 8.2%, normal temperature para-xylene soluble content, ethylene content 33.0%, intrinsic viscosity [η ] 75 parts of 3.7 dl/g crystalline ethylene-propylene block copolymer (hereinafter referred to as EP copolymer A), Mooney viscosity ML 1+4 (100°C) 65, intrinsic viscosity [η] 2.25 dl/g
(Decalin, 135℃, same below), ethylene content
5 parts of 74% amorphous ethylene-propylene copolymer (hereinafter referred to as EPR-A), 20 parts of talc with an average particle size of 2.5μ, and tetrakis-[methylene 3-(3',
5′-Ditert-butyl-4′-hydroxyphenyl)propionate] 0.2 parts of methane and 0.1 parts of BHT were mixed for 1 minute in a Henschel mixer, then the maximum setting temperature was 220°C using a Kobe Steel 2FCM. The mixture was kneaded and extruded into pellets. Table 1 shows the melt flow rate (MFR) of the pellet-like polypropylene composition obtained, and the density, flexural modulus, Izot impact strength, and heat distortion temperature of test pieces obtained from this composition by injection molding. Shown below. For reference, the physical properties of commercially available Noryl and ABS, which are used as materials for plastic industrial parts, are summarized in Table 1. Example 2 As a crystalline ethylene-propylene block copolymer, ethylene content 6%, MFR 0.3g/10
Crystalline ethylene-propylene block copolymer (EP copolymer) with a para-xylene soluble content at room temperature of 8.2%, a para-xylene soluble content at room temperature, an ethylene content of 32.0%, and an intrinsic viscosity [η] of 3.9 dl/g. B
Example 1 was carried out in the same manner as in Example 1, except that the following was used. The results are summarized in Table 1.

【表】 実施例 3 EPコポリマーAを77部、EPR−Aを3部、タ
ルクを20部用いた他は実施例1と同様に実施し
た。結果をまとめて第2表に示す。 実施例 4〜5 無定形エチレン−プロピレン共重合体として、
EPR−Aに代えて、ムーニー粘度ML1+4(100℃)
40、固有粘度1.89dl/g、エチレン含有量76%の
無定形エチレン−プロピレン共重合体(以下
EPR−Bと記す)を用いたか、あるいはムーニ
ー粘度ML1+4(100℃)10、固有粘度1.40dl/g、
エチレン含有量76%の無定形エチレン−プロピレ
ン共重合体(以下EPR−Cと記す)を用いた他
は実施例3と同様に実施した。結果をまとめて第
2表に示す。 実施例6、比較例2 各成分の割合を第2表に示す割合に変えた他は
実施例3と同様に実施した。結果をまとめて第2
表に示す。 比較例 3 結晶性エチレン−プロピレンブロツク共重合体
として、エチレン含有量2.5%、MFR1.0g/10
分、常温パラ−キシレン可溶分4.0%、常温パラ
−キシレン可溶分の、エチレン含有量36.0%、固
有粘度〔η〕3.8dl/gの結晶性エチレン−プロ
ピレンブロツク共重合体(以下EPコポリマーa
を記す)を用いた他は実施例3と同様に実施し
た。結果をまとめて第2表に示す。
[Table] Example 3 The same procedure as in Example 1 was carried out except that 77 parts of EP copolymer A, 3 parts of EPR-A, and 20 parts of talc were used. The results are summarized in Table 2. Examples 4-5 As an amorphous ethylene-propylene copolymer,
Mooney viscosity ML 1+4 (100℃) instead of EPR-A
40, amorphous ethylene-propylene copolymer with an intrinsic viscosity of 1.89 dl/g and an ethylene content of 76% (hereinafter
EPR-B) or Mooney viscosity ML 1+4 (100℃) 10, intrinsic viscosity 1.40 dl/g,
The same procedure as in Example 3 was carried out except that an amorphous ethylene-propylene copolymer (hereinafter referred to as EPR-C) having an ethylene content of 76% was used. The results are summarized in Table 2. Example 6, Comparative Example 2 The same procedure as Example 3 was carried out except that the proportions of each component were changed to those shown in Table 2. Summary of the results in the second
Shown in the table. Comparative Example 3 As a crystalline ethylene-propylene block copolymer, ethylene content 2.5%, MFR 1.0g/10
Crystalline ethylene-propylene block copolymer (hereinafter referred to as EP copolymer) with a para-xylene soluble content at room temperature of 4.0%, a para-xylene soluble content at room temperature, an ethylene content of 36.0%, and an intrinsic viscosity [η] of 3.8 dl/g. a
Example 3 was carried out in the same manner as in Example 3, except that the following was used. The results are summarized in Table 2.

【表】【table】

Claims (1)

【特許請求の範囲】 1 エチレン含有量20重量%以下、メルトフロー
レイト(MFR)0.05〜1.5g/10分、常温パラ−
キシレン可溶分4.5〜15重量%、該常温パラ−キ
シレン可溶分の、エチレン含有量25〜45重量%、
固有粘度〔η〕(デカリン、135℃)3〜5dl/g
の結晶性エチレン−プロピレンブロツク共重合体
(a)、ムーニー粘度ML1+4(100℃)5〜200の無定
形エチレン−プロピレン共重合体(b)、および平均
粒径0.05〜3.5ミクロンの粉末状無機充填剤(c)よ
りなり、前記各成分(a)、(b)および(c)の合計100重
量%中に(b)が3〜5重量%、(c)が15〜22重量%の
割合で各々配合されてなるポリプロピレン組成
物。
[Claims] 1. Ethylene content of 20% by weight or less, melt flow rate (MFR) of 0.05 to 1.5 g/10 minutes, room temperature para-
Xylene soluble content: 4.5 to 15% by weight, ethylene content of the normal temperature para-xylene soluble content: 25 to 45% by weight,
Intrinsic viscosity [η] (decalin, 135℃) 3-5 dl/g
crystalline ethylene-propylene block copolymer
(a), an amorphous ethylene-propylene copolymer (b) with a Mooney viscosity of ML 1+4 (100°C) 5 to 200, and a powdered inorganic filler (c) with an average particle size of 0.05 to 3.5 microns, A polypropylene composition in which (b) is blended in a proportion of 3 to 5% by weight and (c) is blended in a proportion of 15 to 22% by weight in a total of 100% by weight of each of the above-mentioned components (a), (b) and (c). thing.
JP57050038A 1982-03-30 1982-03-30 Polypropylene composition Granted JPS58168649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57050038A JPS58168649A (en) 1982-03-30 1982-03-30 Polypropylene composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57050038A JPS58168649A (en) 1982-03-30 1982-03-30 Polypropylene composition

Publications (2)

Publication Number Publication Date
JPS58168649A JPS58168649A (en) 1983-10-05
JPS6328463B2 true JPS6328463B2 (en) 1988-06-08

Family

ID=12847822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57050038A Granted JPS58168649A (en) 1982-03-30 1982-03-30 Polypropylene composition

Country Status (1)

Country Link
JP (1) JPS58168649A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068375B2 (en) * 1983-08-18 1994-02-02 三井東圧化学株式会社 Method for producing polypropylene resin composition
JP2802023B2 (en) * 1993-08-10 1998-09-21 宇部興産株式会社 Reinforced polypropylene resin composition
JP3213481B2 (en) * 1994-07-07 2001-10-02 トヨタ自動車株式会社 Polypropylene resin composition for automotive interior
DE69601560T2 (en) * 1995-07-17 1999-07-01 Toyota Motor Co Ltd Polypropylene resin compound
US6214934B1 (en) 1997-05-28 2001-04-10 Mitsui Chemicals Inc Polypropylene resin composition for use in automotive inner and outer trims
JP2001172453A (en) 1999-12-14 2001-06-26 Basell Technology Co Bv Propylene resin composition
ES2955448T3 (en) 2014-10-30 2023-12-01 Prime Polymer Co Ltd Polypropylene foam molded article and process for producing polypropylene foam molded article

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364257A (en) * 1976-11-22 1978-06-08 Toyoda Gosei Co Ltd Impact-resistant resin composition
JPS5364256A (en) * 1976-11-22 1978-06-08 Toyoda Gosei Co Ltd Resin composition having high impact resistance
JPS5473843A (en) * 1977-10-27 1979-06-13 Montedison Spa Selffextinguishing polymer composition based on modified polypropylene

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364257A (en) * 1976-11-22 1978-06-08 Toyoda Gosei Co Ltd Impact-resistant resin composition
JPS5364256A (en) * 1976-11-22 1978-06-08 Toyoda Gosei Co Ltd Resin composition having high impact resistance
JPS5473843A (en) * 1977-10-27 1979-06-13 Montedison Spa Selffextinguishing polymer composition based on modified polypropylene

Also Published As

Publication number Publication date
JPS58168649A (en) 1983-10-05

Similar Documents

Publication Publication Date Title
US4871805A (en) Polypropylene composition
JPH0352486B2 (en)
JP2019163354A (en) Resin composition, method for producing resin composition, and molded body
JP3039560B2 (en) Thermoplastic resin composition and use thereof
JPS6328463B2 (en)
JPH01149845A (en) Filler reinforced resin composition
US6767953B2 (en) Polypropylene resin composition and injection-molded article thereof
KR20160039406A (en) Polypropylene resin composition having high impact resistance and high stiffness and process for their manufacture and molded article produced with the same
JP2020122102A (en) Resin composition and injection molding
JPS6328462B2 (en)
EP0426315A2 (en) Polypropylene resin composition
Chiang et al. Effect of matrix graft modification using acrylic acid on the PP/Mg (OH) 2 composites and its possible mechanism
US5356992A (en) Compatibilized blends of PPE/polyethylene copolymer
JPS634585B2 (en)
JPS59105042A (en) Propylene polymer composition
JP2019019318A (en) Polypropylene resin composition and molded body
JP3119691B2 (en) Resin composition for bumper
JP3356364B2 (en) Polyolefin resin composition
JPH0212978B2 (en)
WO1989000596A1 (en) Thermoplastic resin composition
JP2741262B2 (en) Inorganic filler-containing polyolefin composition
JPH11335515A (en) Polyolefinic resin composition
JP3240582B2 (en) Injection molding polypropylene
JP2833333B2 (en) Thermoplastic resin composition
JPS6228173B2 (en)