JPS6328415B2 - - Google Patents

Info

Publication number
JPS6328415B2
JPS6328415B2 JP9175684A JP9175684A JPS6328415B2 JP S6328415 B2 JPS6328415 B2 JP S6328415B2 JP 9175684 A JP9175684 A JP 9175684A JP 9175684 A JP9175684 A JP 9175684A JP S6328415 B2 JPS6328415 B2 JP S6328415B2
Authority
JP
Japan
Prior art keywords
water
allyl alcohol
allyl
composition
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9175684A
Other languages
Japanese (ja)
Other versions
JPS60237032A (en
Inventor
Toshinobu Mitsui
Yukio Iizuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP9175684A priority Critical patent/JPS60237032A/en
Publication of JPS60237032A publication Critical patent/JPS60237032A/en
Publication of JPS6328415B2 publication Critical patent/JPS6328415B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 3.1 産業上の利用分野 本発明は、アリルアルコール、酢酸アリル及び
水の混合物から、アリルアルコールを分離精製す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION 3.1 Industrial Application Field The present invention relates to a method for separating and purifying allyl alcohol from a mixture of allyl alcohol, allyl acetate, and water.

3.2 従来の技術 上記三元混合物からのアリルアルコールの精製
回収については、特公昭50−28934に開示されて
いる、一本の蒸留塔と共沸化剤を用いる方法、特
公昭48−23408、同49−4203に開示されている、
蒸留塔二本を用いる方法がある。
3.2 Prior Art Regarding the purification and recovery of allyl alcohol from the above-mentioned ternary mixture, methods using one distillation column and an azeotrope agent are disclosed in Japanese Patent Publication No. 50-28934, Japanese Patent Publication No. 48-23408, 49-4203,
There is a method using two distillation columns.

しかし、これらの方法においては、アリルアル
コールは水または水および共沸化物との混合物と
して得られるに過ぎず、アリルアルコール―水の
二元系共沸組成(水―72.3wt%)以上のアルコー
ル濃縮は不可能である。
However, in these methods, allyl alcohol is only obtained as water or a mixture with water and an azeotrope, and alcohol concentration exceeding the binary azeotrope composition of allyl alcohol-water (water-72.3 wt%) is required. is not possible.

これ以上の脱水を行なうためには、第四成分を
共沸化剤として添加する等の対策が必要で、その
ために装置が大型化し、設備費、運転費も増大す
る。
In order to perform further dehydration, it is necessary to take measures such as adding a fourth component as an azeotrope agent, which increases the size of the equipment and increases equipment costs and operating costs.

3.3 発明が解決しようとする問題点 本発明は、上記の問題点を解決し、高純度のア
リルアルコールを能率よく回収する方法を提供し
ようとするものである。
3.3 Problems to be Solved by the Invention The present invention aims to solve the above problems and provide a method for efficiently recovering highly pure allyl alcohol.

3.4 本発明の構成、手段 本発明者は、アリルアルコールの脱水と脱酢酸
アリルを同時に行なえる蒸留法について、種々検
討を重ねた結果、特定の還流システムを組合わせ
ることにより、実質的に一本の蒸留塔を用い、そ
の塔底から機能的に酢酸アリル及び水を含まない
高純度のアリルアルコールが得られることを見出
し、本発明に至つた。
3.4 Structure and means of the present invention As a result of various studies on a distillation method that can simultaneously dehydrate allyl alcohol and remove allyl acetate, the present inventor has found that by combining a specific reflux system, it is possible to use a distillation method that can be practically used in one method. The inventors have discovered that highly pure allyl alcohol, which is functionally free of allyl acetate and water, can be obtained from the bottom of the column by using a distillation column of 1,000,000.

その要旨は、特許請求の範囲に記載の通りであ
るが、以下、第1図、第2図により発明の構成の
具体例を説明する。
Although the gist is as described in the claims, specific examples of the configuration of the invention will be explained below with reference to FIGS. 1 and 2.

第1図において、原料供給管1から水を200wt
%以上含むアリルアルコール、酢酸アリル、水の
混合物を供給し、これを1本の蒸留塔により蒸留
して塔底から塔底抜出管8を通じて高純度のアリ
ルアルコールを回収しようとするのであるが、こ
の場合、塔頂液抜出管17中の塔頂留出液中の水
分は、上記三元系共沸組成たる20wt%以上には
濃縮できない。
In Figure 1, 200w of water is supplied from raw material supply pipe 1.
The purpose is to supply a mixture of allyl alcohol, allyl acetate, and water that contains more than In this case, the water content in the overhead distillate in the overhead liquid withdrawal pipe 17 cannot be concentrated to more than 20 wt%, which is the ternary azeotropic composition.

又、この組成近傍においては、アリルアルコー
ルは水に対し、低沸点成分としての挙動を示すた
め、通常の還流方式では塔底抜出液から水分を除
去することはできない。
In addition, in the vicinity of this composition, allyl alcohol behaves as a low-boiling point component with respect to water, and therefore water cannot be removed from the bottom effluent by a normal reflux method.

本発明においては、塔頂留出物が、冷却後二液
相に分離することに着目し、第1図の如く塔頂留
出液を塔頂液抜出管17を通じてデカンター20
に導き、堰21により二相分離する。
In the present invention, we focus on the fact that the top distillate separates into two liquid phases after cooling, and as shown in FIG.
The two phases are separated by the weir 21.

二相中、デカンター豊水相3は通常、豊水相抜
出管4を通じて排出させるが、原料供給管1中の
酢酸アリル濃度により豊水相還流管19を通じ
て、一部塔上部に還流させることもできる。
Among the two phases, the decanter rich water phase 3 is normally discharged through the rich water phase extraction pipe 4, but depending on the allyl acetate concentration in the raw material supply pipe 1, a part of it can be refluxed to the upper part of the column through the rich water phase reflux pipe 19.

一方、デカンター貧水相2は一部を貧水相還流
管16を通じて塔上部に還流させ、残部を貧水相
抜出管7を通じて排出させる。
On the other hand, a part of the decanter poor water phase 2 is refluxed to the upper part of the column through the poor water phase reflux pipe 16, and the remaining part is discharged through the poor water phase extraction pipe 7.

貧水相還流管16経由の還流により、水とアリ
ルアルコールの相対揮発度に変化がもたらされ、
アリルアルコールが高沸点成分としての挙動を示
すようになる。
Refluxing via the poor aqueous phase reflux tube 16 causes a change in the relative volatility of water and allyl alcohol;
Allyl alcohol begins to behave as a high boiling point component.

すなわち、酢酸アリルを貧水相還流管16経由
で循環させることにより、アリルアルコールの脱
水が可能となる。貪水相還流管16中の液は、直
接塔に還流させず、原料供給管1中の液と混合し
て塔に供給してもよい。
That is, by circulating allyl acetate via the poor water phase reflux tube 16, allyl alcohol can be dehydrated. The liquid in the hydrophilic phase reflux pipe 16 may not be directly refluxed to the tower, but may be mixed with the liquid in the raw material supply pipe 1 and supplied to the tower.

原料供給管1中の液中水分20wt%以下であれ
ば、比揮発度の変化により水がアリルアルコール
に対し、低沸点成分としての挙動を示す。この場
合、原料供給管1液中の酢酸アリル濃度により、
豊水相還流管19から豊水相を循環させることが
必要である。
If the water content in the liquid in the raw material supply pipe 1 is 20 wt% or less, water behaves as a low boiling point component with respect to allyl alcohol due to a change in specific volatility. In this case, depending on the allyl acetate concentration in the raw material supply pipe 1 liquid,
It is necessary to circulate the rich water phase from the rich water phase return pipe 19.

以下、これについての原理を第3図により説明
する。
The principle behind this will be explained below with reference to FIG.

第3図において、共沸点の温度は常圧では、 a:88.9℃ b:82.6℃ c:83.0℃ i:95.1℃ 又、純物質の沸点は、 A:100℃ B: 97℃ C:104℃ である。曲線DE⌒は溶解度曲線を示しDE⌒と直線
ACに囲まれた領域に三元系組成が存在する場合
は、タイラインに従い貧水相と豊水相の二相に分
離する。
In Figure 3, the azeotropic temperatures at normal pressure are: a: 88.9°C b: 82.6°C c: 83.0°C i: 95.1°C Also, the boiling points of pure substances are: A: 100°C B: 97°C C: 104°C It is. Curve DE⌒ shows the solubility curve and is a straight line with DE⌒
If a ternary composition exists in the area surrounded by AC, it will separate into two phases, an aqueous-poor phase and an aqueous-rich phase, according to tie lines.

三成分系のどの領域の組成を蒸留しても、気液
平衡の関係から、塔頂蒸発組成は、a,b,cを
結ぶ低沸点帯を逸脱することはなく、最終的に
は、b点に収束する。
No matter which region of the ternary system is distilled, the top evaporation composition will not deviate from the low boiling point zone connecting a, b, and c due to the relationship of vapor-liquid equilibrium, and ultimately, b converge to a point.

従つて、通常の蒸留においては、供給組成によ
つて次の3CASEとなる。
Therefore, in normal distillation, the following 3 CASEs occur depending on the feed composition.

(CASE―1) 供給組成が、a,b及びcを結
ぶ曲線で示される水―アリルアルコール側共沸
鞍線よりも豊水側のA―a―c領域にある場合
は、塔底アリルアルコール中の酢酸アリルは除
去可能であるが、脱水は無理である。
(CASE-1) If the feed composition is in the A-a-c region on the rich water side than the azeotrope saddle line on the water-allylic alcohol side shown by the curve connecting a, b, and c, allyl alcohol at the bottom of the column is Although allyl acetate can be removed, dehydration is impossible.

(CASE―2) 供給組成が、三元系共沸点bと
純アリルアルコールBを結んだ直線よりも豊水
側で、かつ、a,b及びcを結ぶ曲線で示され
る水―アリルアルコール側共沸鞍線よりも貧水
側(a,b及びBで囲まれる領域)の適当な条
件(還流比/段数)を選べば、塔頂蒸発組成は
ab線上に設定できる故、塔底より脱水、脱酢
酸アリルされたアリルアルコールが得られる。
(CASE-2) Water-allyl alcohol azeotrope whose supply composition is on the rich water side of the straight line connecting ternary system azeotrope point b and pure allyl alcohol B, and is represented by a curve connecting a, b, and c. If appropriate conditions (reflux ratio/number of stages) on the water-poor side of the saddle line (area surrounded by a, b, and B) are selected, the top evaporation composition will be
Since it can be set above the AB line, dehydrated, deacetated and allyl alcohol can be obtained from the bottom of the column.

(CASE―3) 供給組成がその他の領域たるb
―B―C―c領域にある場合は、CASE―1と
は逆に脱水は可能であるが、脱酢酸アリルは不
可能である。
(CASE-3) Supply composition is another area b
-B-C-c region, contrary to CASE-1, dehydration is possible, but allyl acetate is not possible.

従つて、塔底で高純度のアリルアルコールを得
るためには、前記のごとく、CASE―2の領域に
供給組成を設定する必要がある。そのためには塔
頂蒸気組成を凝縮させると二相分離する領域とな
る条件を設定し、その貧水相、豊水相を利用す
る。
Therefore, in order to obtain highly pure allyl alcohol at the bottom of the column, it is necessary to set the feed composition in the CASE-2 region as described above. To achieve this, we set conditions that result in two-phase separation when the top vapor composition is condensed, and utilize the water-poor phase and water-rich phase.

例 塔頂蒸気組成をたとえば三元系共沸点bに設定
し、その組成で還流を行ない、一部をデカンター
に導く。
Example The top vapor composition is set to, for example, the ternary azeotropic point b, reflux is carried out at that composition, and a portion is led to a decanter.

(CASE―1)供給組成“f”(供給組成が前記
CASE 1の領域)とし、供給量Lとする。デ
カンターでの貧水相“d”の一部を塔に戻すこ
とにより、供給点をf→eに見かけ上移すこと
により、CASE―2と同様に高純度アリルアル
コールが得られる。
(CASE-1) Feed composition “f” (feed composition is
(area of CASE 1), and the supply amount is L. By returning a portion of the aqueous phase "d" in the decanter to the column, high purity allyl alcohol can be obtained in the same manner as in CASE-2 by apparently shifting the feed point from f to e.

Γ戻す量はef/ed×Lとなる。 The amount to return Γ is ef/ed×L.

Γデカンターに導く量Bf/Bg×gd/bd×L 塔頂留出組成はバランス上“g”が得られ
る。
Amount led to the Γ decanter Bf/Bg×gd/bd×L The composition of the top distillate is “g” in terms of balance.

(CASE―3)供給組成“f”(供給組成が前記
CASE 3の領域)の場合はCASE―1とは逆
にデカンターの豊水相“h”の一部を塔に戻す
ことにより、供給点をf′→e′に見かけ上移動す
る。
(CASE-3) Feed composition “f” (feed composition is
In the case of CASE 3), contrary to CASE-1, by returning a portion of the rich water phase "h" from the decanter to the column, the supply point is apparently moved from f' to e'.

Γ戻す量e′f′/e′h×L Γデカンターに導く量Bf′/Bg′×g′h/bh×L 塔頂留出組成はバランス上“g′”を得る。 ΓReturn amount e′f′/e′h×L ΓAmount led to decanter Bf′/Bg′×g′h/bh×L The top distillate composition obtains "g'" on balance.

又、塔頂留出分の冷却については、第1図のご
とく塔頂凝縮器9を用いる他、第2図のごとく外
部凝縮器29を用いてもよい。
Further, for cooling the overhead distillate, in addition to using the tower top condenser 9 as shown in FIG. 1, an external condenser 29 as shown in FIG. 2 may be used.

3.5 実施例 第4図の構成を有する、内径50mmのオルダーシ
ヨウ型精留器を用いて、三元混合物の精製を行な
つた。
3.5 Example A ternary mixture was purified using an Olderschau type rectifier having an inner diameter of 50 mm and having the configuration shown in FIG.

塔上部42を10段、塔中部43を10段、塔下部
44を20段とへ、供給段55に予熱された混合液
(水21.20wt%、アリルアルコール40.61wt%及び
酢酸アリル38.19wt%)294Kg/hを供給した。
The preheated mixed liquid (water 21.20 wt%, allyl alcohol 40.61 wt% and allyl acetate 38.19 wt%) is sent to the supply stage 55 to the tower upper part 42 to 10 stages, the tower middle part 43 to 10 stages, and the tower lower part 44 to 20 stages. 294Kg/h was supplied.

塔頂からの留出物中、貧水相51の組成は、水
7.45wt%、アリルアルコール19.31wt%、酢酸ア
リル73.24wt%であり、これを貧水相還流管48
を通じ160Kg/h塔へ還流したところ、塔底から実
質的に水分及び酢酸アリルを含まないアリルアル
コール83Kg/hが得られた。
The composition of the aqueous phase 51 in the distillate from the top of the tower is water.
7.45wt%, allyl alcohol 19.31wt%, allyl acetate 73.24wt%, and this was transferred to the poor aqueous phase reflux pipe 48.
When the reaction mixture was refluxed to a 160 kg/h tower, 83 kg/h of allyl alcohol substantially free of water and allyl acetate was obtained from the bottom of the tower.

3.6 発明の効果 本発明により、安価で効率的なアリルアルコー
ルの精製が可能となつた。
3.6 Effects of the Invention The present invention has made it possible to purify allyl alcohol at low cost and efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は塔内凝縮器を用いた図、第2図は塔外
凝縮器を用いた図、第3図は三元混合物相平衡図
及び第4図は実施例装置の説明図である。 1…原料供給室、2…デカンター貧水相、3…
デカンター豊水相、4…豊水相抜出管、7…貧水
相抜出管、8…塔底抜出管、9…塔頂凝縮器、1
0,11,12…塔、13…リボイラー、15…
塔頂気相管、16…貧水相還流管、17…塔頂液
抜出管、19…豊水相還流管、20…デカンタ
ー、21…堰、29…外部凝縮器、40…原料供
給管、41…塔頂凝縮器、42…塔上部、43…
塔中部、44…塔下部、48…貧水相還流管、5
1…貧水相、52…豊水相、A…水、B…アリル
アルコール、C…酢酸アルコール、ED⌒…溶解度
曲線、…b点を通過するタイライン、a…水
―アリルアルコール共沸点、b…水―アリルアル
コール…酢酸アリル三元系共沸点、c…水―酢酸
アリル共沸点、d…b点の組成における酢酸アリ
ル相(貧水相)、e…見かけの供給組成、f…供
給組成、g…塔頂抜出組成、h…b点の組成にお
ける水相(豊水相)、i…アリルアルコール…酢
酸アリル共沸点、e′,f′,g′…e,f,gに対応。
FIG. 1 is a diagram using an internal condenser, FIG. 2 is a diagram using an external condenser, FIG. 3 is a phase equilibrium diagram of a ternary mixture, and FIG. 4 is an explanatory diagram of an example apparatus. 1... Raw material supply chamber, 2... Decanter poor water phase, 3...
Decanter rich water phase, 4...water rich phase extraction pipe, 7...poor water phase extraction pipe, 8...bottom extraction pipe, 9...tower top condenser, 1
0, 11, 12... tower, 13... reboiler, 15...
Top gas phase pipe, 16... poor water phase reflux pipe, 17... tower top liquid withdrawal pipe, 19... rich water phase reflux pipe, 20... decanter, 21... weir, 29... external condenser, 40... raw material supply pipe, 41...Tower top condenser, 42...Tower upper part, 43...
Tower middle part, 44... Tower lower part, 48... Poor water phase reflux pipe, 5
1...Aqueous phase, 52...Aqueous rich phase, A...Water, B...Allyl alcohol, C...Acetic alcohol, ED⌒...Solubility curve,...Tie line passing through point b, a...Water-allyl alcohol azeotropic point, b ...Water-allylic alcohol...Allyl acetate ternary azeotropic point, c...Water-allyl acetate azeotropic point, d...Allyl acetate phase (poor aqueous phase) at composition at point b, e...apparent feed composition, f...supply composition , g... Composition extracted from the top of the tower, h... Water phase (rich water phase) in the composition at point b, i... Allyl alcohol... Allyl acetate azeotropic point, e', f', g'... Corresponds to e, f, g.

Claims (1)

【特許請求の範囲】 1 水、酢酸アリル及びアリルアルコールの混合
物から、アリルアルコールを分離、精製する方法
において、 実質的に一本の蒸留塔を用い、その塔頂から、
上記混合物で構成される、共沸組成もしくはこれ
に近い組成の留分を留出させ、この留出物を凝縮
器により凝縮し、凝縮により生じた二液相を分離
させた後、貧水相の少くとも一部を還流させるこ
とにより、 酢酸アリル及び水をほとんど含まないアリルア
ルコールを得ることを特徴とするアリルアルコー
ルの精製方法。
[Claims] 1. A method for separating and purifying allyl alcohol from a mixture of water, allyl acetate, and allyl alcohol, using substantially one distillation column, and from the top of the column,
A fraction with an azeotropic composition or a composition close to this composed of the above mixture is distilled out, this distillate is condensed in a condenser, and the two liquid phases generated by the condensation are separated, and then an aqueous phase is formed. A method for purifying allyl alcohol, which comprises obtaining allyl alcohol containing almost no allyl acetate and water by refluxing at least a portion of the alcohol.
JP9175684A 1984-05-10 1984-05-10 Purification of allyl alcohol Granted JPS60237032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9175684A JPS60237032A (en) 1984-05-10 1984-05-10 Purification of allyl alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9175684A JPS60237032A (en) 1984-05-10 1984-05-10 Purification of allyl alcohol

Publications (2)

Publication Number Publication Date
JPS60237032A JPS60237032A (en) 1985-11-25
JPS6328415B2 true JPS6328415B2 (en) 1988-06-08

Family

ID=14035380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9175684A Granted JPS60237032A (en) 1984-05-10 1984-05-10 Purification of allyl alcohol

Country Status (1)

Country Link
JP (1) JPS60237032A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3585989B2 (en) * 1995-03-29 2004-11-10 大阪有機化学工業株式会社 Separation method of methyl acrylate or methyl methacrylate and methanol
SA07280020B1 (en) 2006-02-02 2011-04-24 شوا دينكو كيه. كيه. Azeotropic Distillation Method
JP5094148B2 (en) * 2006-02-02 2012-12-12 昭和電工株式会社 Method for producing allyl alcohol
TWI518059B (en) 2013-06-05 2016-01-21 大連化學工業股份有限公司 Method for production of allyl alcohol
CN108137475B (en) * 2015-10-14 2021-08-10 陶氏环球技术有限责任公司 Process for purifying methyl methacrylate
CN107501047A (en) * 2017-09-07 2017-12-22 太原理工大学 A kind of method for preparing high-purity propylene alcohol
CN107698428B (en) * 2017-09-27 2022-09-20 湖北绿色家园材料技术股份有限公司 Method for separating water in allyl alcohol

Also Published As

Publication number Publication date
JPS60237032A (en) 1985-11-25

Similar Documents

Publication Publication Date Title
US4039395A (en) Purification of acetic acid
US2663679A (en) Extractive distillation of alcohols obtained from olefins
US4654123A (en) Dehydration of ethanol by extractive distillation
AU673067B2 (en) Method and apparatus for recovering acetic acid from aqueous streams
GB1139282A (en) Process for purifying ethylene glycol
US2552412A (en) Purification of aliphatic alcohols by extractive distillation
SE448299B (en) SET FOR RECOVERY OF ETHENOXIDE CONTAINING LOW CONTENTS OF ALDEHYD POLLUTANTS
US4332645A (en) Process for the separation of methanol from mixtures of tetrahydrofuran with methanol and water
US4554054A (en) Methacrylic acid separation
US4362601A (en) Method for distilling ethyl alcohol by adding salt or salts
JP3160983B2 (en) Purification method of ethyl acetate
KR100670881B1 (en) Method for Producing Highly Pure Monoethylene Glycol
JPS6328415B2 (en)
US2454447A (en) Dehydration of methyl ethyl ketone by azeotropic distillation under superatmosphericpressure
US3214347A (en) Azeotropic distillation process
US3239435A (en) Fractional distillation of methanol in the presence of an entrainer
JP3219682B2 (en) Method for purifying acetic acid and method for producing acetic acid
US4510022A (en) Separation of isopropyl ether from isopropanol and water by extractive distillation
US4857151A (en) Phenol purification
US6264800B1 (en) Purification process
JPH06277456A (en) Permeating evaporation of liquid mixture using membrane and azeotropic separating method by distillation
US5157163A (en) Purification of methyl tertiary-butyl ether
JPH01107805A (en) Method of recovering by refining used solvent
CN102144151A (en) Method of recovering carboxylic acids from dilute aqueous streams
JPS6025949A (en) High boiling point solvents for recovering acetic acid from aqueous solution

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term