JPS6328411A - Method for recovering solvent - Google Patents

Method for recovering solvent

Info

Publication number
JPS6328411A
JPS6328411A JP16680586A JP16680586A JPS6328411A JP S6328411 A JPS6328411 A JP S6328411A JP 16680586 A JP16680586 A JP 16680586A JP 16680586 A JP16680586 A JP 16680586A JP S6328411 A JPS6328411 A JP S6328411A
Authority
JP
Japan
Prior art keywords
solvent
water
filter
specific gravity
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16680586A
Other languages
Japanese (ja)
Inventor
Hisaharu Takeuchi
久治 竹内
Yuzo Ikeda
勇三 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP16680586A priority Critical patent/JPS6328411A/en
Publication of JPS6328411A publication Critical patent/JPS6328411A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)

Abstract

PURPOSE:To efficiently and precisely separate a solvent and free water and to recover the solvent alone by incorporating a filter consisting of a specific fibrous structure into a sp.gr.-difference separation stage to selectively passing the solvent alone through the filter. CONSTITUTION:A filter consisting of a water-repellent fibrous structure of polytetrafluoroethylene fiber, polypropylene fiber, etc., consisting essentially of a filament of 0.1-10mum diameter and having 30-90% porosity is incorporated in a separation stage wherein solvent and free water are stationarily separated by the difference in sp.gr. in a separator of specific size, and a solvent such as n-pentane and n-hexane is selectively passed through the filter. For example, a water-solvent mixture 21 flowing into the separator 19 from an inlet 18 is separated into solvent and water by the sheet filter 20 using this method. Namely, the solvent alone is passed through the filter 20, the separated solvent is introduced to a solvent recovery outlet 23, and the water is discharged from a water outlet 24.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶剤中に遊離水分として微小に分散している
水滴を分離して溶剤のみを高精度に回収する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of separating water droplets finely dispersed as free water in a solvent and recovering only the solvent with high precision.

〔従来技術〕[Prior art]

溶剤と水を分離する技術は、溶剤の回収再利用等の分野
でその要請は大きい。例えば、機械、電子部品等の精密
洗浄機における洗浄溶剤中の水分の分離、ドライク+7
  、=ング機に於ける洗浄溶剤中の水分の分離、及び
活性炭または活性炭素繊維等を用いた溶剤回収装置にお
ける溶剤中の水分の分離等がある。
Technology for separating solvent and water is in high demand in fields such as solvent recovery and reuse. For example, separation of moisture in cleaning solvents in precision cleaning machines for machinery, electronic parts, etc., Drike+7
, separation of water in a cleaning solvent in a cleaning machine, and separation of water in a solvent in a solvent recovery device using activated carbon or activated carbon fiber.

これら溶剤中の水の分離技術としては、単一工程でかつ
低コストで分離できる分離方法の一つとして溶剤と水の
比重差を利用した比重差分離法が覆々の分野で一般に採
用されている。
As a technology for separating water in these solvents, the specific gravity separation method, which utilizes the difference in specific gravity between the solvent and water, is generally adopted in many fields as one of the separation methods that can separate water in a single step and at low cost. There is.

例えば、ドライクリーニング機の場合は、第1図に示し
た様な形で溶剤と水の分離を行ない溶剤を回収再利用し
ている。すなわち、被洗濯物を溶剤とともにウォッシュ
タンク6から回転ドラムlへ移して洗濯し、汚れた溶剤
の全部又は一部は蒸留器2の中て入れて蒸留を行なう。
For example, in the case of a dry cleaning machine, the solvent and water are separated as shown in FIG. 1, and the solvent is recovered and reused. That is, the laundry items are transferred together with the solvent from the wash tank 6 to the rotating drum 1 for washing, and all or part of the dirty solvent is put into the distiller 2 for distillation.

ドライクリーニングに供される繊維製品は溶剤中に遊離
水分が混入すると、収縮による寸法変化、しわの発生、
形くずれ1色、光沢、風合等の変質が起こる為、回収溶
剤中に遊離水分が混入するのを防ぐ目的で、蒸留器2か
ら冷却器3を通って出てきた回収溶剤を比重差分離器4
で溶剤と水を分離してクリーンタンク5に溶剤のみを回
収して再利用している。
Textile products subjected to dry cleaning may undergo dimensional changes due to shrinkage, wrinkles, or
Since deterioration of shape, color, gloss, texture, etc. occurs, the recovered solvent coming out from the distiller 2 through the cooler 3 is separated by specific gravity difference in order to prevent free water from being mixed into the recovered solvent. Vessel 4
The solvent and water are separated and only the solvent is collected in a clean tank 5 for reuse.

別のし11として、超音波を利用した精密洗浄機の場合
は、第2図に示した様な形で溶剤と水の分離を行ない溶
剤を回収再利用している。すなわち、超音波発振器8t
−備えた超音波洗浄槽7で被洗浄物を処理し、蒸気槽9
で乾燥を行なうが、超音波洗浄槽7及び蒸気槽8よシ気
化した溶剤は10の冷却管で凝縮し液体となる。このと
き大気中の水分も同時に凝縮するため溶剤中に水分が混
入分散する。この水分を分離する目的で、比重差分離器
11を通して溶剤のみを回収し再利用している。
As another example 11, in the case of a precision cleaning machine using ultrasonic waves, the solvent and water are separated as shown in FIG. 2, and the solvent is recovered and reused. That is, the ultrasonic oscillator 8t
- Treat the object to be cleaned in the ultrasonic cleaning tank 7 provided, and
The solvent vaporized in the ultrasonic cleaning tank 7 and the steam tank 8 is condensed into a liquid in the cooling pipe 10. At this time, moisture in the atmosphere is also condensed at the same time, so the moisture is mixed and dispersed in the solvent. In order to separate this moisture, only the solvent is recovered and reused through the specific gravity difference separator 11.

他の例としては、粒状活性炭又は活性炭素繊維等を用い
た溶剤回収装置の場合は、第3図に示した様な形で溶剤
と水の分離を行ない溶剤を回収再利用している。すなわ
ち、溶剤ガスを含んだ原ガスは12より活性炭吸着槽1
3に導入され、溶剤ガスが活性炭に吸着される。吸着さ
れたガスは、14より吹き込まれる水蒸気により活性炭
より脱離し、冷却rf15によって凝縮し液体となる・
このとき溶剤中に水分が混入するが、この水分を分離す
る目的で、比重差分離器16が設置されており、溶剤の
みを回収し再利用している。
As another example, in the case of a solvent recovery device using granular activated carbon or activated carbon fiber, the solvent and water are separated as shown in FIG. 3, and the solvent is recovered and reused. That is, the raw gas containing the solvent gas is transferred to the activated carbon adsorption tank 1 from 12.
3, and the solvent gas is adsorbed onto the activated carbon. The adsorbed gas is desorbed from the activated carbon by water vapor blown in from 14, and condensed into liquid by cooling RF 15.
At this time, water is mixed into the solvent, but a specific gravity difference separator 16 is installed for the purpose of separating this water, and only the solvent is recovered and reused.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のようなドライクリーニング機、精密洗浄機、層剤
回収装置いずれの場合に於ても、冷却器を通って出てき
た溶剤中の遊離水分の水滴の大きさが10μm以下の微
小な水滴となって存在すると比重差分離器内での滞留時
間だけでは充分に溶剤と水を分離することができないと
いう問題があった。上記問題を改良する方法として比重
差分離器の容量を大きくして滞留時間を長くするという
ことが考えられるが、装置が大型になるため実用的では
なく、溶剤中の遊離水分を効率的かつ高精度に分離し、
溶剤のみを回収する方法が強く望まれていた。
In any of the above-mentioned dry cleaning machines, precision cleaning machines, and layer agent recovery equipment, the free water droplets in the solvent that come out through the cooler are minute water droplets with a size of 10 μm or less. If such an amount exists, there is a problem that the solvent and water cannot be separated sufficiently by the residence time in the specific gravity difference separator alone. One possible way to improve the above problem is to increase the capacity of the specific gravity separator to lengthen the residence time, but this would be impractical because the equipment would be large, and it would be difficult to remove free water in the solvent efficiently and efficiently. Separate to precision,
A method of recovering only the solvent was strongly desired.

本発明の目的は、上述の従来の技術の問題点を改良して
、溶剤と遊離水分を効率的かつ高精度に分離し、溶剤の
みを回収する方法を提供することにある。
An object of the present invention is to improve the problems of the conventional techniques described above, and to provide a method for efficiently and highly accurately separating solvent and free water, and recovering only the solvent.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、極細繊維からなる撥水性を有する繊維構
造体は、1つの空孔の大きさが小さくかつ全体として高
い空孔率を有しているため溶剤中に微細に分散した水分
を確実に分離し、迅速に溶剤のみを透過させることがで
きるとの知見を得て本発明を完成するに到った。
The present inventors discovered that a water-repellent fibrous structure made of ultrafine fibers has small pores and a high overall porosity, so it absorbs water finely dispersed in a solvent. The present invention was completed based on the knowledge that it is possible to reliably separate the solvent and allow only the solvent to permeate quickly.

すなわち、上述の目的を達成するための本発明の方法は
、比重差分離によって溶剤と水を分離する方法に於て、
比重差分離工程内に下記フィルター(a)を組み込み溶
剤を選択的に透過させることを特徴とする。
That is, the method of the present invention for achieving the above-mentioned object is a method for separating a solvent and water by specific gravity separation.
The method is characterized in that the following filter (a) is incorporated into the specific gravity separation step to selectively allow the solvent to pass through.

(、)  単繊維直径0.1〜10 pmの繊維を主体
とし空孔率が30〜90チの撥水性を有する線維構造体
よりなるフィルター。
(,) A filter consisting of a water-repellent fibrous structure mainly composed of fibers with a single fiber diameter of 0.1 to 10 pm and a porosity of 30 to 90 cm.

本発明でいう「比重差分離工程」とは、ドライクリーニ
ング機及び精密洗浄機等に代表される様に蒸留、回収工
程から出てきた溶剤と遊離水溶液との混合液を比重差分
離器内で溶剤と水の比重差によって溶剤と水を分離する
工程、溶剤回収装置の様に活性炭に吸着した溶剤を水蒸
気によシ脱離し凝縮した後、比重差分離器内で溶剤と水
を分離する工程等が代表的であるが、これらに限定され
るものではない。要するに、溶剤と遊離水分をある大き
さの比重差分離器内で溶剤と水の比重差を利用した静置
分離を行なう工程であればよい。
In the present invention, the "specific gravity separation process" refers to a specific gravity separation process in which a mixed solution of the solvent and free aqueous solution that comes out of the distillation and recovery process is processed in a specific gravity difference separator, as typified by dry cleaning machines and precision washing machines. The process of separating the solvent and water based on the difference in specific gravity between the solvent and water, and the process of separating the solvent and water in a specific gravity difference separator after desorbing and condensing the solvent adsorbed on activated carbon using steam, as in a solvent recovery device. etc. are representative, but are not limited to these. In short, any process may be sufficient as long as the process involves statically separating the solvent and free water in a specific gravity difference separator of a certain size using the difference in specific gravity between the solvent and water.

本発明でいう「溶剤」とは、表面張力が55dyne/
c!n以下の液体であり、異面張力が40dyns/α
以下の液体は、よシー層分離効率がよいので好ましい。
The "solvent" in the present invention has a surface tension of 55 dyne/
c! It is a liquid of n or less and has a different surface tension of 40 dyns/α.
The following liquids are preferable because they have good layer separation efficiency.

これらの溶剤の代表例としては、n−インタン、n−ヘ
キサン、n−へブタン、n−デカン等の各種パラフィン
系炭化水素、トリクロルエチレン、トリクロルエタン、
テトラクロルエチレン、テトラクロルエタン、1,1.
2−)リクロルー1.2゜2−トリフルオロエタン等の
ハロゲン化炭化水素、石油エーテル、リグロイン、ガソ
リン、灯油、石油ナフサ等の各種炭化水素化合物の混合
類、ベンゼン、トルエン、キシレン等の芳香族炭化水素
化合物、シクロペンクン、シクロヘキサンで代表される
脂環式炭(ヒ水素化合物、各種鉱物油、植物油、動物油
、各種エーテル、ケトン、エステルアルコール、フェノ
ール類等が挙げられる。
Typical examples of these solvents include various paraffinic hydrocarbons such as n-intane, n-hexane, n-hebutane, and n-decane, trichloroethylene, trichloroethane,
Tetrachloroethylene, tetrachloroethane, 1,1.
2-) Halogenated hydrocarbons such as 1.2゜2-trifluoroethane, mixtures of various hydrocarbon compounds such as petroleum ether, ligroin, gasoline, kerosene, and petroleum naphtha, aromatics such as benzene, toluene, and xylene Hydrocarbon compounds, alicyclic carbons represented by cyclopenkune and cyclohexane (including arsenic compounds, various mineral oils, vegetable oils, animal oils, various ethers, ketones, ester alcohols, phenols, etc.)

本発明の方法に用いる「繊維構造体」は、織布、編布、
不織布のいずれでもよいが、一つの空孔の大きさが小さ
くかつ全体として高い空孔率が得られ易い不織布形態の
ものが水の分離精度が良好で透過速度が大きいので好ま
しい。
The "fibrous structure" used in the method of the present invention includes woven fabric, knitted fabric,
Although any type of nonwoven fabric may be used, a nonwoven fabric in which the size of each pore is small and a high overall porosity can easily be obtained is preferable because it has good water separation accuracy and a high permeation rate.

本発明でいう「撥水性を有する繊維構造体よりなるフィ
ルター」とは、JIS−L−1092B法で測定した耐
水圧が1001EIIH20以上、好ましくは2001
olH20〜20001ImH20のものをいう。耐水
田のレベルは分離操作の条件により必要に応じ通常10
000■H2oまでの範囲内で適宜選定すればよい。
In the present invention, the "filter made of a water-repellent fibrous structure" means a water pressure resistance of 1001EIIH20 or more, preferably 2001EIIH20 or more, as measured by JIS-L-1092B method.
olH20 to 20001ImH20. The level of water resistance is usually 10 depending on the conditions of separation operation.
It may be appropriately selected within the range up to 000■H2o.

本発明の繊維構造体を構成する繊維としては、ポリエチ
レンテレフタレート、ポリエチレンテレフタレート・ア
ジイード、ポリエチレンテレフタレート・イソフタレー
ト、ポリエチレンテレフタレート・セパフート、ポリエ
チレンテレフタレート・ドデカンジオエート、ポリブチ
レンテレフタレートなどのポリエステル系共重合体の繊
維、ポリへキ丈メチレンアジノ!ミド、ポリへキサメチ
レンデカミド、ポリへキサメチレンデカミド、ポリへキ
サメチレンへキサミド、ポリカブラミド、ポリオクタミ
ド、ポリノナミド、ポリデカミド、Iリドデカミド、ポ
リテトラミドなどのポリアミドの繊維、ポリアミド、イ
ミド線維、芳香族ポリアミド繊維、Iリノクラエチレン
オキシペンゾエートなどのポリエステルエーテルの繊維
、−り塩化ビニル、?り塩化ビニリデン、ポリフッ化ビ
ニリデン、ポリテトラフルオロエチレンなどのハロゲン
含有型合本の繊維、ポリプロピレン、ポリエチレンなど
の?リオレフィンの繊維、各種アクリル繊維、再生セル
ロース、アセテート、木綿、麻、絹、羊毛などが挙げら
れる。これらの繊維は単独または組み合わせて使用され
る。
The fibers constituting the fiber structure of the present invention include polyester copolymers such as polyethylene terephthalate, polyethylene terephthalate azide, polyethylene terephthalate isophthalate, polyethylene terephthalate sepafoot, polyethylene terephthalate dodecanedioate, and polybutylene terephthalate. Fiber, polyheki length methylene adino! polyamide fibers, polyamides, imide fibers, aromatic polyamide fibers such as polyamide, polyhexamethylenedecamide, polyhexamethylenedecamide, polyhexamethylenehexamide, polycabramide, polyoctamide, polynonamide, polydecamide, Iridodecamide, and polytetramid. , fibers of polyester ethers such as linocra ethylene oxypenzoate, polyvinyl chloride, ? Halogen-containing composite fibers such as polyvinylidene chloride, polyvinylidene fluoride, polytetrafluoroethylene, polypropylene, polyethylene, etc.? Examples include lyolefin fibers, various acrylic fibers, regenerated cellulose, acetate, cotton, linen, silk, and wool. These fibers may be used alone or in combination.

撥水性を有する繊維構造体の具体例としては。A specific example of a fiber structure having water repellency is as follows.

Iリテトラフルオロエチレン繊維、ポリプロピレン繊維
、ポリエチレン繊維等の疎水性f1i、維からなる構造
体、あるいは繊維構造体に撥水加工を施こすことによシ
撥水性を付与した構造体が挙げられる。繊維構造体の撥
水加工は通常の方法で行えばよく、例えば、アクリル酸
)ぐ−フルオロアルコールなどのフッソ系樹脂、ジメチ
ルシリコーンなどのシリコーン系樹脂、パラフィン系樹
脂、ワックス系樹脂等の公知の撥水加工剤を、原糸製造
時あるいは繊維構造体にパディング、浸漬、スプレー、
吸尽等の方法で付与させればよい。更に必要に応じ、撥
水加工剤を付与した後、熱処理を行なえばよい。
Examples include structures made of hydrophobic f1i fibers such as I-retetrafluoroethylene fibers, polypropylene fibers, and polyethylene fibers, and structures in which water repellency is imparted by applying a water repellent finish to a fiber structure. The water-repellent treatment of the fiber structure can be carried out using conventional methods, such as fluorocarbon resins such as acrylic acid, fluoroalcohol, silicone resins such as dimethyl silicone, paraffin resins, wax resins, etc. A water repellent agent is applied to the yarn manufacturing process or to the fiber structure by padding, dipping, spraying,
It may be added by a method such as exhaustion. Further, if necessary, heat treatment may be performed after applying a water repellent agent.

本発明の方法に於ては、繊維構造体を構成している繊維
の主体が単繊維直径が0.1μm−10μmを有するも
のであることが必要である。単繊維直径がt o tt
mを超えると溶剤中に分散した水滴(10μm以下の水
滴)が繊維構造体を透過しやすくなるため充分な分離精
度が得られず好ましくない。0.1μm未満の繊維は工
業上均一に生産するのが困難である。望ましくは、単繊
維直径が0.3〜7pmのものを主体とする。「主体と
する」とは繊維構造体を構成する繊維の総重量に対して
、上述の単繊維直径を有する線維の重量がSOS以上で
あること、望ましくは70%以上であることを意味する
In the method of the present invention, it is necessary that the main fibers constituting the fibrous structure have a single fiber diameter of 0.1 μm to 10 μm. Single fiber diameter is t o tt
If it exceeds m, water droplets dispersed in the solvent (water droplets of 10 μm or less) will easily pass through the fiber structure, making it impossible to obtain sufficient separation accuracy, which is not preferable. Fibers smaller than 0.1 μm are difficult to produce uniformly industrially. Desirably, the main fibers have a diameter of 0.3 to 7 pm. "Mainly" means that the weight of fibers having the above-mentioned single fiber diameter is at least SOS, preferably at least 70% of the total weight of the fibers constituting the fibrous structure.

例えば、直径がその長さ方向で均一な繊維である場合、
種々の直径を有する繊維を混合して得られた繊維構造体
についても、その繊維構造体中の単繊維のうち、0.1
〜10μmの直径を有する繊維の重量が50チ以上であ
ればよい。
For example, if the fiber is uniform in diameter along its length,
Regarding fiber structures obtained by mixing fibers with various diameters, 0.1 of the single fibers in the fiber structure
It is sufficient if the weight of the fibers having a diameter of ˜10 μm is 50 inches or more.

単繊維直径0.1μm”10μmの繊維を主体とした撥
水性を有する繊維構造体の空孔率は30〜90チの範囲
にある必要がある。ここで、「空孔率」は下記式で定義
される。
The porosity of a water-repellent fibrous structure mainly composed of fibers with single fiber diameters of 0.1 μm and 10 μm must be in the range of 30 to 90 μm. Here, “porosity” is expressed by the following formula: defined.

空孔率が90%を超える場合には、溶剤中に分散した水
滴が繊維構造体を透過してしまうため該水滴の分離精度
が悪く、繊維構造体のへたりによって空孔率が小さくな
り、液体の透過速度が大きく変化してしまうという問題
がある。また、3oチ未満の場合には事実上工業的に使
用可能な液体の透過速度が得られない。繊維構造体の空
孔率は望ましくは40〜80チの範囲である。
If the porosity exceeds 90%, the water droplets dispersed in the solvent will pass through the fiber structure, resulting in poor separation accuracy of the water droplets, and the porosity will decrease due to the fiber structure settling. There is a problem in that the liquid permeation rate changes significantly. In addition, if it is less than 3°, it is virtually impossible to obtain an industrially usable liquid permeation rate. The porosity of the fibrous structure is preferably in the range of 40 to 80 inches.

繊維構造体の厚みは何ら限定されず、目的とする透過速
度が得られる様な厚みに設定すればよい。
The thickness of the fibrous structure is not limited at all, and may be set to a thickness that provides the desired permeation rate.

通常は、0.05職〜lor+gの範囲で用いられる。Usually, it is used in the range of 0.05 to lor+g.

本発明の方法において比重差分離工程内へのフィルター
(−)の組み込み方は何ら限定されるものではない。こ
のフィルター(a)は既存の装置を利用して比重差分離
器内にフィルターを組み込むことができる為設備が大型
にならず好ましい。比重差分離器が2り以上装備されて
いる装置については、下流側にフィルターを組み込む方
がフィルターへの負荷(寿命)の面で好ましい。
In the method of the present invention, there are no limitations on how to incorporate the filter (-) into the specific gravity separation step. This filter (a) is preferable because it can be incorporated into the specific gravity difference separator using existing equipment, so that the equipment does not become large. For devices equipped with two or more specific gravity difference separators, it is preferable to incorporate a filter on the downstream side in terms of load (life) on the filter.

フィルターの形態も何ら限定されるものではなく、平膜
状、円筒状、細管状、スパイラル状、・シャバラ状等任
意の形態で用いることができるが、処理効率の面からは
ツヤバラ状の形態で用いるのが好ましい。
The shape of the filter is not limited in any way, and it can be used in any shape such as a flat membrane, cylindrical, tubular, spiral, or rosette, but from the viewpoint of processing efficiency, a glossy rosette is preferable. It is preferable to use

本発明の方法に用いるフィルターに対して、補強等の目
的で金網、メツシュ状の7−ト等の補強材を用いること
も可能である。また、分離対象夜中のゴミ等を捕集する
ために、フィルターにて分離対象液を処理する前に、プ
レフィルタ−としてのゴミ捕集材をぼくごとも可能であ
る。レリえば、プレフィルタ−としては、膜状あるいは
わた状のゴミ捕集材等が挙げられる。
For the filter used in the method of the present invention, it is also possible to use a reinforcing material such as a wire mesh or a mesh-like 7-piece for the purpose of reinforcement. Furthermore, in order to collect the nighttime garbage to be separated, it is also possible to use a dust-collecting material as a pre-filter before treating the liquid to be separated with the filter. Specifically, examples of the pre-filter include a film-like or cotton-like dust-trapping material.

本発明の方法における溶剤の回収方法は、特に限定され
るものではなく、パッチ式又は連続式で縦型、横型、多
段型等の各種f過方式が適用可能である。
The method for recovering the solvent in the method of the present invention is not particularly limited, and various filtration methods such as patch type or continuous type, vertical type, horizontal type, multistage type, etc. can be applied.

本発明の方法におけるフィルターの組み込み態様の具体
例を第4図および第5図に示す。18より比重差分離器
19に流入してきた水/溶剤混合液21は、本発明の方
法に用いるシート状フィルター20又はフィルターエレ
メント25によって溶剤と水に分離される。すなわち、
溶剤のみがフィルターを透過し、透過した溶剤は溶剤回
収出口23に導かれる。フィルター20又は25によっ
て分離された水22は水出口24より排出される。
A specific example of how the filter is incorporated in the method of the present invention is shown in FIGS. 4 and 5. The water/solvent mixture 21 flowing into the specific gravity difference separator 19 from the water/solvent mixture 21 is separated into a solvent and water by the sheet filter 20 or filter element 25 used in the method of the present invention. That is,
Only the solvent permeates through the filter, and the permeated solvent is led to the solvent recovery outlet 23. Water 22 separated by filter 20 or 25 is discharged from water outlet 24.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、回収溶剤中に混入している遊離
水分を効率的かつ高精度に分離することができるため、
遊離水分の混入による種々のトラブルを防止することが
できる。
According to the method of the present invention, free water mixed in the recovered solvent can be separated efficiently and with high precision.
Various troubles caused by the contamination of free water can be prevented.

〔笑施しII) 次に、本発明を以下の実施例について具体的に説明する
。以下の実施例において、水分濃度は京都電子工業株式
会社製カールフィッシャー水分計〜iKc −3Pを用
いて測定した。また、溶剤中に分散した水滴の大きさは
光学顕微鏡写真により測定した。
[Smile II] Next, the present invention will be specifically explained with reference to the following examples. In the following examples, the water concentration was measured using a Karl Fischer moisture meter iKc-3P manufactured by Kyoto Electronics Industry Co., Ltd. Furthermore, the size of water droplets dispersed in the solvent was measured using optical micrographs.

実施例1 単繊維直径0.5〜15.6/+mのポリエチレンテレ
フタレート繊維からなる6種の繊維構造体を成型した。
Example 1 Six types of fiber structures made of polyethylene terephthalate fibers having a single fiber diameter of 0.5 to 15.6/+m were molded.

(空孔率75%、厚み0.17間)単繊維直径0.5お
よびL711mの2F4の繊維構造体は、メルトプロー
法により得た。また、単繊維直径3.5〜15,6μm
の4種の繊維構造体は直接、紡糸法によって得られた繊
維を5閣の長さに切断した後、湿式抄造法にて得た。こ
のようンこして得られた単繊維直径が相違する繊維構造
体を下記の条件で撥水化処理した。
A 2F4 fiber structure (porosity 75%, thickness 0.17 mm) with a single fiber diameter of 0.5 and a length of 711 m was obtained by melt blowing. Also, single fiber diameter 3.5-15.6 μm
The four types of fiber structures were obtained by directly cutting the fibers obtained by the spinning method into five lengths, and then using the wet papermaking method. The fiber structures having different single fiber diameters thus obtained were subjected to a water repellent treatment under the following conditions.

処理条件:加工剤・POLON−MR(信越化学制)・
CAT−LZ  (信越化学制) 濃度者4重量% 乾燥100℃×3分 熱処理 170℃x1分 パッドドライキュア法 この様にして得られた単繊維直径が相違するフィルター
を、第6図に示した様なエレメント26シてして(透過
面積0.15 m2) 、三菱パーマツク社製ドライク
リーナーMC−9機の比重差分離機内に第5図の態様に
て装着した。−万、ドライクリーナー機の蒸留器の中に
テトラクロルエチレン501と活性剤グングクリーンP
M250 (第−工業製薬社% ) ccと水31を入
れ、0.51 /分の速度で蒸留を行ない比重差分離器
内でテトラクロルエチレン中の遊離水分の分離実装を行
った。
Processing conditions: Processing agent, POLON-MR (Shin-Etsu Chemical System),
CAT-LZ (Shin-Etsu Chemical) Concentration 4% by weight Dry at 100°C x 3 minutes Heat treatment 170°C x 1 minute Pad dry cure method Filters with different single fiber diameters obtained in this way are shown in Figure 6. 26 elements of the same type (transmission area 0.15 m2) were installed in the specific gravity difference separator of a dry cleaner MC-9 manufactured by Mitsubishi Permac Co., Ltd. in the manner shown in FIG. -10,000, Tetrachlorethylene 501 and activator Gungu Clean P were in the distiller of a dry cleaner machine.
M250 (% by Dai-Kogyo Seiyaku Co., Ltd.) cc and 31 cc of water were added and distilled at a rate of 0.51/min to separate free water in tetrachlorethylene in a specific gravity difference separator.

蒸留に次いで冷却した後の溶剤は、テトラクロールエチ
レン中に水滴が分散した白濁液であった。
After distillation and subsequent cooling, the solvent was a cloudy liquid with water droplets dispersed in tetrachlorethylene.

テトラクロールエチレン中の水分量を測定したところ、
35℃で250p、p、mであシ、水滴の大きさを光学
須微鏡で写真測定したところ0.5〜3μmであった。
When we measured the water content in tetrachlorethylene, we found that
The size of the water droplets was photographically measured at 35° C. and 250 p, p, m using an optical microscope and found to be 0.5 to 3 μm.

各種フィルターを透過した後のテトラクロルエチレン中
の水分量の測定結果を第1表に示す。第1表中の比較例
(3)は、比重差分離器内にフィルターを装着しないで
従来の方法で処理した時の結果である。
Table 1 shows the measurement results of the water content in tetrachlorethylene after passing through various filters. Comparative Example (3) in Table 1 shows the results obtained when processing was performed using a conventional method without installing a filter in the specific gravity difference separator.

第1弐の結果より明らかな機に本発明の方法によるもの
は、溶剤と遊離水分の分離性能が著しく良好であり、溶
解度まで水分を完全罠分離していることが判る。比較1
1fJ(3)の結果よシ明らかな様て、従来の方法では
、微細に分散した水滴は、比重差分離工程だけでは分離
できないことが判る。
It is clear from the results of No. 1 that the method of the present invention has an extremely good separation performance between the solvent and free water, and completely traps and separates water up to the level of solubility. Comparison 1
As is clear from the results of 1fJ(3), it is found that in the conventional method, finely dispersed water droplets cannot be separated only by the specific gravity difference separation process.

以下余白 *ツヤークロルエチレンの25℃に於ける飽和水分濃度
は約100 p、p、m、でちった。
Margin below *The saturated water concentration of gloss chlorethylene at 25°C is approximately 100 p, p, m.

**実施例(1)〜(4)のJISL−1092B法に
よる耐水圧はすべてl OOtnx+ H20以上であ
った。
**The water pressure resistance of Examples (1) to (4) according to the JISL-1092B method was all 1OOtnx+H20 or higher.

実施例2 メルトプロー法によって単繊維直径21μm、厚み0.
1閣、空孔率95q6のポリプロピレン不織布を得た。
Example 2 A single fiber with a diameter of 21 μm and a thickness of 0.
A polypropylene nonwoven fabric with a porosity of 95q6 was obtained.

次に、この不織布をプレス処理して空孔率21チ〜95
慢の不織布6種を作成した。すなわち、プレス処理は1
〜150ψらの範囲であり、これに加えてプレス温度及
び時間によって空孔率が相違する不織布を作成した。次
に、同一空孔率の不織布を何枚か重ね合わせて厚みが0
.25鋼となる様な繊維構造体を作成した。
Next, this nonwoven fabric is pressed to have a porosity of 21 to 95 cm.
Six types of arrogant nonwoven fabrics were created. In other words, the pressing process is 1
~150ψ, etc., and in addition to this, a nonwoven fabric was created in which the porosity varied depending on the pressing temperature and time. Next, several layers of nonwoven fabric with the same porosity are layered to reduce the thickness to 0.
.. A fiber structure made of 25 steel was created.

このようにして得られた繊維構造体6種を実施例1と同
様の方法で撥水化処理を行なった。
The six types of fiber structures thus obtained were subjected to water repellent treatment in the same manner as in Example 1.

撥水化処理後のフィルターを実施例1と同様な方法で三
菱パーマツク社製ドライクリーナーMC−9機の比重差
分離器内に装着した。一方、ドライクリーナー機の蒸留
器の中にトリクロールエタン501と水21を入れ、1
1/分の速度で蒸留を行ない、比重差分離器内でトリク
ロールエタン中の遊離水分の分離実験を行った。
The filter after the water repellent treatment was installed in the specific gravity difference separator of a dry cleaner MC-9 manufactured by Mitsubishi Permac Co., Ltd. in the same manner as in Example 1. On the other hand, put 501 parts of trichloroethane and 2 parts of water in the distiller of a dry cleaner machine, and
Distillation was carried out at a rate of 1/min, and an experiment was conducted to separate free water in trichloroethane in a density difference separator.

蒸留−冷却後のトリクロールエタン中の水分量け510
 p−p−m、であシ、微小水滴の大きさは顕微鏡写真
測定の結果0.5〜3tzmであった。
Distillation - Weighing water in trichloroethane after cooling 510
The size of the microscopic water droplets was 0.5 to 3 tzm as a result of photomicrograph measurements.

実験結果を第2衣に示す。The experimental results are shown in the second column.

以下余白 第2表の結果より明らかな様に本発明の方法によるもの
は、溶剤中の遊離水分の分離性能が著しく良好でかつ液
体の透過速度も大きいことが判る。
As is clear from the results shown in Table 2 below, it can be seen that the method of the present invention has an extremely good separation performance of free water in the solvent and a high liquid permeation rate.

90%を超える空孔率のフィルターでは水の分離精度が
悪い。空孔率が30チ未溝のフィルターの場合は、液体
の透過速度が著しく低く、工業上の利用価値が低い。
A filter with a porosity exceeding 90% has poor water separation accuracy. In the case of a filter with a porosity of less than 30 mm, the liquid permeation rate is extremely low, and its industrial utility value is low.

実施例3 メルトプロー法によって単繊維直径1.5μm、厚み0
.17m、空孔率75チのポリエチレンテレフタレート
の不織布を作った。この不織布を用いて下記に示す方法
、条件下で撥水化処理を行ない(、)〜(c)のフィル
ターテングルを作成した。
Example 3 Single fiber diameter 1.5 μm, thickness 0 by melt blowing method
.. A polyethylene terephthalate nonwoven fabric with a length of 17 m and a porosity of 75 inches was made. Using this nonwoven fabric, water repellency treatment was performed under the following conditions and method to produce filter tendrils (,) to (c).

(、)  実施例1と同一処理 (b)  実施PJ lと同一処理(但し、POLON
−kiR。
(,) Same process as Example 1 (b) Same process as Implementation Project l (However, POLON
-kiR.

CAT LZ )濃度はl/20 ) (c)  撥水化処理無し 上記(&) 、 (b) 、 (c)のフィルターを実
施例1と同様な方法で三菱ノターマック社製ドライクリ
ーナーMC−9機の比重差分離器内に装着した。
CAT LZ) Concentration is l/20) (c) No water repellent treatment The filters of (&), (b), and (c) above were processed in the same manner as in Example 1 using Mitsubishi Notarmac Dry Cleaner MC-9. It was installed in the specific gravity difference separator of the machine.

一方、ドライクリーナー機の蒸留器の中にテトラクロル
エチレン501と水31を入れi/分の速度で蒸留を行
ない、比重差分離器内でテトラクロルエチレン中の遊離
水分の分離実験を行りた。
On the other hand, 501 ml of tetrachlorethylene and 31 ml of water were placed in the distiller of a dry cleaner machine and distilled at a rate of i/min, and an experiment was conducted to separate free water in tetrachlorethylene in a specific gravity difference separator. .

分離後の回収溶剤は、クリーンタンクに回収し、蒸留器
の中のテトラクロルエチレンがなくなれば再びクリーン
タンクの中の溶剤501と別に水31を蒸留器に入れ、
10時間の連続テストを行った。
The recovered solvent after separation is collected in a clean tank, and when the tetrachlorethylene in the distiller is exhausted, water 31 is put into the distiller again separately from the solvent 501 in the clean tank.
A continuous test was conducted for 10 hours.

蒸留に次いで冷却し次後の溶剤は、テトラクロルエチレ
ン中に水滴が分散した白濁液であり、水分量は37℃で
240 p−p、m、であった。水滴の大きさは05〜
5μmであった。
The solvent used after distillation and subsequent cooling was a cloudy liquid in which water droplets were dispersed in tetrachloroethylene, and the water content was 240 ppm at 37°C. The size of water droplets is 05~
It was 5 μm.

体) 、 (b) 、 (e)のフィルターでのそれぞ
れの実験結果を第3戒に示す。
The experimental results for filters (body), (b), and (e) are shown in the third precept.

以下余白 、E鴬i1垣3邑1 第3表の結果より明らかな様に本発明の方法による実施
例の条件に於ては10 hrs経過後も良好な分離性能
を示していることが判る。一方、耐水圧が50 tea
 H2Oのフィルターは遊離水分を完全に分離できない
ことが判る。
As is clear from the results in Table 3 below, it can be seen that the method of the present invention under the conditions of the example shows good separation performance even after 10 hrs have elapsed. On the other hand, the water pressure is 50 tea
It can be seen that the H2O filter cannot completely separate free water.

【図面の簡単な説明】[Brief explanation of the drawing]

笥1図はドライクリーニング機の系統図であり、第2図
は精密洗浄機の系統図であり、第3図は溶剤回収装置の
系統図である。 第4図および第5図は比重差分離器内へのフィルターの
組み込み方の具体例を示したものである。 第6図は実施例で使用したフィルターエレメントの外観
を示したものである。
Figure 1 is a system diagram of a dry cleaning machine, Figure 2 is a system diagram of a precision washing machine, and Figure 3 is a system diagram of a solvent recovery device. FIGS. 4 and 5 show a specific example of how to incorporate a filter into a specific gravity difference separator. FIG. 6 shows the appearance of the filter element used in the example.

Claims (1)

【特許請求の範囲】[Claims] 1、比重差分離工程によって溶剤と水を分離する方法に
於て、比重差分離工程内に、単繊維直径0.1〜10μ
mの繊維を主体とし、空孔率が30〜90%の撥水性を
有する繊維構造体よりなるフィルターを組み込み、溶剤
を選択的に透過させる、ことを特徴とする溶剤の回収方
法。
1. In the method of separating solvent and water by specific gravity separation process, single fiber diameter 0.1 to 10μ is used in the specific gravity separation process.
1. A method for recovering a solvent, which comprises incorporating a filter made of a water-repellent fibrous structure mainly composed of fibers having a porosity of 30 to 90% to selectively allow the solvent to pass therethrough.
JP16680586A 1986-07-17 1986-07-17 Method for recovering solvent Pending JPS6328411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16680586A JPS6328411A (en) 1986-07-17 1986-07-17 Method for recovering solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16680586A JPS6328411A (en) 1986-07-17 1986-07-17 Method for recovering solvent

Publications (1)

Publication Number Publication Date
JPS6328411A true JPS6328411A (en) 1988-02-06

Family

ID=15838003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16680586A Pending JPS6328411A (en) 1986-07-17 1986-07-17 Method for recovering solvent

Country Status (1)

Country Link
JP (1) JPS6328411A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61289037A (en) * 1985-06-14 1986-12-19 Mect Corp Novel expectorant
JPS62223123A (en) * 1986-03-10 1987-10-01 Mect Corp Expectorant
JP2003053104A (en) * 2001-08-10 2003-02-25 Espec Corp Water separating filter and water separating apparatus provided therewith
GB2475737A (en) * 2009-11-30 2011-06-01 John Andrew Timmins Filtration device
US9108129B2 (en) 2009-11-30 2015-08-18 John Andrew Timmins Filtering machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61289037A (en) * 1985-06-14 1986-12-19 Mect Corp Novel expectorant
JPS62223123A (en) * 1986-03-10 1987-10-01 Mect Corp Expectorant
JP2003053104A (en) * 2001-08-10 2003-02-25 Espec Corp Water separating filter and water separating apparatus provided therewith
GB2475737A (en) * 2009-11-30 2011-06-01 John Andrew Timmins Filtration device
US9108129B2 (en) 2009-11-30 2015-08-18 John Andrew Timmins Filtering machine

Similar Documents

Publication Publication Date Title
Song et al. Asymmetric Janus membranes based on in situ mussel-inspired chemistry for efficient oil/water separation
DE60116093T2 (en) WASHING DEVICE
US2579282A (en) Device for the treatment of gases
EP0084711B1 (en) Filter
JP2002523207A (en) Filter using porous strongly acidic polymer
JP2000288303A (en) Oil-water separating filter and method for coarsely granulating and separating oil-water mixed liquid
JPS63156508A (en) Reinforced oil-water separating filter
JPH05509250A (en) Method for collecting and treating non-aqueous droplet-like liquid using liquid collection cloth, and liquid collection cloth for use therein
JP2014184398A (en) Oily water separation filter, oily water separation method and oil separator using oily water separation filter
JPS6328411A (en) Method for recovering solvent
CN105908364A (en) Oil-water separation fiber membrane
JP2004512854A (en) System and method for extracting water in a dry cleaning process that includes a silicone-based solvent, and a method for enhancing the cleaning process
Meng et al. Crosslinked electrospinning membranes with contamination resistant properties for highly efficient oil–water separation
US20040262570A1 (en) Pseudo-distillation method for purifying a dry cleaning solvent
Grindstaff et al. Studies of soiling and detergency: Part III: Detergency experiments with particulate carbon soils
JPH01282390A (en) Ultra-fine ion-exchange fiber and production thereof
JPH0365207A (en) Oil and water separating filter
SU1158634A1 (en) Method of water- and oil-repelling finishing of textile materials
JPS61257211A (en) Process for separating fine oil drop by coarsening particle size thereof
JPS63119807A (en) Method for recovering dry cleaning solvent
JPH08294615A (en) Method and apparatus for removing impurity in gas using chemical filter
JPS6297614A (en) Method for separating liquid
JP2010099624A (en) Oil separating material
JPS63119808A (en) Method for recovering dry cleaning solvent
CN1158418C (en) Method of removing hydrocarbons from fabric