JPS61257211A - Process for separating fine oil drop by coarsening particle size thereof - Google Patents

Process for separating fine oil drop by coarsening particle size thereof

Info

Publication number
JPS61257211A
JPS61257211A JP9674885A JP9674885A JPS61257211A JP S61257211 A JPS61257211 A JP S61257211A JP 9674885 A JP9674885 A JP 9674885A JP 9674885 A JP9674885 A JP 9674885A JP S61257211 A JPS61257211 A JP S61257211A
Authority
JP
Japan
Prior art keywords
fiber
oil
liquid
fibrous sheet
oil droplets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9674885A
Other languages
Japanese (ja)
Inventor
Hisaharu Takeuchi
久治 竹内
Yuzo Ikeda
勇三 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP9674885A priority Critical patent/JPS61257211A/en
Priority to DE19863687419 priority patent/DE3687419T2/en
Priority to EP19860300453 priority patent/EP0190012B1/en
Priority to US06/822,200 priority patent/US4663222A/en
Publication of JPS61257211A publication Critical patent/JPS61257211A/en
Priority to US07/038,759 priority patent/US4707269A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To separate fine oil drops by coarsening the particle size by using a fibrous sheet contg. >=50% fiber having 0.1mum dia. of single fiber and having each specified packing rate, thickness of the sheet and surface tension of the fiber surface. CONSTITUTION:A filter element comprises fiber contg. >=50% single fiber having 0.1-10mum dia. Suitable packing rate of the fiber is 10-70wt%. Suitable thickness of the element is >=0.1mm and <=70mm. Suitable critical surface tension of the fiber surface is 20-40dyne/cm. The element comprising a fibrous sheet having the above-described constitution is used in an optional shape, such as flat film, cylindrical, or spiral, etc. Further, the fibrous sheet may be used as a single sheet or plurally layered shape. The liquid to be treated is allowed to permeate for the coarsening treatment by feeding the liquid at a fixed flow rate to the sheet, or by permeating the liquid under a fixed pressure, etc.

Description

【発明の詳細な説明】 し産業上の利用分野〕 本発明は、油と相分離する液体中に分散した微小油滴を
確実かつ迅速に粗粒化して分離する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for reliably and quickly coarsening and separating minute oil droplets dispersed in a liquid that undergoes phase separation from oil.

L従来の技術〕 油と相分離する液体中に分散した微小油滴を分離する技
術は、公害防止、海洋汚染防止、油と相分離する液体ま
たは油の何利用等の分野でその要請は多い。例えば、機
械工業、石油化学工業、食品工業など油を使用する施設
での用廃水中に分散した微小油滴の分離、船舶における
船底にたまった水中に分散した微小油滴の分離、L2s
2−)!Jフルオロエタノール等の高価な熱媒中に分散
した微小油滴の分離等が上げられる。
L Conventional technology] Technology for separating minute oil droplets dispersed in a liquid that phase separates from oil is in high demand in fields such as pollution prevention, marine pollution prevention, and other uses for liquids that phase separate from oil or oil. . For example, separation of minute oil droplets dispersed in waste water in facilities that use oil such as machinery industry, petrochemical industry, food industry, etc., separation of minute oil droplets dispersed in water accumulated on the bottom of a ship, L2s
2-)! An example of this is the separation of minute oil droplets dispersed in an expensive heating medium such as J-fluoroethanol.

これらの微小油滴の分離技術としては重力分離法、遠心
分離法、集油分離法、膜分離法、化学的凝集盆離沫、磁
気分離法等多岐の技術が知られておシ、微小油滴の粗粒
化分離法もその一つである。
A wide variety of techniques are known to separate these minute oil droplets, including gravity separation, centrifugal separation, oil collection separation, membrane separation, chemical coagulation basin separation, and magnetic separation. One of these methods is the method of separating droplets into coarse particles.

これは粗粒化機能を持ったエレメント(繊維、ステンレ
ス製等)に処理液を通過させることで処理液中の油滴を
エレメント内で破壊、凝集、合一させて比重差で容易に
分離できる大きさの油滴にするというものである。
By passing the processing liquid through an element (made of fiber, stainless steel, etc.) that has a coarsening function, the oil droplets in the processing liquid are destroyed, coagulated, and coalesced within the element, and can be easily separated based on the difference in specific gravity. The idea is to make oil droplets of the same size.

この方法は他の分離方法に比べ短時間でかつ小さなエネ
ルギー、装置で分散している油滴の分離が可能であるた
め工業上非常に有利な分離方法である。
This method is a very advantageous separation method industrially because dispersed oil droplets can be separated in a shorter time and with less energy and equipment than other separation methods.

従来、こうした粗粒化分離方法としてよく知られている
ものにナイロン、レーヨン、グラスファイバーステンレ
ス繊維等で作った繊維集合体コアレッサーを用いて粗粒
化分離する方法がある。これらは、比較的大きな油滴(
5μm以上)に対してはすぐれた粗粒化分離機能′を有
するが、0.1〜5μm程度の微小で安定な油滴や、油
分濃度が高い1合には確実に微小油滴を粗粒化すること
が不可能であるという欠点を有していた。また、5Ik
n以上の大きな油滴に対しても1段のコアレッサーでは
確実に粗粒化することが困難であシ、多段のコアレッサ
ーを用いなければならないという欠点をも有していた。
Conventionally, a well-known method for coarsening and separating is a method of coarsening and separating using a fiber aggregate coalescer made of nylon, rayon, glass fiber stainless steel fiber, etc. These are relatively large oil droplets (
5μm or more), but for small and stable oil droplets of about 0.1 to 5μm or high oil concentration, it reliably converts the fine oil droplets into coarse particles. It had the disadvantage that it was impossible to convert. Also, 5Ik
It is difficult to reliably coarsen oil droplets larger than n with a single-stage coalescer, and there is also the drawback that a multi-stage coalescer must be used.

上記の欠点を改良したものとして、特公昭55−452
42号に見られるように、微小油滴に親和性をもつ繊維
集合体の空隙率を小さくして微小な油滴を粗粒化するエ
レメントが提案されている。
As an improvement on the above-mentioned drawbacks,
As seen in No. 42, an element has been proposed that coarsens minute oil droplets by reducing the porosity of a fiber aggregate that has an affinity for minute oil droplets.

しかしながら、0.1〜1μm程度の極微小で安定な油
滴を確実に粗粒化分離することは困難であり、空隙率が
小さいため単位面積あたシの処理量が少ないという欠点
を有していた。
However, it is difficult to reliably separate extremely small and stable oil droplets of about 0.1 to 1 μm into coarse particles, and the problem is that the throughput per unit area is small due to the small porosity. was.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、上述のような従来技術の欠点を克服し
て、油と相分離する液体中に分散した極微小な油滴を粗
粒化して該液体から極微小油滴を分離する方法を提供す
ることにある。
An object of the present invention is to overcome the drawbacks of the prior art as described above, and to provide a method for separating ultrafine oil droplets from a liquid by coarsening ultrafine oil droplets dispersed in a liquid that undergoes phase separation from oil. Our goal is to provide the following.

[問題点を解決するだめの手段] 本発明者らは、微小油滴に親和性をもつ極細繊維からな
る填維状ミートに微小油滴を含む処理液を透過させるこ
とによって、従来困難であった0、1〜5μmの微小油
滴を確実かつ迅速に粗粒化できる事実を発見し、本発明
に到達したものである。
[Means to Solve the Problem] The present inventors have solved a problem that was previously difficult to solve by passing a processing liquid containing minute oil droplets through a fibrous meat made of ultrafine fibers that have an affinity for minute oil droplets. The present invention was achieved by discovering the fact that fine oil droplets of 0.1 to 5 μm can be coarsened reliably and quickly.

極細繊維を用いることによって従来粗粒化分離が困難で
あった0、1〜5μmの極微小油滴の粗粒化分離が可能
となった原因としては、極細繊維が単位重量あたシの繊
維表面積が著しく大きいため、微小油滴が付着して破壊
される機会が多いことと繊維状シートとした場合、極細
繊維を用いているので1つの空孔の大きさが小さいので
極微小な油滴までも捕捉することができるためであると
推定される。
The reason why ultrafine fibers have made it possible to coarsen and separate ultrafine oil droplets of 0.1 to 5 μm, which was difficult to coarsen and separate in the past, is because ultrafine fibers have a small amount of fiber per unit weight. Since the surface area is extremely large, there are many opportunities for minute oil droplets to adhere and be destroyed.When making a fibrous sheet, the size of each pore is small because ultrafine fibers are used, so there are many opportunities for minute oil droplets to adhere and be destroyed. It is presumed that this is because it is possible to capture even

本発明の微小油滴粗粒化分離方法は、油と相分離する液
体中に分離した微小油滴を分離するに際し、単繊維直径
0.1〜10μmの繊維を主体とし、繊維充填率10〜
70俤、厚み0.1〜7°0■でかつ臨界表面張力が2
0〜40 dyne/cIRの繊維状シートを用いるこ
とを特徴とする。
The method for coarsening and separating minute oil droplets of the present invention uses fibers with a diameter of 0.1 to 10 μm as main fibers, and a fiber filling rate of 10 to
70 yen, thickness 0.1~7°0■ and critical surface tension 2
It is characterized by using a fibrous sheet of 0 to 40 dyne/cIR.

本発明でいう「油」とは、機械油、ギヤー油。The "oil" used in the present invention refers to machine oil and gear oil.

シリンダー油、タービン油、動植物油、灯油、軽油1重
油、フッ素油、シリコン油などのいわゆる油と言われて
いるものの他、液状の石油エーテル類、N−へキサン、
N−ヘゲタンなどの脂肪族炭化水素類、シクロヘキサン
、シクロヘゲタンなどofl状炭化炭化水素類ンゼン、
トルエン、キシレンなどの芳香族炭化水素類、テトラク
ロルエチレン、トリクロールエチレン、クロロホルム、
フッ素系溶剤等のハロゲン化炭化水素類などを指す。
In addition to so-called oils such as cylinder oil, turbine oil, animal and vegetable oils, kerosene, diesel fuel oil, fluorine oil, and silicone oil, liquid petroleum ethers, N-hexane,
Aliphatic hydrocarbons such as N-hegetane, ofl-like hydrocarbons such as cyclohexane and cyclohegetane,
Aromatic hydrocarbons such as toluene and xylene, tetrachlorethylene, trichlorethylene, chloroform,
Refers to halogenated hydrocarbons such as fluorinated solvents.

また、「油と相分離する液体」とは、水が最も代表的で
あるが、NaCL 、 LICt、 CaCA2  な
どの金属塩を含有した水、メタノール、エタノール、2
.2.2−トリフルオロエタノールなどのアルコール類
、ブタンジオール、ジメチルアセトアミド、ジメチルホ
ルムアミド、アセトニトリルなどの有機溶剤、およびこ
れらの液体を含有した水などである。本発明の対象とな
る処理液は、これら油と相分離する液体中に、前記油が
微小油滴となって存在している系をいい、界面活性剤等
が含まれていてもよい。
In addition, "liquids that phase separate from oil" are most typically water, but also include water containing metal salts such as NaCL, LICt, CaCA2, methanol, ethanol, 2
.. These include alcohols such as 2.2-trifluoroethanol, organic solvents such as butanediol, dimethylacetamide, dimethylformamide, and acetonitrile, and water containing these liquids. The treatment liquid to which the present invention is applied refers to a system in which the oil is present in the form of minute oil droplets in a liquid that undergoes phase separation from these oils, and may contain a surfactant or the like.

本発明でいう「粗粒化」とは、通常0.1〜50μmの
径をもつ微小油滴が0.1−以上の粗大油滴となる現象
をいう。0.5m以上の粗大油滴は、油と相分離する液
体との比重差によシ容易に浮上分離される。
The term "coarse graining" used in the present invention refers to a phenomenon in which fine oil droplets, which usually have a diameter of 0.1 to 50 μm, become coarse oil droplets with a diameter of 0.1 μm or more. Coarse oil droplets of 0.5 m or more are easily floated and separated due to the difference in specific gravity between the oil and the phase-separated liquid.

本発明でいう粗粒化分離方法とは、極細繊維からなる繊
維状シートに前記処理液を透過させることによ多処理液
中の微小油滴を繊維状シート内で粗粒化して比重分離す
る方法金いう。本発明の方法に用いる「繊維状シート」
は、織布9編布、不織布、マット状、シート状、フェル
ト状のいずれでもよい。僚維状シートを構成する繊維は
何ら限定されるものではないが、例えば、ポリエチレン
テレフタレート、ポリエチレンテレフタレート・アジペ
ート、ポリエチレンテレフタレート・インフタレート、
ポリエチレンテレフタレート・セバケート、ポリエチレ
ンテレフタレート・ドデカンジオエート、ポリブチレン
テレフタレートなどのポリエステル系共重合体の繊維、
ポリへキサメチレンアジツクミド、ポリへキサメチレン
セパ゛カミド、ポリへキサメチレンデカミド、ポリへキ
サメチレンへキサミド、ポリカブラミド、ポリオクタミ
ド、ポリノナミド、ポリデカミド、ポリ ドデカミド、
ポリテトラミドなどのポリアミドの繊維、ポリアミド・
イミド繊維、芳香族ポリアミド繊維、ポリノ譬うオキシ
ペンゾエートなどのポリエーテルエステルの繊維、ポリ
塩化ビニル、ポリ塩化ビニリデン、ボリフフ化ビニリデ
ン、ポリテトラフルオロエチレンなどのハロダン含M重
合体の繊維、ポリグロピレンポリエチレンなどのポリオ
レフィンの繊維、各撞アクリル繊維及びポリビニルアル
コール系繊維、再生セルロース繊維、アセテート、木綿
、麻、絹、羊毛などの天然繊維が挙げられる。
The coarse particle separation method in the present invention means that the treatment liquid is passed through a fibrous sheet made of ultra-fine fibers to coarsen the minute oil droplets in the multi-treatment liquid within the fibrous sheet and then separated by specific gravity. The method is money. "Fibrous sheet" used in the method of the present invention
The material may be a woven fabric, a non-woven fabric, a mat, a sheet, or a felt. The fibers constituting the fiber sheet are not limited in any way, but include, for example, polyethylene terephthalate, polyethylene terephthalate adipate, polyethylene terephthalate inphthalate,
Fibers of polyester copolymers such as polyethylene terephthalate/sebacate, polyethylene terephthalate/dodecanedioate, and polybutylene terephthalate;
Polyhexamethylene azitzamide, polyhexamethylene sepacamide, polyhexamethylene decamide, polyhexamethylene hexamide, polycabramide, polyoctamide, polynonamide, polydecamide, polydodecamide,
Polyamide fibers such as polytetramid, polyamide
Imide fibers, aromatic polyamide fibers, fibers of polyether esters such as polyoxypenzoate, fibers of halodane-containing M polymers such as polyvinyl chloride, polyvinylidene chloride, polyvinylidene polyfluoride, polytetrafluoroethylene, etc. Examples thereof include polyolefin fibers such as glopylene polyethylene, peristaltic acrylic fibers and polyvinyl alcohol fibers, regenerated cellulose fibers, acetate, and natural fibers such as cotton, hemp, silk, and wool.

これらの繊維は単独または組み合わせて使用することも
できる。
These fibers can be used alone or in combination.

上記繊維状シートを構成する繊維の単繊維直径はO01
〜10 ttmのものを主体とし用いる。単繊維直径が
10μmを超えると極微細(0,1〜1μm)な油滴を
繊維状シート内で捕捉して破壊することができないた。
The single fiber diameter of the fibers constituting the above fibrous sheet is O01
~10 ttm is mainly used. When the single fiber diameter exceeds 10 μm, extremely fine (0.1 to 1 μm) oil droplets cannot be captured and destroyed within the fibrous sheet.

め充分な粗粒化性能が得られない。Therefore, sufficient grain coarsening performance cannot be obtained.

0.1μm未満の繊維は工業上均一に生産するのが困難
である。望ましくは、単繊維直径が0.3〜7μmのも
のを生体とする。「主体とする」とは、繊維状シートを
構成する繊維の総重量に対して、上述の単繊維直径を有
する繊維の重量が50%以上であること、望ましくは7
0俤以上であることを意味する。例えば、直径が七の長
さ方向で均一な繊維である場合、種々の直径を有する繊
維を混合して得られた繊維状シートについても、その繊
維状シート中の単繊維のうち、0.1〜10μmの゛直
径を有する繊維の重量が50%以上であればよい。単繊
維直径0.1〜10μmである繊維の重量が繊維状シー
トを構成する繊維の総重量の50%未満であれば充分な
粗粒化性能が得られない。
Fibers smaller than 0.1 μm are difficult to produce uniformly industrially. Preferably, the living body has a single fiber diameter of 0.3 to 7 μm. "Mainly" means that the weight of fibers having the above-mentioned single fiber diameter is 50% or more of the total weight of the fibers constituting the fibrous sheet, preferably 7% or more.
It means that it is more than 0 yen. For example, if the fibers are uniform in the length direction with a diameter of 7, even in a fibrous sheet obtained by mixing fibers with various diameters, 0.1 of the single fibers in the fibrous sheet It is sufficient if the weight of fibers having a diameter of ~10 μm is 50% or more. If the weight of the single fibers having a diameter of 0.1 to 10 μm is less than 50% of the total weight of the fibers constituting the fibrous sheet, sufficient coarse graining performance cannot be obtained.

繊維状シートの繊維充填率は10〜7(lの範囲にある
。「n1維光填率」は下記式 で定義される。繊維充填率が10チ未満の場合には極微
細な油滴が繊維状シートに捕捉されずに透過してしまう
ため粗粒化性能が低く、鷹維状シートのへたシによって
繊維充填率が増大し、液透過性がはじめとibで大きく
変化するので好ましくない。また、70%を超える場合
には、工業的に使用可能な液透過性が得られない。繊維
充填率の望ましい範囲は20〜60Iljである。
The fiber filling rate of the fibrous sheet is in the range of 10 to 7 (l). The "n1 fiber filling rate" is defined by the following formula. When the fiber filling rate is less than 10 l, extremely fine oil droplets are formed. Since it permeates without being captured by the fibrous sheet, the coarsening performance is low, and the fiber filling rate increases due to the sagging of the fibrous sheet, and the liquid permeability changes greatly from the beginning to the ib, which is undesirable. Moreover, if it exceeds 70%, industrially usable liquid permeability cannot be obtained.The desirable range of the fiber filling rate is 20 to 60 Ilj.

繊維状シートの厚みは、0.1−以上、70m以下であ
シ、望ましくは0.2■以上、50■以下である。厚み
が0.1■未満の場合は極微小な油滴が繊維状シートに
捕捉されずに透過する割合が多く、充分な粗粒化性能が
得られない。’70■を超える場合には、液透過時の圧
力損出が大きくなりすぎる。
The thickness of the fibrous sheet is 0.1 m or more and 70 m or less, preferably 0.2 m or more and 50 m or less. If the thickness is less than 0.1 square centimeters, a large proportion of extremely small oil droplets will pass through without being captured by the fibrous sheet, and sufficient grain coarsening performance will not be obtained. If it exceeds '70, the pressure loss during liquid permeation becomes too large.

繊維状シートを構成している繊維としては、繊維表面の
臨界表面張力が20〜40 dyne/cInの範囲の
ものが用いられる。本発明でいう油の表面張力はその化
学組成によシ若干異なるが20〜35dyne/cmの
範囲である。繊維の臨界表面張力が20 dyne/α
未満の場合は、油滴が繊維表面にぬれないため、油滴が
破壊されず油滴の粗粒化が充分に行なわれない。また、
40dyne/cInを超えると油と相分離する液体(
主に水)に繊維表面が濡れやすくなるため油が繊維表面
で破壊されず好ましくない。繊維表面の臨界表面張力は
、望ましく゛ は20〜35 dyne/副の範囲にあ
る。
The fibers constituting the fibrous sheet have a critical surface tension in the range of 20 to 40 dyne/cIn. The surface tension of oil as used in the present invention varies slightly depending on its chemical composition, but is in the range of 20 to 35 dyne/cm. The critical surface tension of the fiber is 20 dyne/α
If it is less than that, the oil droplets will not wet the fiber surface, the oil droplets will not be destroyed, and the oil droplets will not become coarse enough. Also,
A liquid that phase separates from oil when it exceeds 40 dyne/cIn (
Since the fiber surface becomes easily wetted by water (mainly water), oil is not destroyed on the fiber surface, which is undesirable. The critical surface tension of the fiber surface is preferably in the range of 20 to 35 dyne/sub.

ここでいう「臨界表面張力」は、以下のような方法で測
定する。繊維状シートを形成している繊維と同一素材の
無孔質フィルムを作夛測定用サンプルとする。繊維表面
に種々の加工剤がコーティングされたり化学結合されて
いるものの場合は、ま°ず繊維と同一素材の無孔質フィ
ルムを作り同一加工剤を繊維表面にコーティングまたは
化学結合させたときと同じ条件下で処理を行ない測定用
サンプルとする。臨界表面張力とは、接触角θ=Oの時
の表面張力であるから、上記サンプルの接触角t一種々
の表面張力をも°っ尼液体で測定し、外挿法によシθ=
0の時の表面張力を求めれば臨界表面張力が得られる。
The "critical surface tension" here is measured by the following method. A nonporous film made of the same material as the fibers forming the fibrous sheet is used as a sample for production measurement. In the case of fibers whose surfaces are coated or chemically bonded with various processing agents, first a non-porous film is made of the same material as the fibers, and the same processing agents are coated or chemically bonded to the fiber surfaces. The sample is processed under certain conditions and used as a sample for measurement. The critical surface tension is the surface tension when the contact angle θ=O, so the surface tension of each contact angle t of the sample mentioned above was also measured with a liquid, and by extrapolation, the surface tension was calculated as θ=0.
If the surface tension at zero is determined, the critical surface tension can be obtained.

臨界表面張力が20〜40 dyne/cmの繊維表面
となるようにするには、繊維状シートを構成する繊維と
して20〜40 dyne/cInの臨界表面張力をM
する繊維を用いるか、または、公知の方法を用いて樹脂
等で繊維表面の改質を行ない、繊維の臨界表面張力が2
0〜40 dyn・/3になるようにす′ る。
In order to make the fiber surface have a critical surface tension of 20 to 40 dyne/cm, the fibers constituting the fibrous sheet must have a critical surface tension of 20 to 40 dyne/cIn.
The critical surface tension of the fiber is 2.
Set it to 0 to 40 dyn/3.

臨界表面張力が20〜40 dyne/an 1に@す
る繊維の具体的な例としては、ポリエチレン(密度0.
95.31 dyne/cfR)、ポリプロピレン(2
9,0dyne/ cm、ポリスチレン(33,Ody
ne/ cm )ポリフッ化ビニIJデン(25,Od
yn・/3)等が代表的である。
A specific example of a fiber having a critical surface tension of 20 to 40 dyne/an 1 is polyethylene (density 0.
95.31 dyne/cfR), polypropylene (2
9,0 dyne/cm, polystyrene (33, Ody
ne/cm) Polyfluorinated vinyl IJ Den (25, Od
Typical examples include yn·/3).

臨界表面張力が20〜40 dyn・/3となるように
改質する方法の具体的表側としては、ジメチルポリシロ
キサン等のシリコン化合物、パーフルオロアルキル基を
もったフッ素化合物、2−エチルへキシルジルコネート
等のジルコニウム含有化合物、ステアリンメチロールア
マイド等のメチロール化合物、ステアリン酸クロライド
等の酸クロライド化合物、ポリエチレン、ポリプロピレ
ン等の炭化水素化金物を用いて繊維表面を改質する方法
が挙げられる。繊維表面を改質するための化合物は上記
の化合物に限定されず、本発明の方法においては、繊維
表面の臨界表面張力が20〜40dyn・/cMになる
ように改質できるものであればよい。
Specific methods for modifying the material so that the critical surface tension is 20 to 40 dyn/3 include silicon compounds such as dimethylpolysiloxane, fluorine compounds with perfluoroalkyl groups, and 2-ethylhexyl zirconium. Examples include a method of modifying the fiber surface using a zirconium-containing compound such as ester, a methylol compound such as stearin methylolamide, an acid chloride compound such as stearic acid chloride, or a hydrocarbon metal such as polyethylene or polypropylene. The compound for modifying the fiber surface is not limited to the above-mentioned compounds, and in the method of the present invention, any compound can be used as long as it can modify the fiber surface so that the critical surface tension becomes 20 to 40 dyn/cM. .

本発明の粗粒化分離方法において、粗粒化処理時の液透
過方法は、何ら制限されるものではなく、一定流量を繊
維状シートに送液する方法、あるいは一定圧力下で処理
液を繊維状シート透過させる方法等がある。
In the coarse particle separation method of the present invention, the liquid permeation method during the coarse particle process is not limited in any way, such as a method of sending the liquid at a constant flow rate to the fibrous sheet, or a method of feeding the liquid to the fibrous sheet under a constant pressure. There are methods such as passing through a shaped sheet.

繊維状シートは、例えば、平膜状、円筒状、ス・臂イラ
ル状等任意の形態で用いることができるが、処理効率の
面から繊維状シートはジャバラ状の形態で用いるのが好
ましい。また、繊維状シートは、一枚あるいは複数数の
重ね合わせによっても使用できる。
The fibrous sheet can be used in any desired form, such as a flat membrane, a cylinder, or a circular shape, but from the viewpoint of processing efficiency, it is preferable to use the fibrous sheet in a bellows-like form. Further, the fibrous sheet can be used as a single sheet or as a stack of a plurality of sheets.

繊維状シートに対して、補強等の目的で金網。Wire mesh for the purpose of reinforcement etc. for fibrous sheets.

繊維構造体等の補強材を用いることも可能である。It is also possible to use reinforcing materials such as fibrous structures.

また、処理液中のゴミを捕集するために、繊維状シート
にて被処理液を処理する前にプレフィルタ−としてのゴ
ミ捕集材を置くことも可能である。
Furthermore, in order to collect dust in the processing liquid, it is also possible to place a dust-collecting material as a pre-filter before processing the liquid to be processed with the fibrous sheet.

例えば、ブレフィルターとしては、膜状あるいはわた状
のゴミ捕集材等が挙げられる。
For example, examples of the blur filter include a film-like or cotton-like dust collection material.

また、本発明は、蒸留によって多成分系から−成分を濃
縮回収する工程に組み込むことも可能である。すなわち
、蒸留装置から得られた分散系(蒸留分又は残留分)を
引き続き本発明の方法にて粗粒化した後、比重差分離す
ればさらに効果的かつ高精度の濃縮回収が可能となるの
で好ましい。
The present invention can also be incorporated into a process for concentrating and recovering components from a multicomponent system by distillation. In other words, if the dispersed system (distilled fraction or residual fraction) obtained from the distillation apparatus is subsequently coarsened by the method of the present invention and then subjected to specific gravity separation, more effective and highly accurate concentrated recovery becomes possible. preferable.

一方、本発明の方法によって粗粒化分離した透過液を比
重差分離のかわシに、油のみを選択的に透過させる膜ま
たはシートを用いて最終分離を行なうことも可能である
。また、活性炭吸着方式により溶剤を回収するとき、活
性炭に吸着し良溶剤を回収するため、直接蒸気を吹き込
み活性炭に吸着した溶剤を脱離させるが、このとき生じ
る微小油滴を本発明の繊維状シートによって粗粒化した
後分離回収することも可能である。
On the other hand, it is also possible to carry out the final separation of the permeate that has been coarsened and separated by the method of the present invention using a membrane or sheet that selectively allows only oil to permeate through specific gravity separation. In addition, when recovering a solvent using the activated carbon adsorption method, in order to recover a good solvent by adsorbing it to the activated carbon, steam is blown directly to remove the solvent adsorbed to the activated carbon. It is also possible to separate and collect the particles after coarsening them using a sheet.

以下全白 〔発明の効果〕 本発明の方法によれば従来粗粒化分離が困難てらった0
、1〜5μmの極微細な油滴までも確実かつ迅速に粗粒
化分離することができ、また、従来多段の粗粒化処理が
必要であったものが一段の処理で分離ができるため装置
の小型化が可能である。
[Effects of the Invention] According to the method of the present invention, coarse grain separation has conventionally been difficult.
, it is possible to reliably and quickly coarsen and separate even ultrafine oil droplets of 1 to 5 μm in size, and what was previously required to be coarsened in multiple stages can be separated in one step. can be made smaller.

〔実施例〕〔Example〕

次に、本発明を以下の実施例について説明する以下の実
施例において、繊維状シートを構成する繊維表面の臨界
表面張力は、協和化学級CA−D型の接触角測定装置を
用いて測定した。また、油分濃度は堀場社製油分濃度分
析計(Oil ContentAnalyzer )を
用いて測定した。微小油滴の大きさは光学顕微鏡写真に
よシ測定した。
Next, in the following examples to explain the present invention, the critical surface tension of the fiber surface constituting the fibrous sheet was measured using a Kyowa Kagaku grade CA-D type contact angle measuring device. . In addition, the oil concentration was measured using an oil content analyzer manufactured by Horiba. The size of the minute oil droplets was measured using optical micrographs.

”実施例1 単繊維直径0.5〜15.4μmのポリプロピレン繊維
からなる6種の繊維状シートを成形した(繊維充填率2
1%、厚み1.5 wg )。すなわち、単繊維直径0
.5および1.5μmの2種の繊維状シートは、メルト
プロー法により得た。また、単繊維直径3.7〜15.
4踊の4糧の繊維のシートは、直接紡糸によって得られ
た繊維を5−の長さに切断した後、湿式抄造法にて得た
。このようにして得られた単繊維直径が相違する繊維状
シート6種をミリポア社製メンブレンフィルターホルダ
ーに装着し、下記の条件で作成した処理液を2.0kg
/−の圧力で送液し、粗粒化処理を行った。
“Example 1 Six types of fibrous sheets made of polypropylene fibers with a single fiber diameter of 0.5 to 15.4 μm were molded (fiber filling rate 2
1%, thickness 1.5 wg). That is, single fiber diameter 0
.. Two types of fibrous sheets of 5 and 1.5 μm were obtained by melt blowing. Moreover, the single fiber diameter is 3.7 to 15.
A sheet of 4 types of fibers of 4 types was obtained by cutting the fibers obtained by direct spinning into 5-length pieces, and then using a wet paper-making method. The six types of fibrous sheets with different single fiber diameters obtained in this way were mounted on a Millipore membrane filter holder, and 2.0 kg of the treatment solution prepared under the following conditions was applied.
The liquid was fed at a pressure of /- to perform coarse graining treatment.

繊維状シー・トを構成しているポリプロピレン繊維表面
の臨界表面張力を測定した結果29.3 dyne/倒
であった。
The critical surface tension of the surface of the polypropylene fibers constituting the fibrous sheet was measured and found to be 29.3 dyne/tension.

被処理液:水1001中にB重油100ccを添加し、
ミキサーにて約10分間攪拌し、水の中にB重油の油滴
が分散した油水混合物を作った。油滴が分散している部
分の油分濃度は280 p−p−mであシ、油滴の大き
さは、0.5μm〜1.5μmであった。
Liquid to be treated: Add 100cc of heavy oil B to 100ml of water,
The mixture was stirred with a mixer for about 10 minutes to prepare an oil-water mixture in which oil droplets of heavy oil B were dispersed in water. The oil concentration in the area where the oil droplets were dispersed was 280 ppm, and the size of the oil droplets was 0.5 μm to 1.5 μm.

結果を第1表に示す。The results are shown in Table 1.

第1表の結果よシ明らかなように、本発明の方法による
ものは粗粒化分離性能が著しく良好であルコトが判る。
As is clear from the results in Table 1, the method of the present invention has extremely good grain coarsening separation performance, and is clearly visible.

処理後の透過液をメスシリンダーにとって肉眼観察する
と、本発明の方法によるものは0.5wm〜2■に粗粒
化した油滴が水相中を上昇するのが判り、すぐに透明な
水の液相と油の液相に分れた。一方、比較例の透過液は
、水相中にまだ極微細な油滴が分散しているため白濁し
ていた。
When the permeated liquid after treatment was taken into a graduated cylinder and visually observed, it was found that oil droplets coarsened to 0.5 wm to 2 cm in size rose in the water phase in the case of the method of the present invention, and immediately became clear water. It was separated into a liquid phase and an oil liquid phase. On the other hand, the permeate liquid of the comparative example was cloudy because very fine oil droplets were still dispersed in the aqueous phase.

実施例2 それぞれ単繊維直径1.7μmと3.8μmのポリエチ
レンテレフタレート繊維から々る繊維状シート2M1を
メルトプロー法によシ作成した(厚み2.5鱈、線維充
填率28%)。
Example 2 A fibrous sheet 2M1 made of polyethylene terephthalate fibers having single fiber diameters of 1.7 μm and 3.8 μm, respectively, was prepared by melt blowing (thickness: 2.5 μm, fiber filling rate: 28%).

一方、直接紡糸法によって得られた単繊維直径12.1
踊と15.1μmの繊維をそれぞれ5mの長さに切断し
た後、湿式抄造法により繊維状シート(不織布)2種を
作成した(厚み2.4m、繊維光tR早25tlI)。
On the other hand, single fiber diameter 12.1 obtained by direct spinning method
After cutting each of the 15.1 μm fibers into lengths of 5 m, two types of fibrous sheets (nonwoven fabrics) were created by a wet papermaking method (thickness: 2.4 m, Fiber Optic tR 25 tlI).

合計4株の繊維状シートを下記に示す条件で繊維表面の
改質を行なった。改質後のポリエチレンテレフタレート
繊維表面の臨界表面張力を測定したところ30.5 d
yne/cInであった。
The fiber surfaces of a total of four fibrous sheets were modified under the conditions shown below. The critical surface tension of the modified polyethylene terephthalate fiber surface was measured and was 30.5 d.
It was yne/cIn.

改質条件: Po1on MR4重量%とキャタリス0
24重量%(信越シリコン社製)の混合溶液に上記繊維
状シートを浸漬後、脱液し、100℃×3分の乾燥後1
70℃×1分の熱処理を行った。
Modification conditions: Po1on MR 4% by weight and catalyst 0
After immersing the above fibrous sheet in a mixed solution of 24% by weight (manufactured by Shin-Etsu Silicon Co., Ltd.), the liquid was removed and dried at 100°C for 3 minutes.
Heat treatment was performed at 70°C for 1 minute.

改質後の繊維シートの厚み、繊維充填率はそれぞれ第2
表に示す。
The thickness and fiber filling rate of the modified fiber sheet are respectively the second
Shown in the table.

第2表 単繊維直径(μm) 厚 み(■) !雄!り!エリ1
.7       2.8       303.8 
      2.8        3012.1  
     2.5        2715.1   
    2.5    ・    27このようにして
得られた繊維状シート4種を用いて実施例1と同様な方
法、条件で油滴の粗粒化分離実験を行った。処理液は実
施例1で得たものと同一の液1001とミキサーでの攪
拌時間を10秒と短かくして作ったもの1”OOlの2
種を用いた。10秒間の攪拌処理を行ったものの油分濃
度は210 p、p、mで油滴の大きさは2〜5μmで
あった。結果を第3表に示す。
Table 2 Single fiber diameter (μm) Thickness (■)! Male! the law of nature! Eli 1
.. 7 2.8 303.8
2.8 3012.1
2.5 2715.1
2.5.27 Using the four types of fibrous sheets thus obtained, an oil droplet coarsening separation experiment was conducted in the same manner and under the same conditions as in Example 1. The treatment liquid was prepared by adding the same liquid 1001 obtained in Example 1 and shortening the stirring time in the mixer to 10 seconds.
Seeds were used. After stirring for 10 seconds, the oil concentration was 210 p, p, m, and the size of the oil droplets was 2 to 5 μm. The results are shown in Table 3.

第3表の結果よシ明らかなように、本発明の方法によれ
ば0.5〜1.5μmの極微細な油滴までも確実に粗粒
化分離できることが判る。なお、処理液の状態は、実施
例1と同様であった。
As is clear from the results in Table 3, it can be seen that according to the method of the present invention, even extremely fine oil droplets of 0.5 to 1.5 μm can be reliably separated into coarse particles. Note that the condition of the treatment liquid was the same as in Example 1.

以下全白 実施例3 メルトプロー法によって単繊維直径3.0μm、厚み0
.2■、繊維充填率5俤のポリプロピレン不織布を得た
。次にこの不織布をプレスして繊維充填率5〜80チの
不織布6種を作成し次。すなわち、プレス処理は1〜1
50 J/1ys2の範囲であり、これに加えてプレス
温度及び時間によって繊維充填率のちがった不織布を作
成した。次に、同一繊維充填率の不織布を何枚か重ね合
わせて厚みが10.0±0.1+w+となるような繊維
状シートを作成した(繊維表面の臨界表面張力29.3
 dyne/cm )。このようにして得られた繊維状
シートを実施例1と同様な装置、条件にて下記の処理液
を透過させて粗粒化処理を行った。処理液の透過速度(
処理速度)をロータメータ(最大計測値2000#!j
/m1n)で計測し友。結果を第4表に示す。
The following all white Example 3 Single fiber diameter 3.0μm, thickness 0 by melt blowing method
.. 2. A polypropylene nonwoven fabric with a fiber filling rate of 5 was obtained. Next, this nonwoven fabric was pressed to create six types of nonwoven fabrics with a fiber filling rate of 5 to 80 inches. That is, the pressing process is 1 to 1
50 J/1ys2, and in addition, nonwoven fabrics with different fiber filling rates were created depending on the pressing temperature and time. Next, a fibrous sheet with a thickness of 10.0±0.1+w+ was created by overlapping several sheets of nonwoven fabric with the same fiber filling rate (the critical surface tension of the fiber surface was 29.3
dyne/cm). The fibrous sheet thus obtained was subjected to grain coarsening treatment using the same equipment and conditions as in Example 1 by passing the following treatment liquid. Processing liquid permeation rate (
processing speed) with a rotameter (maximum measurement value 2000#!j
/m1n) to measure it. The results are shown in Table 4.

処理液:水100ノ中に機械油日石スーツ臂−ノ・イラ
ンド22(日本油脂層NS 206 )を50cc加え
、ミキサーにて約30分間攪拌し、水の中にスーツf−
ハイランド22の油滴が分散した油水温合物。
Treatment liquid: Add 50 cc of Mechanical Oil Nippon Oil Suit Arm No. 22 (Nippon Oil & Fat Layer NS 206) to 100ml of water, stir with a mixer for about 30 minutes, and add suit f-
An oil-water mixture in which Hyland 22 oil droplets are dispersed.

油滴が分散している相の油分濃度は350 p、p−m
であり、油滴の大きさは05〜2.0μmであった。
The oil concentration of the phase in which oil droplets are dispersed is 350 p, p-m.
The size of the oil droplets was 05 to 2.0 μm.

以下余r! 第4表の結果よシ明らかなように、lOチ未満の馨維充
填率の線維状シートでは充分な粗粒化分離が行なわれな
いことが判る。70チ以下の繊維状シートでは3001
d/分以上の透過速度があるのに対し、80%の繊維状
シートの場合は透過速度が著しく遅く工業上の利用価値
が低い。
The rest below! As is clear from the results in Table 4, it can be seen that sufficient coarse grain separation cannot be achieved with a fibrous sheet having a fiber filling rate of less than 100%. 3001 for fibrous sheets of 70 inches or less
While the permeation rate is d/min or more, the permeation rate of an 80% fibrous sheet is extremely slow and has low industrial utility value.

実施例4 直接紡糸法によって得られた単綾維直仔5.0μmのナ
イロン66#!維を5mの長さに切断した後、湿式抄造
法によって厚み0.05鱈、繊維充填率13%の不織布
を作成した。このナイロン6′6繊維の表面を改質する
ため実施例2と同様な方法、条件で上記不織布を処理し
て、繊維状シートlを作成した。繊維表面の臨界表面張
力を測定した結果30.5 dyne/cmでhった。
Example 4 Nylon 66# with single twill fibers of 5.0 μm obtained by direct spinning method! After cutting the fiber into a length of 5 m, a nonwoven fabric with a thickness of 0.05 mm and a fiber filling rate of 13% was created by a wet papermaking method. In order to modify the surface of the nylon 6'6 fibers, the nonwoven fabric was treated in the same manner and under the same conditions as in Example 2 to produce a fibrous sheet 1. The critical surface tension of the fiber surface was measured and found to be 30.5 dyne/cm.

この繊維状シート1をうずまき状にして密に巻きあげ直
径45wx、高さ10100O+の線維構造物を作成し
た。このものの繊維充填率は10チであった。次に、こ
の繊維構造物を厚みがそれぞれ50.0m、70.0m
、loomになるようにスライスして3種の繊維状シー
ト2を作った。
This fibrous sheet 1 was tightly wound into a spiral shape to create a fibrous structure with a diameter of 45wx and a height of 10100O+. The fiber filling rate of this product was 10 inches. Next, the thickness of this fiber structure was 50.0 m and 70.0 m, respectively.
, three types of fibrous sheets 2 were made by slicing them into loom shapes.

また、一方、表面改質後の0.05s+s+の繊維状シ
ート1を用いて厚みがそれぞれ0.05m、1.5−1
10■となるように繊維状シート1を重ね合わせ繊維状
シート3を3種作成した。
On the other hand, using the 0.05s+s+ fibrous sheet 1 after surface modification, the thickness was 0.05m and 1.5-1, respectively.
Three types of fibrous sheets 3 were prepared by stacking the fibrous sheets 1 so as to have a thickness of 10 cm.

繊維状シート2の3種は45■φで入口と出口を備え喪
ステンレス製の容器の中に入れて円筒状の繊維状シート
の上部から送液し、下部がら粗粒化後の処理液を得るよ
うにした。
The three types of fibrous sheet 2 were placed in a stainless steel container with a diameter of 45 mm and an inlet and an outlet, and the liquid was fed from the upper part of the cylindrical fibrous sheet, and the treated liquid after coarsening was sent from the lower part. I tried to get it.

繊維状シート3の3種は、実施例1と同様のミリポア製
メンブレンフィルターホルダーに装着して粗粒化処理を
行った。送液の圧力はすべて2.0に9/an”で処理
した。処理液は、下記の方法によシ作成した。
Three types of fibrous sheets 3 were mounted on the same Millipore membrane filter holder as in Example 1, and subjected to coarse graining treatment. All liquids were fed at a pressure of 2.0 at 9/an''. The treatment liquid was prepared in the following manner.

処理液:2.2.2−)リフルオロエタノール50/中
に出光興産社製タービン油P−32を50cc入れ、ミ
キサーにて20分間攪拌を行ない、油水混合物を作成し
た。油滴が分散している相の油分濃度は410 p、p
、m、油滴の大きさは0.5〜2.0μmであった。(
この場合の油分濃度は、島津社製ガヌクロマトグラフを
用いて測定した。)結果を第5表に示す。
Treatment liquid: 2.2.2-) 50 cc of turbine oil P-32 manufactured by Idemitsu Kosan Co., Ltd. was added to 50% refluoroethanol and stirred for 20 minutes with a mixer to prepare an oil-water mixture. The oil concentration of the phase in which oil droplets are dispersed is 410 p, p
, m, and the size of the oil droplets was 0.5 to 2.0 μm. (
The oil concentration in this case was measured using a Ganu chromatograph manufactured by Shimadzu Corporation. ) The results are shown in Table 5.

以下余白 上記結果より明らかなように、本発明の実施例によるも
のは透過液の油分濃度、透過速度とも良好であることが
判る。
As is clear from the above results, it can be seen that both the oil concentration and the permeation rate of the permeated liquid are good in the examples of the present invention.

実施例5 メルトプロー法によって単繊維直径1.7μm、厚み2
.5■、繊維充填率28係のIリエチレシテレフタレー
トの繊維状シート4(不織布)を作った。
Example 5 Single fiber diameter 1.7 μm, thickness 2 by melt blowing method
.. 5. A fibrous sheet 4 (nonwoven fabric) of I-ethylene terephthalate with a fiber filling rate of 28 was prepared.

この不織布をそれぞれ下記に示す方法、条件下で処理し
、繊維表面の臨界表面張力が異なる繊維状シート5.6
.7を作成した。
These nonwoven fabrics are treated under the following methods and conditions to produce fibrous sheets with different critical surface tensions on the fiber surfaces 5.6.
.. 7 was created.

繊維状シート5:実施例2と同一処理 繊維状シ−トロ:大日本インキ社製ファインテックス8
Pの4重量%溶液に浸漬した後脱液し、100″CX3
分の乾燥後150℃×1分の熱処理をした。
Fibrous sheet 5: Same treatment as Example 2 Fibrous sheet: Finetex 8 manufactured by Dainippon Ink Co., Ltd.
After immersing in a 4% solution of P, the liquid was removed, and a 100″CX3
After drying for 1 minute, heat treatment was performed at 150°C for 1 minute.

繊維状シート7:明成化学社製アサヒガード800の4
重量%溶液に浸漬した後脱液し100CX3分の乾燥後
180℃×1分の熱処理をした。
Fibrous sheet 7: Asahi Guard 800-4 manufactured by Meisei Chemical Co., Ltd.
After being immersed in a wt% solution, the liquid was removed, dried at 100C for 3 minutes, and then heat treated at 180°C for 1 minute.

繊維状シー)4.5,6.7を実施例2と同一の方法、
条件で実験を行ない、粗粒化性能を評価した。なお、表
面改質後の繊維状シートの特性を第6表に示す。
Fibrous sea) 4.5, 6.7 in the same manner as in Example 2,
Experiments were conducted under these conditions to evaluate the coarsening performance. Table 6 shows the properties of the fibrous sheet after surface modification.

第6表 繊維状シート42.528     45#52.82
6     31 #62.826     35 #    7  2.8    26     16結
果を第7表に示した。
Table 6 Fibrous sheet 42.528 45#52.82
6 31 #62.826 35 #7 2.8 26 16 The results are shown in Table 7.

以下全白 上記結果よシ明らかなように、本発明の方法による実施
例のものは極微小油滴までも確実に粗粒化分離できるこ
とが判る。
As is clear from the above results, even the smallest oil droplets can be reliably coarsened and separated in the examples according to the method of the present invention.

本発明の方法の範囲外のものは、比較的大きな油滴は分
離できるが極微小な油滴は確実に分離できない。
Methods outside the scope of the present invention can separate relatively large oil droplets, but cannot reliably separate extremely small oil droplets.

Claims (1)

【特許請求の範囲】[Claims] 1、油と相分離する液体中に分散した微小油滴を分離す
るに際し、単繊維直径が0.1〜10μmの繊維を主体
とし、繊維充填率10〜70%、厚み0.1〜70mm
でかつ繊維表面の臨界表面張力が20〜40dyne/
cmの繊維状シートを用いることを特徴とする微小油滴
を粗粒化して分離する方法。
1. When separating minute oil droplets dispersed in a liquid that undergoes phase separation from oil, the main fibers are single fibers with a diameter of 0.1 to 10 μm, fiber filling rate of 10 to 70%, and thickness of 0.1 to 70 mm.
The critical surface tension of the fiber surface is 20 to 40 dyne/
A method for coarsening and separating minute oil droplets, which is characterized by using a fibrous sheet with a diameter of 1 cm.
JP9674885A 1985-01-25 1985-05-09 Process for separating fine oil drop by coarsening particle size thereof Pending JPS61257211A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP9674885A JPS61257211A (en) 1985-05-09 1985-05-09 Process for separating fine oil drop by coarsening particle size thereof
DE19863687419 DE3687419T2 (en) 1985-01-25 1986-01-23 NON-WOVEN FABRIC, OIL-WATER SEPARATION FILTER AND OIL-WATER SEPARATION METHOD.
EP19860300453 EP0190012B1 (en) 1985-01-25 1986-01-23 Non-woven fabric, and oil-water separating filter and oil-water separating method
US06/822,200 US4663222A (en) 1985-01-25 1986-01-24 Non-woven fabric, and oil water separating filter and oil-water separating method
US07/038,759 US4707269A (en) 1985-01-25 1987-04-15 Method for separating an oil from an oil-containing liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9674885A JPS61257211A (en) 1985-05-09 1985-05-09 Process for separating fine oil drop by coarsening particle size thereof

Publications (1)

Publication Number Publication Date
JPS61257211A true JPS61257211A (en) 1986-11-14

Family

ID=14173293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9674885A Pending JPS61257211A (en) 1985-01-25 1985-05-09 Process for separating fine oil drop by coarsening particle size thereof

Country Status (1)

Country Link
JP (1) JPS61257211A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016097356A (en) * 2014-11-21 2016-05-30 旭化成株式会社 Oil-water separation system
US10208210B2 (en) 2014-07-30 2019-02-19 Mitsubishi Materials Corporation Hydrophilic oil repellent and production method of same, surface coating material, coating film, resin composition, oil-water separation filter material, and porous body
US10294125B2 (en) 2014-07-30 2019-05-21 Mitsubishi Materials Corporation Filter medium, method for producing filter medium, water treatment module, and water treatment device
US10364360B2 (en) 2014-07-30 2019-07-30 Mitsubishi Materials Corporation Surface coating material, coating film, and hydrophilic oil repellent member
US10399868B2 (en) 2014-07-30 2019-09-03 Mitsubishi Materials Corporation Oil-water separation apparatus and drainage system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390065A (en) * 1977-01-18 1978-08-08 Somar Mfg Filter element for deeoiler

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390065A (en) * 1977-01-18 1978-08-08 Somar Mfg Filter element for deeoiler

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10208210B2 (en) 2014-07-30 2019-02-19 Mitsubishi Materials Corporation Hydrophilic oil repellent and production method of same, surface coating material, coating film, resin composition, oil-water separation filter material, and porous body
US10294125B2 (en) 2014-07-30 2019-05-21 Mitsubishi Materials Corporation Filter medium, method for producing filter medium, water treatment module, and water treatment device
US10364360B2 (en) 2014-07-30 2019-07-30 Mitsubishi Materials Corporation Surface coating material, coating film, and hydrophilic oil repellent member
US10399868B2 (en) 2014-07-30 2019-09-03 Mitsubishi Materials Corporation Oil-water separation apparatus and drainage system
JP2016097356A (en) * 2014-11-21 2016-05-30 旭化成株式会社 Oil-water separation system

Similar Documents

Publication Publication Date Title
JP3490174B2 (en) Liquid separation method, liquid separation device, and aggregation member
US11338239B2 (en) Coalescing filter media
US20120292252A1 (en) Tubular surface coalescers
US5443724A (en) Apparatus for separating the components of a liquid/liquid mixture
US9474989B2 (en) Mixed hydrophilic/hydrophobic fiber media for liquid-liquid coalescence
EP2183414B1 (en) Fluoropolymer fine fiber
JP6042898B2 (en) Multilayer porous composite
EP3841240A1 (en) Filter media comprising binder components
US4212733A (en) Oil-water separation filters
EP3142767A1 (en) Surface modified filter media
EP3233239A2 (en) Filter media including fine staple fibers
JP2000288303A (en) Oil-water separating filter and method for coarsely granulating and separating oil-water mixed liquid
JP2831254B2 (en) Method and apparatus for separating an immiscible liquid / liquid mixture
JPS63156508A (en) Reinforced oil-water separating filter
JPS61257211A (en) Process for separating fine oil drop by coarsening particle size thereof
CA1062627A (en) Coalescence of oil in oil/water emulsions
JPS6297613A (en) Method for separating oil
JPS6328411A (en) Method for recovering solvent
JPS61257210A (en) Process for separating fine water drop by coarsening particle size of drop
JPS61257212A (en) Element for coarsening fine liquid drop
JPH04305202A (en) Water separating filter
RU2029596C1 (en) Water separating filtering member
JPS63119808A (en) Method for recovering dry cleaning solvent
CA2297444C (en) Method of separating an immiscible liquid/liquid mixture and apparatus therefor
WO2007066826A1 (en) Oil/water separation filter and oil/water separator