JPH01282390A - Ultra-fine ion-exchange fiber and production thereof - Google Patents

Ultra-fine ion-exchange fiber and production thereof

Info

Publication number
JPH01282390A
JPH01282390A JP63110920A JP11092088A JPH01282390A JP H01282390 A JPH01282390 A JP H01282390A JP 63110920 A JP63110920 A JP 63110920A JP 11092088 A JP11092088 A JP 11092088A JP H01282390 A JPH01282390 A JP H01282390A
Authority
JP
Japan
Prior art keywords
fiber
ion exchange
exchange
ultrafine
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63110920A
Other languages
Japanese (ja)
Inventor
Nami Kubo
久保 奈美
Masahiro Henmi
昌弘 辺見
Toshio Yoshioka
敏雄 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP63110920A priority Critical patent/JPH01282390A/en
Publication of JPH01282390A publication Critical patent/JPH01282390A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain the subject ion-exchange fiber having extremely high ion- exchange speed and exhibiting remarkable effect in the ion-exchange and adsorption separation in dilute state by graft-polymerizing ion-exchange group to ultrafine fibers. CONSTITUTION:An ultrafine fibrillated fibers having a fiber diameter of 0.00001-0.1mum are produced by spinning a multicore sea-island type composite fiber composed of polyester, polyamide, etc., drawing said composite fiber and removing the sea-component from the product. The fibrillated ultrafine fiber is immersed in an acidic vinyl monomer having carboxyl group, preferably a solution of a mixture of acrylic acid and methacrylic acid and the monomers are polymerized to obtain an ultrafine ion-exchange fiber containing cation- exchange group introduced into the fiber. Since the obtained fiber has large specific surface area and extremely high ion-exchange rate, it can be suitably applied in a wide application field such as the softening of water, desalination of sea water and removal of harmful metals.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超極細のイオン交換繊維及びその製造法に関
するものでおる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to ultrafine ion exchange fibers and a method for producing the same.

[従来の技術] 従来、イオン交換や吸着を必要とする工業分野ではイオ
ン交換樹脂が広範囲に利用されている。
[Prior Art] Conventionally, ion exchange resins have been widely used in industrial fields requiring ion exchange and adsorption.

しかしイオン交換樹脂の交換基は樹脂粒子の表面に比較
して網目構造の内部に極めて多く存在しているため、総
交換容量の大きざに比べ反応速度の点でやや問題が残る
However, since the exchange groups of the ion exchange resin are much more present inside the network structure than on the surface of the resin particles, some problems remain in terms of reaction rate compared to the size of the total exchange capacity.

また、粒子内部への拡散速度が非常に小ざいので、一定
時間にあけるその交換容量は小さくなる。
Furthermore, since the diffusion rate into the interior of the particles is very low, the exchange capacity over a given period of time is small.

それらの欠点を樹脂で補おうとすると、出来るだけ粒径
を細かくして粉末化し比表面積を大きくするという方法
をとらざるをえないが、そうすると粉末の凝集成いは圧
密化現象が起こり、フィルターの目詰まりや圧損の上昇
が発生する。また、フィルターの還択等も複雑になり、
取り扱いが数段困難になるという欠点があった。
If we try to compensate for these drawbacks with resin, we have no choice but to make the particle size as fine as possible to increase the specific surface area. Clogging and increased pressure loss occur. In addition, filter selection etc. become complicated,
The drawback was that it was much more difficult to handle.

そこで、それらの欠点を補うためイオン交換繊維が考え
られた。イオン交換繊維は、樹脂に比較して活性表面積
が大きいため反応速度が大きく、高分子量の有利イオン
に対する吸着性が大きい。
Therefore, ion exchange fibers were devised to compensate for these drawbacks. Ion-exchange fibers have a large active surface area compared to resins, so they have a high reaction rate and a high adsorption ability for high-molecular-weight beneficial ions.

また、繊維状のため形態の自由度が増し、そのかざ高さ
から圧損が低いため、非常に取り扱いが容易であること
など有利な特長が多々おる。
In addition, since it is fibrous, it has many advantageous features, such as increased flexibility in form, and low pressure loss due to its height, making it extremely easy to handle.

しかし、現在までに提案のイオン交換繊維は、イオン交
換用ポリマーと補強用ポリマーからなる多芯型混合繊維
、および補強用ポリマーを芯成分とし、イオン交換用ポ
リマーを鞘成分とする芯鞘型複合繊維が用いられていた
。特に多芯型複合繊維を基体としたイオン交換繊維は優
れた性能を有してはいるが、イオン交換用ポリマーと補
強用ポリマーを必要とするため、その構造から極細化は
不可能でめった。
However, the ion-exchange fibers proposed so far are multifilamentary mixed fibers consisting of ion-exchange polymers and reinforcing polymers, and core-sheath composite fibers in which the reinforcing polymer is the core component and the ion-exchange polymer is the sheath component. fibers were used. In particular, ion exchange fibers based on multifilament composite fibers have excellent performance, but because they require an ion exchange polymer and a reinforcing polymer, their structure makes it impossible to make them extremely fine.

あるいは通常の繊維にイオン交換基を導入したものもめ
るが、こちらは導入する交換基が限定されかつ前述のも
のに比ベイオン交換性能が劣る(特にイオン交換速度が
非常に小さい)という欠点があった。
Another option is to introduce ion exchange groups into regular fibers, but this has the disadvantage that the number of exchange groups introduced is limited and the relative ion exchange performance is inferior to the above-mentioned fibers (in particular, the ion exchange rate is very low). .

近年、イオン交換や吸着・分離に対するニーズがより精
密になってきており、より稀薄な中から正確にイオン交
換や吸着・分離することが要求されている。それに対応
するべく、活性比表面積を広げ、かつ繊維としての特長
を生かすためL/Dを大きくしようとすると、繊維径の
極細化が絶対に必要になってきた。
In recent years, the needs for ion exchange, adsorption, and separation have become more precise, and accurate ion exchange, adsorption, and separation are required even from dilute materials. In response to this, in order to increase the active specific surface area and increase L/D in order to take advantage of the characteristics of fibers, it has become absolutely necessary to make the fiber diameter extremely fine.

また、極細化することによって比表面積が大幅に増大し
、同様の工程でより多くのイオン交換基を導入すること
が出来、単位重量当りの交換容量を大きくすることも可
能となった。
In addition, by making it extremely fine, the specific surface area increases significantly, making it possible to introduce more ion exchange groups in the same process and increasing the exchange capacity per unit weight.

[発明が解決しようとする課題] 本発明は、より高度なイオン交換・吸着分離に対するニ
ーズに答えることのできる超極細のイオン交換繊維及び
その製造法の提供を目的とするものである。
[Problems to be Solved by the Invention] An object of the present invention is to provide an ultrafine ion exchange fiber that can meet the needs for more advanced ion exchange and adsorption separation, and a method for producing the same.

[課題を解決するための手段] すなわち本発明は、次の構成を有する。[Means to solve the problem] That is, the present invention has the following configuration.

(1)糸の直径が0.00001〜0.1μmの超極細
イオン交換繊維。
(1) Ultra-fine ion exchange fiber with a thread diameter of 0.00001 to 0.1 μm.

(2)基材にイオン交換基をグラフト重合してなる上記
(1)記載の超極細イオン交換繊維。
(2) The ultrafine ion exchange fiber described in (1) above, which is obtained by graft polymerizing an ion exchange group to a base material.

(3)イオン交換基導入用基材がポリアミドあるいはポ
リエステルである上記(2)記載の超極細イオン交換繊
維。
(3) The ultrafine ion exchange fiber according to (2) above, wherein the base material for introducing ion exchange groups is polyamide or polyester.

(4)導入するイオン交換基がカルボキシル基でおる上
記(3)記載の超極細イオン交換繊維。
(4) The ultrafine ion exchange fiber according to (3) above, wherein the ion exchange group to be introduced is a carboxyl group.

(5)多芯海島複合繊維の海成分を除去して直径がO,
O’0O01〜0.1μmの島成分にイオン交換基をグ
ラフト重合させることを特徴とする超極細イオン交換繊
維の製造法。
(5) After removing the sea component of the multicore sea-island composite fiber, the diameter is O.
A method for producing ultrafine ion exchange fibers, which comprises graft polymerizing ion exchange groups to island components of O'0O01 to 0.1 μm.

(6)イオン交換基導入用超極細繊維がポリアミドある
いはポリエステルであり、そのイオン交換基がカルボキ
シル基を有する酸性ビニル単量体でおる上記(5)記載
の超極細イオン交換繊維の製造法。
(6) The method for producing an ultrafine ion exchange fiber according to (5) above, wherein the ultrafine fiber for introducing ion exchange groups is polyamide or polyester, and the ion exchange group is an acidic vinyl monomer having a carboxyl group.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の超極細イオン交換繊維は、第1図に示す多芯海
島型複合繊維として紡糸された糸を延伸することによっ
て細糸化し、その海成分△を除去(例えば溶解)して島
成分Bを極細糸として取りだし、これに種々のイオン交
換基を持つ七ツマ−をグラフト重合させることによって
得られる。
The ultra-fine ion-exchange fiber of the present invention is produced by drawing a yarn spun as a multifilamentary sea-island composite fiber shown in FIG. It can be obtained by taking out ultrafine fibers and graft polymerizing them with heptamers having various ion exchange groups.

本発明の超極細イオン交換繊維の基体となる多芯海島型
複合繊維の島成分の割合は、通常10〜90%程度でお
るが紡糸安定性・延伸性等を考慮に入れて20〜80%
程度が好ましい。島の個数は特に限定は無く通常10個
以上でおるが、経済性・能率の面から多い方が好ましく
、またできるだけ島部分を細線化するため少なくとも3
00個以上が好ましい。紡糸直後の多芯海島型複合繊維
の直径は1〜10μmで必る。
The proportion of island components in the multifilamentary sea-island type composite fiber, which is the base material of the ultra-fine ion exchange fiber of the present invention, is usually about 10 to 90%, but it is 20 to 80% taking spinning stability, stretchability, etc. into consideration.
degree is preferred. The number of islands is not particularly limited and is usually 10 or more, but from the viewpoint of economy and efficiency, a larger number is preferable, and in order to make the island part as thin as possible, at least 3
00 or more is preferable. The diameter of the multicore sea-island composite fiber immediately after spinning is necessarily 1 to 10 μm.

島成分としては、ポリエステル・ポリアミド等のホモ重
合体、又はこれらの共重合体・ブレンド体が好ましく用
いられる。
As the island component, homopolymers such as polyester and polyamide, or copolymers and blends thereof are preferably used.

海成分としては、ポリスチレンのホモ重合体。The sea component is a polystyrene homopolymer.

ポリスチレンと2−エチルエキシルアクリレートの共手
合体、ポリエステル(島がポリアミドの場合のみ)、水
溶性ポリエステル、ナイロン(島がポリエステルの場合
のみ)等が挙げられるが、これに限定されるものではな
い。
Examples include, but are not limited to, a covalent combination of polystyrene and 2-ethylexyl acrylate, polyester (only when the island is polyamide), water-soluble polyester, nylon (only when the island is polyester), etc. .

延伸倍率は通常2〜10倍程度にするのが好ましい。倍
率が必まり大きいと糸径の均一性が悪くなり、小さいと
糸径が太くなるためである。延伸後、多芯海島型複合繊
維の直径は0.2〜5μm程度になる。海成分はナイロ
ンであればギ酸処理、ポリエステルであればアルカリ処
理、スチレンであればトリクレンで処理、水溶性ポリエ
ステルであれば熱水処理等その成分によって適当な方法
で処理すれば溶解除去でき、島成分がそのまま超橿細繊
維として取り出せる。その際の糸径が0.00001〜
0.1μm未満でおる。
It is preferable that the stretching ratio is usually about 2 to 10 times. This is because if the magnification is necessarily large, the uniformity of the thread diameter will be poor, and if it is small, the thread diameter will become thick. After stretching, the diameter of the multifilamentary sea-island composite fiber is about 0.2 to 5 μm. Sea components can be dissolved and removed by treating them with an appropriate method depending on the component, such as formic acid treatment for nylon, alkali treatment for polyester, trichlene treatment for styrene, and hot water treatment for water-soluble polyester. The components can be extracted directly as ultra-fine fibers. The thread diameter at that time is 0.00001~
It is less than 0.1 μm.

この繊維は、ポリアミド・ポリエステルあるいはその共
重合体であるので強度・耐薬品性等なんら問題はない。
Since this fiber is made of polyamide, polyester, or a copolymer thereof, there are no problems with strength or chemical resistance.

かつ極細形態をとっているため単糸強度は大きくなる傾
向をとる。
Moreover, since it has an ultra-fine form, the single yarn strength tends to increase.

この極細の基体にグラフト重合によってイオン交換基を
有する七ツマ−を付与する。イオン交換基とはアニオン
交換基、カチオン交換阜、キレート形成能を有するキレ
ート基等を意味する。アニオン交換基としては、ハロア
ルキル化物を1〜リメヂルアミン等の第3級アミンで処
理することによって得られる強塩基性アニオン交換基、
及びイソプロピルアミン、ジエチルアミン、ピペラジン
A heptamer having an ion exchange group is added to this ultrafine substrate by graft polymerization. The ion exchange group means an anion exchange group, a cation exchange group, a chelate group having chelate forming ability, and the like. Examples of anion exchange groups include strong basic anion exchange groups obtained by treating a haloalkylated product with a tertiary amine such as 1 to rimedylamine;
and isopropylamine, diethylamine, piperazine.

モルホリン等の2級以下のアミンで処理することによっ
て得られる弱塩基性アニオン交換基が好ましく用いられ
る。
A weakly basic anion exchange group obtained by treatment with a secondary or lower amine such as morpholine is preferably used.

カヂオン交換基としてはスルホン酸基、ボスホン酸基、
カルボン酸基等が好ましく用いられる。
Cation exchange groups include sulfonic acid groups, bosphonic acid groups,
Carboxylic acid groups and the like are preferably used.

キレート基としてはキレ−1〜形成性官能基でおればど
のようなものであっても良いが、イミノジ酢酸基、イミ
ノジプロピオン11を有する官能基が好ましく用いられ
る。
The chelate group may be any chelate-1 to chelate-forming functional group, but a functional group having an iminodiacetic acid group or iminodipropion-11 is preferably used.

これらを有する七ツマ−をグラフトする方法は任意で必
り一つに限るものでは無い。代表的なものとしてカルボ
キシル基を有する酸性ビニル単量体をレドックス触媒下
で溶液グラフト手合してナイロンあるいはポリエステル
基体に導入し、カルボン酸型のカチオン交換繊維を得る
方法がおる。
The method of grafting the heptadome having these components is arbitrary and is not necessarily limited to one method. A typical method is to introduce a carboxylic acid type cation exchange fiber into a nylon or polyester substrate through solution grafting of an acidic vinyl monomer having a carboxyl group under a redox catalyst.

カルボキシル基を有する酸性ビニル単量体の具体例とし
てはアクリル酸・マレイン酸・メタクリル酸・イタコン
酸・ブテントリカルボン酸等が挙げられるが、アクリル
酸とメタクリル酸の混合物が最も効率的にグラフト重合
される。
Specific examples of acidic vinyl monomers having a carboxyl group include acrylic acid, maleic acid, methacrylic acid, itaconic acid, butenetricarboxylic acid, etc., but a mixture of acrylic acid and methacrylic acid is graft polymerized most efficiently. Ru.

使用する繊維の形態としては、短繊維、フィラメント糸
、フェルト、織物、不織イ[、編物、繊維束、ひも状物
、紙などの公知の任意の形態、集合体もしくはそれらの
裁断物を挙げることができる。
Examples of the form of the fibers used include short fibers, filament yarns, felt, woven fabrics, non-woven fabrics, knitted fabrics, fiber bundles, strings, paper, etc., as well as aggregates and cut products thereof. be able to.

またグラフト反応も、それらの形態を付与する前後どち
らで行っても良い。
Furthermore, the grafting reaction may be performed either before or after imparting these forms.

本発明の超極細イオン交換繊維は、水の軟化。The ultrafine ion exchange fiber of the present invention softens water.

水および海水の脱塩、有害金属の除去や有用重金属の分
離回収2種々の糖液の脱色・脱塩、抗生物質及び医薬品
の精製分離、アミノ酸の精製分離。
Desalination of water and seawater, removal of harmful metals, separation and recovery of useful heavy metals, decolorization and desalination of various sugar solutions, purification and separation of antibiotics and pharmaceuticals, purification and separation of amino acids.

ヨウ素の精製、ホルマリンの精製、水分の除去等の通常
のイオン交換樹脂が使用される分野に用いられる。ざら
に顔料等の色素、タンパク貿、酵素、菌体等のコロイド
物質、および硫化水素、ハロゲン化ガスやアンモニア・
アミン等の塩基性カスの吸着・除去にも利用することが
できる。とりねり原子力用途への使用は効果を発揮し、
原子)J関係の用水や廃水、具体的には原子力発電所の
復水・燃料プール水・炉心水・脱塩装置逆洗廃水・水蒸
気発生ブロー水・湿水分離器ドレン水及びキセビティ水
・サプレッションプール水などの処理に適している。
It is used in fields where ordinary ion exchange resins are used, such as iodine purification, formalin purification, and water removal. Pigments such as pigments, proteins, enzymes, colloidal substances such as bacterial cells, hydrogen sulfide, halogenated gases, ammonia, etc.
It can also be used to adsorb and remove basic residues such as amines. The use of Torineri in nuclear power applications is effective,
Atomic) J-related water and wastewater, specifically nuclear power plant condensate, fuel pool water, core water, desalination equipment backwash wastewater, steam generation blow water, wet water separator drain water and xeviity water, and suppression. Suitable for treating pool water, etc.

また、超純水の製造、タバコの変異原除去、酸・塩基性
触媒反応の触媒等その用途は広範囲に用いられる。
In addition, it is used in a wide range of applications, including the production of ultrapure water, removal of mutagens from tobacco, and catalysts for acid/base catalytic reactions.

以下に実施例を示すが、本発明はこれらに限定されるも
のではない。
Examples are shown below, but the present invention is not limited thereto.

[実施例] 実施例1 島成分にナイロン6、海成分にポリスチレンを用いて、
島成分が450本人るように285°Cで溶融複合紡糸
を行った後、4倍に熱延伸した。
[Example] Example 1 Using nylon 6 for the island component and polystyrene for the sea component,
After melt composite spinning was performed at 285°C so that there were 450 island components, it was hot stretched to 4 times.

その多芯海島型複合繊維を空温でトリクレンに浸漬して
海成分を溶解除去し、4時間振とうした後前溜水で洗浄
した。その際、走査型電子顕微鏡で繊維径を測定したと
ころ0.0001μmであった。その糸をひき揃えてカ
ットファイバーとし、反応槽中に、アクリルr!l:L
1.5部・メタクリル酸4.5部・過硫酸アンセン0.
1部・市販の還元剤(三菱化成社製:商品名スーパーラ
イトC> O。
The multifilamentary sea-island type composite fiber was immersed in trichlene at air temperature to dissolve and remove sea components, shaken for 4 hours, and then washed with previously stored water. At that time, the fiber diameter was measured using a scanning electron microscope and was found to be 0.0001 μm. The threads were pulled together to make cut fibers, and placed in the reaction tank using acrylic r! l:L
1.5 parts, methacrylic acid 4.5 parts, anthene persulfate 0.
1 part - Commercially available reducing agent (manufactured by Mitsubishi Kasei Corporation: trade name Super Light C> O.

4部と水93.5部からなる水溶液を入れ、浴比1:1
0になるように浸漬さけ、80°Cで10分間反応させ
た。これを水洗し、カルボン酸基を有する極細カチオン
交換繊維を)がた。その極細カチオン交換繊維の糸径を
走査型電子顕微鏡で測定したが反応前とほとんど変化は
無かった。
Add an aqueous solution consisting of 4 parts and 93.5 parts of water at a bath ratio of 1:1.
0 and allowed to react at 80°C for 10 minutes. This was washed with water to form ultrafine cation exchange fibers having carboxylic acid groups. The diameter of the ultrafine cation exchange fiber was measured using a scanning electron microscope, and there was almost no change from before the reaction.

次に0.1Nの水酸化トリウム50m1にこのカットフ
ァイバー1.2gを入れ2時間振とうし、5d精確に測
りとってイオン交換容量を測定した。
Next, 1.2 g of this cut fiber was placed in 50 ml of 0.1N thorium hydroxide, shaken for 2 hours, and the ion exchange capacity was measured by accurately measuring 5 d.

また、このカットファイバーをイオン交換水に浸した後
、家庭用の遠心脱水機で5分間遠心脱水して表面の水分
を除去し、ただちに重ffi (W>を測定し、ざらに
絶乾して重量(Wo>を測定し、次式より求めた含水度
を測定した。
In addition, after soaking this cut fiber in ion-exchanged water, centrifugally dehydrate it for 5 minutes in a household centrifugal dehydrator to remove surface water, immediately measure the weight ffi (W>), and thoroughly dry it. The weight (Wo> was measured, and the water content was determined from the following formula.

含水度= (W−Wo>/W。Water content = (W-Wo>/W.

結果は表1に示す。The results are shown in Table 1.

また、この極細イオン交換繊維を1N−NaOHでNa
型に変換し、イオン交換水で洗浄した後乾燥機で絶乾し
た。その繊維を10採取し、飲料水2’fJ中に入れス
ターラーで撹拌して、時間を追って100mN採取しそ
の硬度分(Ca2”+MC]2+)を測定する軟水化実
験を行なった。
In addition, this ultra-fine ion exchange fiber was treated with NaOH using 1N-NaOH.
It was converted into a mold, washed with ion-exchanged water, and then completely dried in a dryer. A water softening experiment was conducted in which 10 of the fibers were sampled, placed in 2'fJ of drinking water, stirred with a stirrer, and 100 mN were sampled over time to measure the hardness (Ca2''+MC]2+).

結果は表2に示す。The results are shown in Table 2.

硬度分の測定方法は以下のとうりでおる。The method for measuring hardness is as follows.

(キレート滴定) サンプル水100m、Q 、 pH1O緩衝液2m、f
)0.01MのVIQC121m、Q 、EBT試薬3
)内を混合しEDTA液で滴定し算出する。
(Chelate titration) Sample water 100m, Q, pH1O buffer 2m, f
) 0.01M VIQC121m, Q, EBT reagent 3
) and titrate with EDTA solution to calculate.

EBT試薬: EBT O,5g、塩酸ヒドロキシルア
ミン4.sg 、 エタノール100m、QE DTA
 : CH14N2 N aOB @ 2 H20実施
例2 使用した繊維・薬品・温度等全て実施例1と同様にし、
反応時間を60分間に変えて極細カチオン交換繊維を得
、イオン交換容量と含水度を測定した。
EBT reagent: EBT O, 5g, hydroxylamine hydrochloride4. sg, ethanol 100m, QE DTA
: CH14N2 N aOB @ 2 H20 Example 2 The fibers, chemicals, temperature, etc. used were all the same as in Example 1,
The reaction time was changed to 60 minutes to obtain ultrafine cation exchange fibers, and the ion exchange capacity and water content were measured.

結果は表1に示す。The results are shown in Table 1.

比較例 通常のナイロン糸(繊維径10μTrL)に実施例2と
同様の反応を行ない、交換容量と含水度を測定した。
Comparative Example A normal nylon thread (fiber diameter 10 μTrL) was subjected to the same reaction as in Example 2, and the exchange capacity and water content were measured.

結果は表1に示す。The results are shown in Table 1.

また、このイオン交換繊維を用いて実施例1と同様の条
件で軟水化実験を行なった。
Further, a water softening experiment was conducted under the same conditions as in Example 1 using this ion exchange fiber.

その結果を表2に示す。The results are shown in Table 2.

これらの結果よりグラフト重合反応で超極細イオン交換
繊維が得られ、そのイオン交換速度は非常に大きく、ま
た多くのイオン交換基が導入できる等イオン交換繊維と
して著しく優れていることがわかった。
From these results, it was found that ultrafine ion exchange fibers were obtained by graft polymerization reaction, that the ion exchange rate was very high, and that the fibers were extremely excellent as ion exchange fibers as they could introduce many ion exchange groups.

表1.各繊維の特性 単位: (ppm) *原水の値は46 p pm [発明の効果1 本発明の超極細イオン交換繊維は、従来にない超極細の
繊維径を有し、その比表面積の大きざから非常に大きい
イオン交換速度を持ち、稀薄な状態でのイオン交換・吸
着に大きな効果をもたらす。
Table 1. Characteristic unit of each fiber: (ppm) *Value of raw water is 46 ppm [Effect of the invention 1 The ultra-fine ion-exchange fiber of the present invention has an unprecedented ultra-fine fiber diameter and has a large specific surface area. It has a very high ion exchange rate, and has a great effect on ion exchange and adsorption in dilute conditions.

形態の付与等も非常に簡単でこれまで(か1脂では適応
できなかった分野にも活用できる。
It is also very easy to give different shapes and can be used in fields that could not be applied to conventional fats.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の超極細イオン交換繊維に用いられる多
芯海島型複合繊維の模式断面図でおる。 特許出願人  東 し 株 式 会 社第1図
FIG. 1 is a schematic cross-sectional view of a multicore sea-island composite fiber used in the ultrafine ion exchange fiber of the present invention. Patent applicant Toshi Co., Ltd. Figure 1

Claims (5)

【特許請求の範囲】[Claims] (1)糸の直径が0.00001〜0.1μmの超極細
イオン交換繊維。
(1) Ultra-fine ion exchange fiber with a thread diameter of 0.00001 to 0.1 μm.
(2)基材にイオン交換基をグラフト重合してなる請求
項(1)記載の超極細イオン交換繊維。
(2) The ultrafine ion exchange fiber according to claim (1), which is obtained by graft polymerizing an ion exchange group to a base material.
(3)イオン交換基導入用基材がポリアミドあるいはポ
リエステルである請求項(2)記載の超極細イオン交換
繊維。
(3) The ultrafine ion exchange fiber according to claim (2), wherein the base material for introducing ion exchange groups is polyamide or polyester.
(4)導入するイオン交換基がカルボキシル基である請
求項(3)記載の超極細イオン交換繊維。
(4) The ultrafine ion exchange fiber according to claim (3), wherein the ion exchange group to be introduced is a carboxyl group.
(5)多芯海島複合繊維の海成分を除去して直径が0.
00001〜0.1μmの島成分にイオン交換基をグラ
フト重合させることを特徴とする超極細イオン交換繊維
の製造法。(6)イオン交換基導入用超極細繊維がポリ
アミドあるいはポリエステルであり、そのイオン交換基
がカルボキシル基を有する酸性ビニル単量体である請求
項(5)記載の超極細イオン交換繊維の製造法。
(5) The sea component of the multifilamentary sea-island composite fiber is removed to reduce the diameter to 0.
1. A method for producing ultrafine ion exchange fibers, which comprises graft polymerizing ion exchange groups to island components of 00001 to 0.1 μm. (6) The method for producing ultrafine ion exchange fibers according to claim (5), wherein the ultrafine fibers for introducing ion exchange groups are polyamide or polyester, and the ion exchange groups are acidic vinyl monomers having carboxyl groups.
JP63110920A 1988-05-06 1988-05-06 Ultra-fine ion-exchange fiber and production thereof Pending JPH01282390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63110920A JPH01282390A (en) 1988-05-06 1988-05-06 Ultra-fine ion-exchange fiber and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63110920A JPH01282390A (en) 1988-05-06 1988-05-06 Ultra-fine ion-exchange fiber and production thereof

Publications (1)

Publication Number Publication Date
JPH01282390A true JPH01282390A (en) 1989-11-14

Family

ID=14547980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63110920A Pending JPH01282390A (en) 1988-05-06 1988-05-06 Ultra-fine ion-exchange fiber and production thereof

Country Status (1)

Country Link
JP (1) JPH01282390A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5364638A (en) * 1991-03-18 1994-11-15 Etsuko Sugo Antimicrobial material for breeding or keeping fish and process for producing the same
WO2004038073A1 (en) 2002-10-23 2004-05-06 Toray Industries, Inc. Nanofiber aggregate, polymer alloy fiber, hybrid fiber, fibrous structures, and processes for production of them
JP2005036376A (en) * 2003-07-01 2005-02-10 Toray Ind Inc Functionally processed article of nanofiber
JP2005256267A (en) * 2004-02-13 2005-09-22 Toray Ind Inc Nonwoven fabric of nonofiber and nonwoven fabric of polymer alloy fiber
JP2006233355A (en) * 2005-02-24 2006-09-07 Teijin Ltd Nonwoven fabric and method for producing nonwoven fabric
CN100363541C (en) * 2002-10-23 2008-01-23 东丽株式会社 Nanofiber aggregate, polymer alloy fiber, hybrid fiber, fibrous structures, and processes for production of them
JP2011111688A (en) * 2009-11-24 2011-06-09 Japan Vilene Co Ltd Ion-exchanging nonwoven fabric and method for producing the same
JP4818273B2 (en) * 2005-09-29 2011-11-16 帝人ファイバー株式会社 Manufacturing method of sea-island type composite spun fiber
JP2013034940A (en) * 2011-08-08 2013-02-21 Nippon Rensui Co Ltd Method for removing metal ion in saturated brine
US11027243B2 (en) 2015-07-30 2021-06-08 North Carolina State University Grafted islands-in-the-sea nonwoven for high capacity ion exchange bioseparation

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5364638A (en) * 1991-03-18 1994-11-15 Etsuko Sugo Antimicrobial material for breeding or keeping fish and process for producing the same
WO2004038073A1 (en) 2002-10-23 2004-05-06 Toray Industries, Inc. Nanofiber aggregate, polymer alloy fiber, hybrid fiber, fibrous structures, and processes for production of them
US8460790B2 (en) 2002-10-23 2013-06-11 Toray Industries, Inc. Nanofiber aggregate, polymer alloy fiber, hybrid fiber, fibrous structures, and processes for production of them
CN100363541C (en) * 2002-10-23 2008-01-23 东丽株式会社 Nanofiber aggregate, polymer alloy fiber, hybrid fiber, fibrous structures, and processes for production of them
JP2005036376A (en) * 2003-07-01 2005-02-10 Toray Ind Inc Functionally processed article of nanofiber
JP2005256267A (en) * 2004-02-13 2005-09-22 Toray Ind Inc Nonwoven fabric of nonofiber and nonwoven fabric of polymer alloy fiber
JP4612432B2 (en) * 2005-02-24 2011-01-12 帝人株式会社 Nonwoven fabric and method for producing nonwoven fabric
JP2006233355A (en) * 2005-02-24 2006-09-07 Teijin Ltd Nonwoven fabric and method for producing nonwoven fabric
JP4818273B2 (en) * 2005-09-29 2011-11-16 帝人ファイバー株式会社 Manufacturing method of sea-island type composite spun fiber
US8128850B2 (en) 2005-09-29 2012-03-06 Teijin Fibers Limited Method of producing islands-in-sea type composite spun fiber
JP2011111688A (en) * 2009-11-24 2011-06-09 Japan Vilene Co Ltd Ion-exchanging nonwoven fabric and method for producing the same
JP2013034940A (en) * 2011-08-08 2013-02-21 Nippon Rensui Co Ltd Method for removing metal ion in saturated brine
US11027243B2 (en) 2015-07-30 2021-06-08 North Carolina State University Grafted islands-in-the-sea nonwoven for high capacity ion exchange bioseparation

Similar Documents

Publication Publication Date Title
CN100359054C (en) Functional fiber and the multifunctional fiber thereof
An et al. Ion exchanger using electrospun polystyrene nanofibers
CN111868322B (en) Beating acrylic fiber containing carboxyl group, process for producing the fiber, and structure containing the fiber
JPH01282390A (en) Ultra-fine ion-exchange fiber and production thereof
Soldatov Syntheses and the main properties of FIBAN fibrous ion exchangers
US4997610A (en) Process for producing filaments and fibers of acrylic polymers which contain carboxyl groups
US4507204A (en) Water-removing material usable for hydrophobic liquids and process for producing the same
JPH02289628A (en) Ultrafine ion-exchange fiber and production thereof
JP3232466B2 (en) Ultrapure water production method
JP2536028B2 (en) Cation exchange fiber
JPH02228332A (en) Ion-exchange fiber and preparation thereof
JPS6344988A (en) Method for making ultrapure water
US4107384A (en) Method for producing porous fibers
JP4931612B2 (en) Ion exchange fiber, production method thereof, and fiber structure using ion exchange fiber
JP2619812B2 (en) Method for producing cation exchange fiber
JPH07133318A (en) Acrylonitrile polymer solution and production thereof
WO1990014311A1 (en) Method of water treatment
JPH0261497B2 (en)
JPS625177B2 (en)
JPS62164734A (en) Production of cation-exchangeable fiber
JPS63108039A (en) Production of strongly acidic cation exchange fiber
Shin et al. Comparison of Ion Exchange Performance of Polystyrene Nanofiber Cation Exchanger and Glass Fibers Coated with Poly (styrene‐co‐divinylbenzene)
JP2009247996A (en) Material for cation removal
JP2006239498A (en) Sheet-like material for filter removing basic gas
JPS625178B2 (en)