JP4612432B2 - Nonwoven fabric and method for producing nonwoven fabric - Google Patents
Nonwoven fabric and method for producing nonwoven fabric Download PDFInfo
- Publication number
- JP4612432B2 JP4612432B2 JP2005049064A JP2005049064A JP4612432B2 JP 4612432 B2 JP4612432 B2 JP 4612432B2 JP 2005049064 A JP2005049064 A JP 2005049064A JP 2005049064 A JP2005049064 A JP 2005049064A JP 4612432 B2 JP4612432 B2 JP 4612432B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- solution
- organic polymer
- nonwoven fabric
- fiber structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Chemical Or Physical Treatment Of Fibers (AREA)
- Nonwoven Fabrics (AREA)
Description
本発明は不織布および不織布の製造方法に関する。 The present invention relates to a nonwoven fabric and a method for producing the nonwoven fabric.
イオン交換樹脂は、水処理から有価物の回収、精製など広く利用されている。イオン交換樹脂の形状としては、粒子状のものが一般に利用されており、粒径を小さくすることによってイオン交換速度を高めることが出来ることが知られている(例えば、非特許文献1参照)。 Ion exchange resins are widely used for water treatment, recovery of valuable materials, and purification. As the shape of the ion exchange resin, a particulate form is generally used, and it is known that the ion exchange rate can be increased by reducing the particle size (see, for example, Non-Patent Document 1).
イオン交換樹脂を利用する際のイオン交換樹脂の固定化方法として、繊維状に成型する方法が知られている(例えば、特許文献1参照)。しかし、これら通常の方法で作製される繊維状イオン交換樹脂は繊維径が大きいため、十分なイオン交換速度を出すために、より繊維径の小さい繊維状イオン交換樹脂が望まれていた。 As a method for immobilizing the ion exchange resin when using the ion exchange resin, a method of forming into a fiber shape is known (for example, see Patent Document 1). However, since the fibrous ion exchange resins produced by these usual methods have a large fiber diameter, a fibrous ion exchange resin having a smaller fiber diameter has been desired in order to obtain a sufficient ion exchange rate.
一方、繊維径の小さい繊維構造体を製造する方法として、静電紡糸法は公知である(例えば、特許文献2および3参照)。静電紡糸法は、液体、例えば繊維形成物質を含有する溶液等を電場内に導入し、これにより液体を電極に向かって曳かせ、繊維状物質を形成させる工程を包含する。普通、繊維形成物質は溶液から曳き出される間に硬化させる。硬化は、例えば冷却(例えば、紡糸液体が室温で固体である場合)、化学的硬化(例えば、硬化用蒸気による処理)、または溶媒の蒸発などにより行われる。また、得られる繊維状物質は、適宜に配置した受容体上に捕集され、必要ならばそこから剥離することも出来る。 On the other hand, an electrostatic spinning method is known as a method for producing a fiber structure having a small fiber diameter (see, for example, Patent Documents 2 and 3). The electrospinning method includes a step of introducing a liquid, for example, a solution containing a fiber-forming substance into an electric field, thereby causing the liquid to move toward an electrode and forming a fibrous substance. Usually, the fiber forming material is cured while it is squeezed out of solution. Curing is performed, for example, by cooling (for example, when the spinning liquid is solid at room temperature), chemical curing (for example, treatment with curing steam), or evaporation of the solvent. Moreover, the obtained fibrous substance is collected on a suitably arranged receptor, and can be peeled from there if necessary.
本発明の目的は、上記従来技術が有していた問題を解決し、イオン交換速度の高い不織布および不織布の製造方法を提供することにある。 An object of the present invention is to solve the problems of the prior art and provide a nonwoven fabric having a high ion exchange rate and a method for producing the nonwoven fabric.
本発明者らは、上記従来技術に鑑み鋭意検討を重ねた結果、本発明を完成するに至った。
すなわち本発明の目的は、
プロトン伝導性ポリマーから成り、構成する繊維の平均繊維径が3μm以下であり、実質的に10μm以上の繊維径をもつ繊維が存在しない、実質的に60μm以下の繊維長を有する繊維が存在しない不織布によって達成される。
As a result of intensive studies in view of the above prior art, the present inventors have completed the present invention.
That is, the object of the present invention is to
Non-woven fabric made of a proton-conductive polymer, having an average fiber diameter of 3 μm or less, having no fiber having a fiber diameter of 10 μm or more, and having substantially no fiber length of 60 μm or less Achieved by:
更に、本発明の他の目的は、
プロトン伝導性ポリマーを含む溶液に繊維形成性の有機高分子を添加する段階と、前記繊維形成性の有機高分子を添加した溶液を静電紡糸法にて紡糸する段階と、前記紡糸によって捕集基板に累積される繊維構造体を得る段階と、前記繊維構造体に含まれる繊維形成性の有機高分子を除去する段階を含む、不織布の製造方法によって達成することができる。
Furthermore, another object of the present invention is to
Adding a fiber-forming organic polymer to a solution containing a proton-conducting polymer, spinning the solution containing the fiber-forming organic polymer by an electrostatic spinning method, and collecting by the spinning. This can be achieved by a method for producing a nonwoven fabric, comprising the steps of obtaining a fiber structure accumulated on a substrate and removing a fiber-forming organic polymer contained in the fiber structure.
本発明により得られる不織布は、構成する繊維の繊維径が小さく、イオン交換速度に優れることから、イオン交換樹脂成形として有効である。また、得られる不織布はそのまま使用することも出来るし、また取り扱い性やその他の要求事項に合わせて他の部材と組み合わせて用いることもできる。 The nonwoven fabric obtained by the present invention is effective as an ion exchange resin molding because the fiber diameter of the constituent fibers is small and the ion exchange rate is excellent. Moreover, the obtained nonwoven fabric can also be used as it is, and can also be used in combination with another member according to handling property and other requirements.
以下、本発明について詳細に説明する。
本発明の不織布は、プロトン伝導性ポリマーから成り、構成する繊維の平均繊維径が3μm以下であり、実質的に10μm以上の繊維径をもつ繊維が存在しない、実質的に60μm以下の繊維長を有する繊維が存在しないことが必要である。
Hereinafter, the present invention will be described in detail.
The nonwoven fabric of the present invention is composed of a proton conductive polymer, the average fiber diameter of the constituent fibers is 3 μm or less, there is substantially no fiber having a fiber diameter of 10 μm or more, and the fiber length is substantially 60 μm or less. It is necessary that no fibers are present.
ここで、プロトン伝導性ポリマーとして、イオノマーが好ましく用いられるが、ここで、イオノマーとは無機塩の基が結合した分子鎖をもつポリマーの総称である。イオノマーの典型的な構造としては下式で表される構造が挙げられ、
更に好ましくは、化学的安定性の高いフッ素含有樹脂が好ましく、更に好ましくは、下式で表される「ナフィオン」が好ましい。
次に、構成する繊維の平均繊維径が3μm以下であることについて説明する。
本発明の不織布を形成する繊維の平均径が3μmを越えると、繊維の比表面積が小さくなり、イオン交換効率が低くなる。また、繊維の平均径は0.1μm以上あれば、得られる不織布の強度は十分なものとなる。不織布を構成する繊維の平均径は好ましくは、0.1〜1μmの範囲にあることである。
Next, it will be described that the average fiber diameter of the constituent fibers is 3 μm or less.
When the average diameter of the fibers forming the nonwoven fabric of the present invention exceeds 3 μm, the specific surface area of the fibers becomes small and the ion exchange efficiency becomes low. Moreover, if the average diameter of the fiber is 0.1 μm or more, the strength of the obtained nonwoven fabric is sufficient. The average diameter of the fibers constituting the nonwoven fabric is preferably in the range of 0.1 to 1 μm.
次に、実質的に10μm以上の繊維径をもつ繊維が存在しないことについて説明する。
実質的に存在しないとは、電子顕微鏡観察において、任意の点で上記範囲の繊維径をもつ繊維が観察されないことを指す。また、本発明の不織布を形成する繊維に繊維径が10μmを越える繊維が含まれると、繊維の比表面積が小さくなり、イオン交換効率が低くなるため好ましくないだけではなく、不織布の柔軟性が損なわれることからも好ましくない。また、本不織布の性能を発揮するためには、5μm以上の繊維径をもつ繊維が存在しないことがより好ましい。
Next, the fact that there is substantially no fiber having a fiber diameter of 10 μm or more will be described.
The term “substantially absent” means that fibers having a fiber diameter in the above range are not observed at any point in an electron microscope. In addition, if the fiber forming the nonwoven fabric of the present invention contains a fiber having a fiber diameter exceeding 10 μm, the specific surface area of the fiber is reduced and the ion exchange efficiency is lowered. This is also not preferable. Moreover, in order to exhibit the performance of this nonwoven fabric, it is more preferable that the fiber which has a fiber diameter of 5 micrometers or more does not exist.
次に、実質的に60μm以下の繊維長を有する繊維が存在しないことについて説明する。ここで、実質的に存在しないとは、任意の点を中心とした2000倍の電子顕微鏡観察において、繊維の両端が観察されないことを指す。また、本発明の不織布を形成する繊維に繊維長が60μm以下の繊維が含まれると、繊維同士の交絡が弱くなり、不織布の強度が低下するため好ましくない。 Next, it will be described that there is substantially no fiber having a fiber length of 60 μm or less. Here, “substantially absent” means that both ends of the fiber are not observed in an electron microscope observation at a magnification of 2000 centered on an arbitrary point. Moreover, when the fiber which forms the nonwoven fabric of this invention contains the fiber whose fiber length is 60 micrometers or less, since the entanglement of fibers will become weak and the intensity | strength of a nonwoven fabric will fall, it is not preferable.
本発明の不織布を製造するには、前述の要件を同時に満足するような不織布が得られる手法であればいずれも採用することができるが、プロトン伝導性ポリマーを含む溶液に繊維形成性の有機高分子を添加する段階と、前記繊維形成性の有機高分子を添加した溶液を静電紡糸法にて紡糸する段階と、前記紡糸によって捕集基板に累積される繊維構造体を得る段階と、前記繊維構造体に含まれる繊維形成性の有機高分子を除去することが製造方法の好ましい一態様として挙げることができる。 In order to produce the nonwoven fabric of the present invention, any technique can be used as long as it can obtain a nonwoven fabric that satisfies the above-mentioned requirements at the same time. Adding a molecule, spinning a solution added with the fiber-forming organic polymer by an electrostatic spinning method, obtaining a fiber structure accumulated on a collection substrate by the spinning, and A preferred embodiment of the production method is to remove the fiber-forming organic polymer contained in the fiber structure.
まず、静電紡糸法について説明する。
静電紡糸法とは繊維形成性の基質を溶解させた溶液を電極間で形成された静電場中に吐出し、溶液を電極に向けて曳糸し、形成される繊維状物質を捕集基板上に累積することによって繊維構造体を得る方法であって、繊維状物質とは、繊維形成性の基質を溶解させた溶媒が留去して繊維積層体となっている状態のみならず、前記溶媒が繊維状物質に含まれている状態も示している。
First, the electrostatic spinning method will be described.
Electrospinning is a method in which a solution in which a fiber-forming substrate is dissolved is discharged into an electrostatic field formed between electrodes, the solution is spun toward the electrodes, and the fibrous material formed is collected It is a method of obtaining a fiber structure by accumulating on the fibrous material, and the fibrous substance is not only a state in which the solvent in which the fiber-forming substrate is dissolved is distilled off to form a fiber laminate, The state in which the solvent is contained in the fibrous material is also shown.
次いで、静電紡糸法で用いる装置について説明する。
前述の電極は、金属、無機物、または有機物のいかなるものでも導電性を示しさえすれば用いることができ、また、絶縁物上に導電性を示す金属、無機物、または有機物の薄膜を持つものであっても良い。
Next, an apparatus used in the electrostatic spinning method will be described.
The above-described electrode can be used as long as it has conductivity, and any metal, inorganic, or organic material has a thin film of conductive metal, inorganic, or organic material on an insulator. May be.
また、静電場は一対又は複数の電極間で形成されており、いずれの電極に高電圧を印加しても良い。これは、例えば電圧値が異なる高電圧の電極が2つ(例えば15kVと10kV)と、アースにつながった電極の合計3つの電極を用いる場合も含み、または3つを越える数の電極を使う場合も含むものとする。 The electrostatic field is formed between a pair or a plurality of electrodes, and a high voltage may be applied to any of the electrodes. This includes, for example, the case where two high-voltage electrodes with different voltage values (for example, 15 kV and 10 kV) and a total of three electrodes connected to ground are used, or when more than three electrodes are used. Shall also be included.
次に静電紡糸法による本発明の不織布を構成する繊維構造体の製造手法について順を追って説明する。
まず、プロトン伝導性ポリマーを含む溶液に繊維形成性の有機高分子を添加するが、本発明の製造方法における溶液中の溶媒に対するプロトン伝導性ポリマーの濃度は0.5〜30重量%であることが好ましい。プロトン伝導性ポリマーの基質の濃度が0.5重量%より小さいと、濃度が低すぎるため繊維を形成することが困難となり好ましくない。また、30重量%より大きいと得られる繊維の繊維径が大きくなり好ましくない。より好ましい溶液中の溶媒に対するプロトン伝導性ポリマーの濃度は2〜20重量%であり、より好ましくは3〜10重量%である。
Next, the manufacturing method of the fiber structure which comprises the nonwoven fabric of this invention by an electrospinning method is demonstrated later on.
First, the fiber-forming organic polymer is added to the solution containing the proton conductive polymer, and the concentration of the proton conductive polymer with respect to the solvent in the solution in the production method of the present invention is 0.5 to 30% by weight. Is preferred. When the concentration of the proton conductive polymer substrate is less than 0.5% by weight, it is not preferable because the concentration is too low and it becomes difficult to form fibers. On the other hand, if it is larger than 30% by weight, the fiber diameter of the obtained fiber is undesirably large. The concentration of the proton conductive polymer with respect to the solvent in the solution is more preferably 2 to 20% by weight, and more preferably 3 to 10% by weight.
また、溶媒は一種を単独で用いても良く、複数の溶媒を組み合わせても良い。前記溶媒としては、プロトン伝導性ポリマーと繊維形成性の有機高分子を溶解可能で、かつ静電紡糸法にて紡糸する段階で蒸発し、繊維を形成可能なものであれば特に限定されず、例えば、アセトン、クロロホルム、エタノール、イソプロパノール、メタノール、トルエン、テトラヒドロフラン、水、ベンゼン、ベンジルアルコール、1,4−ジオキサン、プロパノール、塩化メチレン、四塩化炭素、シクロヘキサン、シクロヘキサノン、フェノール、ピリジン、トリクロロエタン、酢酸、蟻酸、ヘキサフルオロイソプロパノール、ヘキサフルオロアセトン、N,N−ジメチルホルムアミド、アセトニトリル、N−メチルモルホリン−N−オキシド、1,3−ジオキソラン、メチルエチルケトン、上記溶媒の混合溶媒等が挙げられる。 Moreover, a solvent may be used individually by 1 type and may combine several solvent. The solvent is not particularly limited as long as it can dissolve the proton-conducting polymer and the fiber-forming organic polymer, and can evaporate at the stage of spinning by an electrostatic spinning method to form a fiber. For example, acetone, chloroform, ethanol, isopropanol, methanol, toluene, tetrahydrofuran, water, benzene, benzyl alcohol, 1,4-dioxane, propanol, methylene chloride, carbon tetrachloride, cyclohexane, cyclohexanone, phenol, pyridine, trichloroethane, acetic acid, Examples include formic acid, hexafluoroisopropanol, hexafluoroacetone, N, N-dimethylformamide, acetonitrile, N-methylmorpholine-N-oxide, 1,3-dioxolane, methyl ethyl ketone, and a mixed solvent of the above solvents.
これらのうち、取り扱い性や物性などから、脂肪族アルコール、水、塩化メチレン、クロロホルムとそれらの混合溶媒を用いることが好ましく、より好ましくは、脂肪族アルコールと水との混合溶媒を用いることが好ましい。 Among these, from the viewpoint of handling properties and physical properties, it is preferable to use aliphatic alcohol, water, methylene chloride, chloroform and a mixed solvent thereof, more preferably a mixed solvent of aliphatic alcohol and water. .
また、繊維形成性の有機高分子としては、プロトン伝導性ポリマーを含む溶液に添加可能で、静電紡糸に必要な粘度を与える有機高分子であれば限定されないが、繊維形成性の有機高分子の分子量は1,000,000以上であることが好ましい。分子量が1,000,000以下であると、静電紡糸に必要な粘度を与えるために、添加する添加する量が増えることにより繊維径が太くなることや、プロトン伝導性ポリマーに対する繊維形成性の有機高分子の割合が高くなるために、不織布のイオン伝導性が低下するため好ましくない。より好ましくは、分子量が2,000,000以上であることが好ましい。 The fiber-forming organic polymer is not limited as long as it is an organic polymer that can be added to a solution containing a proton conductive polymer and gives a viscosity necessary for electrostatic spinning. The molecular weight of is preferably 1,000,000 or more. When the molecular weight is 1,000,000 or less, in order to give the viscosity necessary for electrospinning, the fiber diameter increases as the amount added is increased, and the fiber-forming property of the proton-conductive polymer increases. Since the ratio of the organic polymer is increased, the ionic conductivity of the nonwoven fabric is lowered, which is not preferable. More preferably, the molecular weight is 2,000,000 or more.
また、プロトン伝導性ポリマーに対する繊維形成性の有機高分子の割合が少ないほど好ましいことから、繊維形成性の有機高分子の濃度としては、1重量%以下であることが好ましく、より好ましくは0.5重量%以下である。 Further, since the smaller the ratio of the fiber-forming organic polymer to the proton-conducting polymer, the better. Therefore, the concentration of the fiber-forming organic polymer is preferably 1% by weight or less, more preferably 0.8%. 5% by weight or less.
また、繊維形成性の有機高分子としては、プロトン伝導性ポリマーを含む溶液に添加可能で、静電紡糸に必要な粘度を与える有機高分子であれば限定されないが、繊維形成性の有機高分子は脂肪族アルコールと水との混合溶媒に溶解することが好ましく、ポリエチレンオキシド、ポリビニルアルコール、ポリビニルエステル、ポリビニルエーテル、ポリビニルピリジン、ポリアクリルアミド、エーテルセルロース、ペクチンなどが挙げられる。
これらのうち、取り扱いなどの点よりポリエチレンオキシドがより好ましい。
The fiber-forming organic polymer is not limited as long as it is an organic polymer that can be added to a solution containing a proton conductive polymer and gives a viscosity necessary for electrostatic spinning. Is preferably dissolved in a mixed solvent of an aliphatic alcohol and water, and examples thereof include polyethylene oxide, polyvinyl alcohol, polyvinyl ester, polyvinyl ether, polyvinyl pyridine, polyacrylamide, ether cellulose, and pectin.
Among these, polyethylene oxide is more preferable from the viewpoint of handling.
次いで、捕集基板に累積される繊維構造体を得る段階について説明する。
本発明の製造方法では、静電紡糸法によって紡糸を行うため、繊維構造体は捕集基板である電極上に積層される。捕集基板に平面を用いれば平面状の不織布が得られるが、捕集基板の形状を変えることによって、所望の形状の構造体を作製することも出来る。
また、繊維構造体が基板上の一箇所に集中して積層されるなど、均一性が低い場合には、基板を揺動させたり、回転させたりすることも可能である。
Next, a step of obtaining a fiber structure accumulated on the collection substrate will be described.
In the production method of the present invention, since the spinning is performed by the electrostatic spinning method, the fiber structure is laminated on the electrode that is the collection substrate. If a flat surface is used for the collection substrate, a planar nonwoven fabric can be obtained. However, by changing the shape of the collection substrate, a structure having a desired shape can be produced.
In addition, when the uniformity is low, such as when the fiber structure is concentrated and laminated at one place on the substrate, the substrate can be swung or rotated.
次に、前記繊維構造体に含まれる繊維形成性の有機高分子を除去する段階について説明する。前記繊維構造体に含まれる繊維形成性の有機高分子を除去する方法であれば、いずれも適用できるが、好ましい方法として、繊維形成性の有機高分子を溶解するが前記プロトン伝導性ポリマーを溶解しない溶媒に前記繊維構造体を浸漬させる方法が挙げられる。前記溶媒として、水が好ましく、必要に応じて無機塩を添加したり、pHを調整したりすることが出来る。 Next, the step of removing the fiber-forming organic polymer contained in the fiber structure will be described. Any method can be applied as long as it removes the fiber-forming organic polymer contained in the fiber structure. However, as a preferred method, the fiber-forming organic polymer is dissolved, but the proton-conducting polymer is dissolved. The method of immersing the said fiber structure in the solvent which does not do is mentioned. The solvent is preferably water, and an inorganic salt can be added or the pH can be adjusted as necessary.
また、前記繊維形成性の有機高分子を含有する繊維構造体または前記繊維形成性の有機高分子を除去した繊維構造体について、熱処理などを行うことも可能である。熱処理によって、プロトン伝導性ポリマーの結晶化度を高めたり、プロトン伝導性ポリマーを熱変性させたりすることが出来る。 Moreover, it is also possible to heat-treat the fiber structure containing the fiber-forming organic polymer or the fiber structure from which the fiber-forming organic polymer has been removed. By heat treatment, the crystallinity of the proton conductive polymer can be increased, or the proton conductive polymer can be thermally denatured.
また、本発明により得られる不織布の用途は、イオン交換樹脂用の部材に限定されるものではなく、各種フィルター、触媒担持基材、電池セパレーター部材など各種用途に用いることが出来る。 Moreover, the use of the nonwoven fabric obtained by this invention is not limited to the member for ion exchange resins, It can use for various uses, such as various filters, a catalyst support base material, and a battery separator member.
以下、本発明を実施例により更に具体的に説明するが、本発明は、これらの実施例により何等限定を受けるものではない。また以下の各実施例、比較例における評価項目は以下のとおりの手法にて実施した。
また実施例中における各値は下記の方法で求めた。
平均繊維径:
得られた繊維構造体の表面を走査型電子顕微鏡(株式会社日立製作所製S−2400)により撮影(倍率2000倍)して得た写真から無作為に20箇所を選んで繊維の径を測定し、すべての繊維径(n=20)の平均値を求めて、平均繊維径とした。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. The evaluation items in the following examples and comparative examples were carried out by the following methods.
Moreover, each value in an Example was calculated | required with the following method.
Average fiber diameter:
The surface of the obtained fiber structure was photographed with a scanning electron microscope (S-2400, manufactured by Hitachi, Ltd.) (magnification 2000 times), and randomly selected 20 points from the photograph, and the fiber diameter was measured. The average value of all the fiber diameters (n = 20) was determined and used as the average fiber diameter.
[実施例1]
「ナフィオン」溶液(「Nafion」 perfluorinated ion−exchange resin,5wt% solution in a mixture of lower aliphatic alcohols and water,d0.874、シグマアルドリッチ)100重量部とポリエチレンオキシド(和光純薬工業、平均分子量4,000,000)0.01重量部を室温(25℃)で混合し溶液を作製した。図1に示す装置を用いて紡糸を行い繊維構造体を得た。噴出ノズル1の内径は0.6mm、電圧は15kV、噴出ノズル1から電極4までの距離は15cmであった。得られた繊維構造体を構成する繊維の平均径は1.2μmであった。繊維構造体の電子顕微鏡写真を図2に示す。
[Example 1]
“Nafion” solution (“Nafion” perfluorinated ion-exchange resin, 5 wt% solution in a mixture of lower aliphatic alcohols and water, d0.874, Sigma Aldrich average, 4 parts by weight, polyethylene oxide, and total weight of polyethylene oxide (Shimaru Aldrich) 1,000,000) parts by weight were mixed at room temperature (25 ° C.) to prepare a solution. Spinning was performed using the apparatus shown in FIG. 1 to obtain a fiber structure. The inner diameter of the ejection nozzle 1 was 0.6 mm, the voltage was 15 kV, and the distance from the ejection nozzle 1 to the electrode 4 was 15 cm. The average diameter of the fibers constituting the obtained fiber structure was 1.2 μm. An electron micrograph of the fiber structure is shown in FIG.
[実施例2]
「ナフィオン」溶液(「Nafion」 perfluorinated ion−exchange resin,5wt% solution in a mixture of lower aliphatic alcohols and water,d0.874、シグマアルドリッチ)100重量部とポリエチレンオキシド(和光純薬工業、平均分子量4,000,000)0.05重量部を室温(25℃)で混合し溶液を作製した。図1に示す装置を用いて紡糸を行い繊維構造体を得た。噴出ノズル1の内径は0.6mm、電圧は15kV、噴出ノズル1から電極4までの距離は15cmであった。得られた繊維構造体を構成する繊維の平均径は0.9μmであった。繊維構造体の電子顕微鏡写真を図3に示す。
[Example 2]
“Nafion” solution (“Nafion” perfluorinated ion-exchange resin, 5 wt% solution in a mixture of lower aliphatic alcohols and water, d0.874, Sigma Aldrich average, 4 parts by weight, polyethylene oxide, and total weight of polyethylene oxide (Shimaru Aldrich) (000,000) 0.05 parts by weight were mixed at room temperature (25 ° C.) to prepare a solution. Spinning was performed using the apparatus shown in FIG. 1 to obtain a fiber structure. The inner diameter of the ejection nozzle 1 was 0.6 mm, the voltage was 15 kV, and the distance from the ejection nozzle 1 to the electrode 4 was 15 cm. The average diameter of the fibers constituting the obtained fiber structure was 0.9 μm. An electron micrograph of the fiber structure is shown in FIG.
[実施例3]
「ナフィオン」溶液(「Nafion」 perfluorinated ion−exchange resin,5wt% solution in a mixture of lower aliphatic alcohols and water,d0.874、シグマアルドリッチ)100重量部とポリエチレンオキシド(和光純薬工業、平均分子量4,000,000)0.1重量部を室温(25℃)で混合し溶液を作製した。図1に示す装置を用いて紡糸を行い繊維構造体を得た。噴出ノズル1の内径は0.6mm、電圧は15kV、噴出ノズル1から電極4までの距離は15cmであった。得られた繊維構造体を構成する繊維の平均径は1.1μmであった。繊維構造体の電子顕微鏡写真を図4に示す。
[Example 3]
“Nafion” solution (“Nafion” perfluorinated ion-exchange resin, 5 wt% solution in a mixture of lower aliphatic alcohols and water, d0.874, Sigma Aldrich average, 4 parts by weight, polyethylene oxide, and total weight of polyethylene oxide (Shimaru Aldrich) 1,000,000) was mixed at room temperature (25 ° C.) to prepare a solution. Spinning was performed using the apparatus shown in FIG. 1 to obtain a fiber structure. The inner diameter of the ejection nozzle 1 was 0.6 mm, the voltage was 15 kV, and the distance from the ejection nozzle 1 to the electrode 4 was 15 cm. The average diameter of the fibers constituting the obtained fiber structure was 1.1 μm. An electron micrograph of the fiber structure is shown in FIG.
[実施例4]
「ナフィオン」溶液(「Nafion」 perfluorinated ion−exchange resin,5wt% solution in a mixture of lower aliphatic alcohols and water,d0.874、シグマアルドリッチ)100重量部とポリエチレンオキシド(和光純薬工業、平均分子量4,000,000)0.2重量部を室温(25℃)で混合し溶液を作製した。図1に示す装置を用いて紡糸を行い繊維構造体を得た。噴出ノズル1の内径は0.6mm、電圧は15kV、噴出ノズル1から電極4までの距離は15cmであった。得られた繊維構造体を構成する繊維の平均径は2.0μmであった。繊維構造体の電子顕微鏡写真を図5に示す。
[Example 4]
“Nafion” solution (“Nafion” perfluorinated ion-exchange resin, 5 wt% solution in a mixture of lower aliphatic alcohols and water, d0.874, Sigma Aldrich average, 4 parts by weight, polyethylene oxide, and total weight of polyethylene oxide (Shimaru Aldrich) (000,000) 0.2 part by weight was mixed at room temperature (25 ° C.) to prepare a solution. Spinning was performed using the apparatus shown in FIG. 1 to obtain a fiber structure. The inner diameter of the ejection nozzle 1 was 0.6 mm, the voltage was 15 kV, and the distance from the ejection nozzle 1 to the electrode 4 was 15 cm. The average diameter of the fibers constituting the obtained fiber structure was 2.0 μm. An electron micrograph of the fiber structure is shown in FIG.
[実施例5]
「ナフィオン」溶液(「Nafion」 perfluorinated ion−exchange resin,5wt% solution in a mixture of lower aliphatic alcohols and water,d0.874、シグマアルドリッチ)100重量部とポリエチレンオキシド(シグマアルドリッチ、平均分子量8,000,000)0.15重量部を室温(25℃)で混合し溶液を作製した。図1に示す装置を用いて紡糸を行い繊維構造体を得た。噴出ノズル1の内径は0.6mm、電圧は15kV、噴出ノズル1から電極4までの距離は15cmであった。得られた繊維構造体を構成する繊維の平均径は3.8μmであった。繊維構造体の電子顕微鏡写真を図6に示す。
[Example 5]
“Nafion” solution (“Nafion” perfluorinated ion-exchange resin, 5 wt% solution in a mixture of lower aliphatic alcohols and water, d0.874, Sigma-Aldrich) 000) 0.15 parts by weight was mixed at room temperature (25 ° C.) to prepare a solution. Spinning was performed using the apparatus shown in FIG. 1 to obtain a fiber structure. The inner diameter of the ejection nozzle 1 was 0.6 mm, the voltage was 15 kV, and the distance from the ejection nozzle 1 to the electrode 4 was 15 cm. The average diameter of the fibers constituting the obtained fiber structure was 3.8 μm. An electron micrograph of the fiber structure is shown in FIG.
[実施例6]
「ナフィオン」溶液(「Nafion」 perfluorinated ion−exchange resin,20wt% solution in a mixture of lower aliphatic alcohols and water,d0.976、シグマアルドリッチ)100重量部とポリエチレンオキシド(和光純薬工業、平均分子量4,000,000)0.01重量部を室温(25℃)で混合し溶液を作製した。図1に示す装置を用いて紡糸を行い繊維構造体を得た。噴出ノズル1の内径は0.6mm、電圧は15kV、噴出ノズル1から電極4までの距離は15cmであった。得られた繊維構造体を構成する繊維の平均径は1.6μmであった。繊維構造体の電子顕微鏡写真を図7に示す。
[Example 6]
“Nafion” solution (“Nafion” perfluorinated ion-exchange resin, 20 wt% solution in a mixture of lower aliphatic alcohols and water, d0.976, Sigma-Aldrich) 1,000,000) parts by weight were mixed at room temperature (25 ° C.) to prepare a solution. Spinning was performed using the apparatus shown in FIG. 1 to obtain a fiber structure. The inner diameter of the ejection nozzle 1 was 0.6 mm, the voltage was 15 kV, and the distance from the ejection nozzle 1 to the electrode 4 was 15 cm. The average diameter of the fibers constituting the obtained fiber structure was 1.6 μm. An electron micrograph of the fiber structure is shown in FIG.
[比較例1]
「ナフィオン」溶液(「Nafion」 perfluorinated ion−exchange resin,5wt% solution in a mixture of lower aliphatic alcohols and water,d0.874、シグマアルドリッチ)100重量とポリエチレンオキシド(和光純薬工業、平均分子量4,000,000)0.005重量部を室温(25℃)で混合し溶液を作製した。図1に示す装置を用いて紡糸を行った。噴出ノズル1の内径は0.6mm、電圧は15kV、噴出ノズル1から電極4までの距離は15cmであった。得られた構造物を電子顕微鏡で観察したところ、繊維構造体は確認されなかった。電子顕微鏡写真を図8に示す。
[Comparative Example 1]
“Nafion” solution (“Nafion” perfluorinated ion-change resin, 5 wt% solution in a mixture of lower aliphatic alcohols and water, d0.874, Sigma Aldrich average, weight of polyethylene oxide, molecular weight of polyethylene oxide (000) , 000) 0.005 parts by weight were mixed at room temperature (25 ° C.) to prepare a solution. Spinning was performed using the apparatus shown in FIG. The inner diameter of the ejection nozzle 1 was 0.6 mm, the voltage was 15 kV, and the distance from the ejection nozzle 1 to the electrode 4 was 15 cm. When the obtained structure was observed with an electron microscope, a fiber structure was not confirmed. An electron micrograph is shown in FIG.
[比較例2]
「ナフィオン」溶液(「Nafion」 perfluorinated ion−exchange resin,5wt% solution in a mixture of lower aliphatic alcohols and water,d0.874、シグマアルドリッチ)100重量部とポリエチレンオキシド(和光純薬工業、平均分子量4,000,000)0.25重量部を室温(25℃)で混合したところ、ポリエチレンオキシドが完全に溶解せず、均一な溶液が作製できなかった。
[Comparative Example 2]
“Nafion” solution (“Nafion” perfluorinated ion-exchange resin, 5 wt% solution in a mixture of lower aliphatic alcohols and water, d0.874, Sigma Aldrich average, 4 parts by weight, polyethylene oxide, and total weight of polyethylene oxide (Shimaru Aldrich) When 0.25 parts by weight of (000,000) were mixed at room temperature (25 ° C.), polyethylene oxide was not completely dissolved, and a uniform solution could not be produced.
[比較例3]
「ナフィオン」溶液(「Nafion」 perfluorinated ion−exchange resin,5wt% solution in a mixture of lower aliphatic alcohols and water,d0.874、シグマアルドリッチ)100重量とポリエチレンオキシド(シグマアルドリッチ、平均分子量8,000,000)0.015重量部を室温(25℃)で混合し溶液を作製した。図1に示す装置を用いて紡糸を行った。噴出ノズル1の内径は0.6mm、電圧は15kV、噴出ノズル1から電極4までの距離は15cmであった。得られた構造物を電子顕微鏡で観察したところ、繊維構造体は確認されなかった。電子顕微鏡写真を図9に示す。
[Comparative Example 3]
“Nafion” solution (“Nafion” perfluorinated ion-exchange resin, 5 wt% solution in a mixture of lower aliphatic alcohols and water, d0.874, sigma aldrich) ) 0.015 parts by weight were mixed at room temperature (25 ° C.) to prepare a solution. Spinning was performed using the apparatus shown in FIG. The inner diameter of the ejection nozzle 1 was 0.6 mm, the voltage was 15 kV, and the distance from the ejection nozzle 1 to the electrode 4 was 15 cm. When the obtained structure was observed with an electron microscope, a fiber structure was not confirmed. An electron micrograph is shown in FIG.
[比較例4]
「ナフィオン」溶液(「Nafion」 perfluorinated ion−exchange resin,5wt% solution in a mixture of lower aliphatic alcohols and water,d0.874、シグマアルドリッチ)100重量とポリエチレンオキシド(和光純薬工業、平均分子量200,000)0.1重量部を室温(25℃)で混合し溶液を作製した。図1に示す装置を用いて紡糸を行った。噴出ノズル1の内径は0.6mm、電圧は15kV、噴出ノズル1から電極4までの距離は15cmであった。得られた構造物を電子顕微鏡で観察したところ、繊維構造体は確認されなかった。電子顕微鏡写真を図10に示す。
[Comparative Example 4]
“Nafion” solution (“Nafion” perfluorinated ion-exchange resin, 5 wt% solution in a mixture of lower aliphatic alcohols and water, d0.874, Sigma-Aldrich) ) 0.1 part by weight was mixed at room temperature (25 ° C.) to prepare a solution. Spinning was performed using the apparatus shown in FIG. The inner diameter of the ejection nozzle 1 was 0.6 mm, the voltage was 15 kV, and the distance from the ejection nozzle 1 to the electrode 4 was 15 cm. When the obtained structure was observed with an electron microscope, a fiber structure was not confirmed. An electron micrograph is shown in FIG.
[比較例5]
「ナフィオン」溶液(「Nafion」 perfluorinated ion−exchange resin,5wt% solution in a mixture of lower aliphatic alcohols and water,d0.874、シグマアルドリッチ)を溶液とし、図1に示す装置を用いて紡糸を行った。噴出ノズル1の内径は0.6mm、電圧は15kV、噴出ノズル1から電極4までの距離は15cmであった。得られた構造物を電子顕微鏡で観察したところ、繊維構造体は確認されなかった。電子顕微鏡写真を図11に示す。
[Comparative Example 5]
A device using a “Nafion” solution (“Nafion” perfluorinated ion-exchange resin, 5 wt% solution in a mixture of lower aliphatic alcohols and water, d0.874, sigma aldritch) as a solution is shown in FIG. . The inner diameter of the ejection nozzle 1 was 0.6 mm, the voltage was 15 kV, and the distance from the ejection nozzle 1 to the electrode 4 was 15 cm. When the obtained structure was observed with an electron microscope, a fiber structure was not confirmed. An electron micrograph is shown in FIG.
[比較例6]
「ナフィオン」溶液(「Nafion」 perfluorinated ion−exchange resin,20wt% solution in a mixture of lower aliphatic alcohols and water,d0.976、シグマアルドリッチ)を溶液とし、図1に示す装置を用いて紡糸を行った。噴出ノズル1の内径は0.6mm、電圧は15kV、噴出ノズル1から電極4までの距離は15cmであった。得られた構造物を電子顕微鏡で観察したところ、繊維構造体は確認されなかった。電子顕微鏡写真を図12に示す。
[Comparative Example 6]
A solution using a “Nafion” solution (“Nafion” perfluorinated ion-exchange resin, 20 wt% solution in a mixture of lower aliphatic alcohols and water, d0.976, Sigma Aldrich) as a solution. . The inner diameter of the ejection nozzle 1 was 0.6 mm, the voltage was 15 kV, and the distance from the ejection nozzle 1 to the electrode 4 was 15 cm. When the obtained structure was observed with an electron microscope, a fiber structure was not confirmed. An electron micrograph is shown in FIG.
1 溶液噴出ノズル
2 溶液
3 溶液保持槽
4 電極
5 高電圧発生器
DESCRIPTION OF SYMBOLS 1 Solution ejection nozzle 2 Solution 3 Solution holding tank 4 Electrode 5 High voltage generator
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005049064A JP4612432B2 (en) | 2005-02-24 | 2005-02-24 | Nonwoven fabric and method for producing nonwoven fabric |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005049064A JP4612432B2 (en) | 2005-02-24 | 2005-02-24 | Nonwoven fabric and method for producing nonwoven fabric |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006233355A JP2006233355A (en) | 2006-09-07 |
JP4612432B2 true JP4612432B2 (en) | 2011-01-12 |
Family
ID=37041331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005049064A Expired - Fee Related JP4612432B2 (en) | 2005-02-24 | 2005-02-24 | Nonwoven fabric and method for producing nonwoven fabric |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4612432B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008238134A (en) * | 2007-03-29 | 2008-10-09 | Osaka Univ | Ion-exchangeable filter and its manufacturing method |
EP2258896A4 (en) * | 2008-03-27 | 2012-06-20 | Kurita Water Ind Ltd | Polymer fiber material, method of producing the same and filter for filtering fluid |
JP5428715B2 (en) * | 2009-09-30 | 2014-02-26 | 栗田工業株式会社 | Method for producing polymer fiber body |
JP5950921B2 (en) | 2011-09-28 | 2016-07-13 | 株式会社クラレ | Extra fine fiber sheet |
JP7009875B2 (en) * | 2017-09-25 | 2022-02-10 | 株式会社豊田中央研究所 | Method for manufacturing a polyelectrolyte non-woven fabric, a polyelectrolyte film, and a polyelectrolyte structure |
JP7365885B2 (en) * | 2019-12-13 | 2023-10-20 | 日本バイリーン株式会社 | Fiber sheet and its manufacturing method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01282390A (en) * | 1988-05-06 | 1989-11-14 | Toray Ind Inc | Ultra-fine ion-exchange fiber and production thereof |
JP2001500201A (en) * | 1996-09-12 | 2001-01-09 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Melt-blown ionomer microfibers and nonwoven webs made therefrom for gas filters |
US20040051201A1 (en) * | 2002-04-11 | 2004-03-18 | Greenhalgh Skott E. | Coated stent and method for coating by treating an electrospun covering with heat or chemicals |
JP2006144138A (en) * | 2004-11-16 | 2006-06-08 | Gunze Ltd | Method for producing fluorine nonwoven fabric and fluorine nonwoven fabric |
-
2005
- 2005-02-24 JP JP2005049064A patent/JP4612432B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01282390A (en) * | 1988-05-06 | 1989-11-14 | Toray Ind Inc | Ultra-fine ion-exchange fiber and production thereof |
JP2001500201A (en) * | 1996-09-12 | 2001-01-09 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Melt-blown ionomer microfibers and nonwoven webs made therefrom for gas filters |
US20040051201A1 (en) * | 2002-04-11 | 2004-03-18 | Greenhalgh Skott E. | Coated stent and method for coating by treating an electrospun covering with heat or chemicals |
JP2006144138A (en) * | 2004-11-16 | 2006-06-08 | Gunze Ltd | Method for producing fluorine nonwoven fabric and fluorine nonwoven fabric |
Also Published As
Publication number | Publication date |
---|---|
JP2006233355A (en) | 2006-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4612432B2 (en) | Nonwoven fabric and method for producing nonwoven fabric | |
JP5526392B2 (en) | High flux fluid separation membrane containing cellulose or cellulose derivatives | |
US7517832B2 (en) | Fibrous active carbon and nonwoven fabric including the same | |
JP5027554B2 (en) | Method and apparatus for producing uniaxial or multiaxially oriented nanofiber assembly | |
JP4871196B2 (en) | Cellulose ultrafine fiber, fiber assembly sheet thereof and method for producing the same | |
KR101407770B1 (en) | Porous Nanoweb and Method for Manufacturing The Same | |
JP4963909B2 (en) | Polyphenylene ether microfiber and its fiber aggregate | |
JP5246652B2 (en) | Method for producing ultrafine nanofiber | |
JP5434079B2 (en) | Ultrafine fiber, ion conductive composite polymer membrane, and method for producing the same | |
WO2014178454A1 (en) | Method for manufacturing water treatment nanofiber-graphene separation membrane and water treatment nanofiber-graphene separation membrane manufactured thereby | |
KR20160139264A (en) | 3-dimenstinal nanofiber membrane and Method of manufacturing the same using liquid collector | |
CN100448920C (en) | Method for preparing low dielectric constant high polymer nanometer fiber membrane using electric spinning method | |
JP5328584B2 (en) | Fiber assembly | |
KR20050114708A (en) | Nonwoven fabric and process for producing the same | |
JP5994476B2 (en) | Method for producing composite polymer electrolyte membrane | |
US20150224453A1 (en) | Method for fabricating polyethersulfone nanofiber membrane by electrospinning | |
JP2007092210A (en) | Method and equipment for producing fibrous structure | |
CN109478654A (en) | Porous substrate, porous electrode, carbon fiber paper, the manufacturing method of carbon fiber paper, the manufacturing method of porous substrate | |
JP6226572B2 (en) | Nonwoven fabric and method for producing the same | |
CN108246125A (en) | A kind of high resistance tocrocking inner support Pvdf Microporous Hollow Fiber Membrane and preparation method thereof | |
Baştürk et al. | Surface and proton conductivity properties of electrospun poly (vinyl butyral)/polyaniline nanofibers | |
JP4361529B2 (en) | Porous fiber, porous fiber structure and method for producing the same | |
Askari et al. | Parametric optimization of poly (ether sulfone) electrospun membrane for effective oil/water separation | |
JP4354831B2 (en) | Para-type aromatic polyamide fiber, fiber structure and production method thereof | |
JP6154101B2 (en) | Separator made of aromatic polyamide nanofiber structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070918 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100624 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100629 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100823 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100921 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101015 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131022 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |