JPS63283737A - Vacuum reactive vessel - Google Patents

Vacuum reactive vessel

Info

Publication number
JPS63283737A
JPS63283737A JP12074087A JP12074087A JPS63283737A JP S63283737 A JPS63283737 A JP S63283737A JP 12074087 A JP12074087 A JP 12074087A JP 12074087 A JP12074087 A JP 12074087A JP S63283737 A JPS63283737 A JP S63283737A
Authority
JP
Japan
Prior art keywords
reaction vessel
wall
vacuum
space
inner shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12074087A
Other languages
Japanese (ja)
Inventor
Kenji Shibata
芝田 健二
Saburo Adaka
阿高 三郎
Yuuta Tezeni
手銭 雄太
Hideaki Nishihara
西原 英明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP12074087A priority Critical patent/JPS63283737A/en
Publication of JPS63283737A publication Critical patent/JPS63283737A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/006Processes utilising sub-atmospheric pressure; Apparatus therefor

Abstract

PURPOSE:To release impurities such as H2O adhered to an inner shell surface at high speed and enhance the membrane quality by subjecting wall of a reactive vessel of sputtering to double structure, forming a space between a inner shell and a outer shell and providing with a heating means on the inner shell in said space. CONSTITUTION:In case of preparing a membrane in a vacuum reactive vessel, a reactive space 13 and an insulated space 14 are vacuumized through a vacuum aspirating device after exposing once these spaces in a reactive vessel to the atmosphere and the reactive vessel inner shell 2 is heated by a baking heater 9. In that case, as the pressure of both spaces 13 and 14 is always same, it is not necessary to make the wall of inner shell 2 thick for enduring to vacuum, and the time required to raise the temperature required for the release of impurities such as H2O adhered to the inner shell inside surface is shortened to a large extent. Also, as he produced membrane on a substrate 5 by bean generator 4 and target 6 is prepared after releasing impurities, any impurities are not migrated to the membrane surface, and a high quality membrane can be prepared in a short period of time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は真空用反応容器に係り、特に容器内の水(H雪
0)等の不純物による容器内壁面への付着に起因する容
器内汚染を低減するのに好適な真空用反応容器に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vacuum reaction vessel, and particularly to the prevention of contamination inside the vessel due to adhesion of impurities such as water (H snow 0) inside the vessel to the inner wall surface of the vessel. The present invention relates to a vacuum reaction vessel suitable for reducing .

〔従来の技術〕[Conventional technology]

一般に減圧下に保持された容器内で基板等に所望の物質
を形成させる装置が種々開発されている。
2. Description of the Related Art Generally, various devices have been developed for forming a desired substance on a substrate or the like in a container maintained under reduced pressure.

第3図はスパッタ法により81基板上にAj膜を形成す
るスパッタ装置の一例を示す断面図である。
FIG. 3 is a cross-sectional view showing an example of a sputtering apparatus for forming an Aj film on an 81 substrate by a sputtering method.

第3図において、反応容器21の中にプラズマを発生さ
せるための電極22が設置され、ガス供給ノズル23か
ら反応容器21内に供給されたアルゴンガス(Arガス
)をプラズマ化する。このプラズマ化によって生じたA
r’″イオンは、負の電位に保たれたターゲット24に
向かって加速され、これに衝突してターゲット24から
Aj原子をたたき出す、このAN原子は、反応容器21
内の空間部を拡散し、基板25上に付着して基板25上
にAI膜を形成する。このようなスパッタ操作時におい
ては、反応容器21の内部は、反応容器21の底部に設
けられた排気口26を介して真空排気装置(図示せず)
によって1Torr以下の圧力に保たれ、かつ反応容器
21は0リング27により真空度がより確実に維持され
るようになっている。
In FIG. 3, an electrode 22 for generating plasma is installed in a reaction vessel 21, and turns argon gas (Ar gas) supplied into the reaction vessel 21 from a gas supply nozzle 23 into plasma. A generated by this plasma formation
The r''' ions are accelerated toward the target 24 kept at a negative potential and collide with it to knock out Aj atoms from the target 24. These AN atoms are
The AI film is diffused into the inner space and attached onto the substrate 25 to form an AI film on the substrate 25. During such a sputtering operation, the inside of the reaction vessel 21 is evacuated by a vacuum evacuation device (not shown) through an exhaust port 26 provided at the bottom of the reaction vessel 21.
The pressure of the reaction vessel 21 is maintained at 1 Torr or less, and the degree of vacuum in the reaction vessel 21 is maintained more reliably by an O-ring 27.

上記のようなスパッタ捏作では9反応容器21内に、例
えばHIO等の不純物が存在すると、基板25上に付着
したAIは酸化されてAjg03となり、/l薄膜の電
導度が低下する。この問題を解消する目的で、第3図に
示すようにスパッタによる薄膜の形成前にベーク用ヒー
タ28により反応容器21内壁を加熱して反応容器21
の内壁に付着したHgO等の不純物を脱離させる操作が
行われる。
In the above-described sputter fabrication, if impurities such as HIO are present in the reaction vessel 21, the AI deposited on the substrate 25 will be oxidized to Ajg03, and the conductivity of the /l thin film will decrease. In order to solve this problem, as shown in FIG. 3, the inner wall of the reaction vessel 21 is heated by a baking heater 28 before forming a thin film by sputtering.
An operation is performed to remove impurities such as HgO that have adhered to the inner wall of the tube.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら1反応容器21は、所定の真空度に耐える
のに必要な肉厚(約10fi)を有するために反応容器
21の外部から容器内壁面を加熱した場合、例えば、反
応容器21の内部を外気に曝したときには所定の脱離反
応を終了するのに約24〜48時間を要している。
However, since the first reaction vessel 21 has a wall thickness (approximately 10 fi) necessary to withstand a predetermined degree of vacuum, when the inner wall surface of the reaction vessel 21 is heated from the outside, for example, the inside of the reaction vessel 21 is heated by the outside air. When exposed to water, it takes about 24 to 48 hours to complete the predetermined elimination reaction.

また、反応容器21の内面側にベーク用ヒータ28を取
り付けた場合には、このヒータと容器内壁面との間の隙
間に不純物やゴミ等が溜り、これらが基板25上に形成
されたAI上に付着して薄膜の平滑性を損なう問題を生
じる。
Furthermore, when the baking heater 28 is attached to the inner surface of the reaction container 21, impurities, dust, etc. accumulate in the gap between this heater and the inner wall surface of the container, and these impurities and dirt are deposited on the AI formed on the substrate 25. This causes problems such as adhesion to the surface and impairing the smoothness of the thin film.

本発明の目的は、上記した従来技術の問題点を解消し、
真空用反応容器内壁面に付着した不純物を高速で離脱さ
せ、迅速な成膜操作を行うことができる真空用反応容器
を提供することにある。
The purpose of the present invention is to solve the problems of the prior art described above,
It is an object of the present invention to provide a vacuum reaction vessel capable of rapidly removing impurities attached to the inner wall surface of the vacuum reaction vessel and performing rapid film forming operations.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、反応容器を反応容器内壁と反応容器外壁と
間に空間部を形成した二重構造とし、該空間部内に反応
容器内壁を加熱する手段を設けることによって達成され
る。
The above object is achieved by forming the reaction vessel into a double structure in which a space is formed between the inner wall of the reaction vessel and the outer wall of the reaction vessel, and by providing means for heating the inner wall of the reaction vessel within the space.

〔作用〕[Effect]

反応容器内壁の内部と、反応容器内壁と反応容器外壁と
の間に形成される空間部は、いずれも減圧可能であり、
反応容器内壁は真空に耐える肉厚とする必要がない、し
たがって、反応容器内壁の外周面側から加熱して反応容
器内壁に付着した不純物を脱離させる際し、反応容器内
壁の肉厚が薄いので付着物の脱離に必要な加熱時間は大
幅に短縮される。
Both the inside of the reaction vessel inner wall and the space formed between the reaction vessel inner wall and the reaction vessel outer wall can be depressurized,
The inner wall of the reaction vessel does not need to be thick enough to withstand vacuum. Therefore, when heating from the outer peripheral side of the inner wall of the reaction vessel to remove impurities attached to the inner wall of the reaction vessel, the inner wall of the reaction vessel has a thin wall thickness. Therefore, the heating time required to remove deposits is significantly reduced.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の一実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

この真空用反応容器は、外周面にベータ用ヒータ9が取
り付けられた反応容器内壁2と、その外周側に反応容器
内壁2と所定の空間部を形成した状態で配置された反応
容器外壁lGとから主として構成される。
This vacuum reaction vessel includes a reaction vessel inner wall 2 having a beta heater 9 attached to its outer circumferential surface, and a reaction vessel outer wall 1G arranged on the outer circumferential side thereof to form a predetermined space with the reaction vessel inner wall 2. It mainly consists of

反応容器内壁2は、底板lに真空保持用の017ング3
を介して固定され、その内部にはプラズマ発生用電極4
が設置されている。このプラズマ発生用電極4に対向し
て基板5が配置され、プラズマ発生用電極4にはターゲ
ット6が設置されている0反応容器内壁2内の底板1に
はガス供給ノズル7および排気口8がそれぞれ穿設され
ている。
The inner wall 2 of the reaction vessel has a 017 ring 3 for vacuum maintenance on the bottom plate l.
It is fixed via a plasma generation electrode 4 inside it.
is installed. A substrate 5 is placed facing the plasma generation electrode 4, and a target 6 is placed on the plasma generation electrode 4. A gas supply nozzle 7 and an exhaust port 8 are provided on the bottom plate 1 in the inner wall 2 of the reaction vessel. Each is drilled.

反応容器外壁10は、真空保持用の0リング11を介し
て底板1に固定されると共にこの反応容器外壁lOと反
応容器内壁2との間に形成される断熱空間部14に連通
ずる連結管12が配設され、この連結管12は前記排気
ロアに連通している。
The outer wall 10 of the reaction vessel is fixed to the bottom plate 1 via an O-ring 11 for maintaining vacuum, and a connecting pipe 12 is connected to a heat insulating space 14 formed between the outer wall 10 of the reaction vessel and the inner wall 2 of the reaction vessel. is provided, and this connecting pipe 12 communicates with the exhaust lower.

次に上記のように構成される真空用反応容器の作用につ
いて説明する。
Next, the operation of the vacuum reaction vessel configured as described above will be explained.

この真空用反応容器においては、反応容器内壁2内の空
間部(反応空間部13)を一旦外気に曝した後、成膜を
行う場合、反応空間部13および断熱空間部14内は、
真空排気装置(図示せず)を介して真空状態とされ、こ
の状態でベータ用ヒータ9により反応容器内壁2が加熱
される。この場合、反応容器内壁2の内部側(反応空間
部13)と反応容器内壁2の外部側(断熱空間部14)
はいずれも同時に真空状態に維持されるので、反応容器
内壁2の肉厚は、約1m程度と従来の反応容器の場合と
比較して大幅に薄くすることができる。
In this vacuum reaction vessel, when forming a film after once exposing the space inside the reaction vessel inner wall 2 (reaction space 13) to the outside air, the inside of the reaction space 13 and the heat insulating space 14 are
A vacuum state is created via a vacuum evacuation device (not shown), and in this state, the inner wall 2 of the reaction vessel is heated by the beta heater 9. In this case, the inner side of the reaction vessel inner wall 2 (reaction space 13) and the outer side of the reaction vessel inner wall 2 (insulation space 14)
Since both are maintained in a vacuum state at the same time, the thickness of the inner wall 2 of the reaction vessel can be made significantly thinner, approximately 1 m, compared to the case of conventional reaction vessels.

したがって、ベータ用ヒータ9により反応容器内壁2を
加熱する際、ベータ用ヒータ9の容量を従来の反応容器
のそれと同容量とした場合、反応容器内壁2の内面側を
不純物の脱離に必要な温度にするのに要する時間を大幅
に短縮することができる0例えば、第3図に示す従来の
反応容器21の肉厚を10鶴とし、第3図の反応容器2
1の内部容積と第1図に示す反応空間部13の容積とを
同一とした場合、本実施例による加熱時間は、従来の約
l/10程度に短縮することができる。
Therefore, when heating the inner wall 2 of the reaction vessel with the beta heater 9, if the capacity of the beta heater 9 is the same as that of the conventional reaction vessel, the inner surface of the inner wall 2 of the reaction vessel is For example, if the wall thickness of the conventional reaction vessel 21 shown in FIG.
When the internal volume of 1 and the volume of reaction space 13 shown in FIG. 1 are the same, the heating time according to this embodiment can be shortened to about 1/10 of the conventional one.

また、ベータ用ヒータ9が設置された領域は、真空状態
に保持可能な断熱空間部であるので、べ一り用ヒータ9
が外気に曝されていた従来の装置に比較して熱損失量を
著しく低減することができる。
In addition, since the area where the beta heater 9 is installed is an insulated space that can be maintained in a vacuum state, the beta heater 9
The amount of heat loss can be significantly reduced compared to conventional equipment in which the heat loss is exposed to the outside air.

このように短時間で反応容器内壁2を加熱して反応容器
内壁2の内面に付着した不純物を脱離させた後、ガス供
給ノズル7からArガスが反応空間部13内に供給され
、プラズマ化により生成したAr’イオンは負の電位に
保たれたAIターゲット6に衝突し、AJ原子をたたき
出し、このAl原子が基板5上に付着する。この場合、
既に反応空間部13内の不純物はベータ用ヒータ9によ
る加熱により脱離しているので基板5上に付着したAJ
膜面に不純物が混入することが未然に防止される。
After heating the inner wall 2 of the reaction vessel in a short time to remove impurities attached to the inner surface of the inner wall 2 of the reaction vessel, Ar gas is supplied from the gas supply nozzle 7 into the reaction space 13, and is turned into plasma. The generated Ar' ions collide with the AI target 6 kept at a negative potential, knock out AJ atoms, and these Al atoms adhere to the substrate 5. in this case,
Since the impurities in the reaction space 13 have already been removed by heating by the beta heater 9, the AJ adhering to the substrate 5
This prevents impurities from entering the membrane surface.

第2図は本発明の他の実施例を示す断面図であこの真空
用反応容器は、ベータ用ヒータが取り付けられていない
反応容器内壁15と、内周面に所定の間隔でランプヒー
タ17が取り付けられた反応容器外壁16が断熱空間部
18を介して配置されている。第2図において、その他
の構成部分は、第1図に示すものと実質的に同じである
ので同一符号で示し、構成上の説明は省略する。
FIG. 2 is a sectional view showing another embodiment of the present invention. This vacuum reaction vessel has an inner wall 15 of the reaction vessel to which no beta heater is attached, and lamp heaters 17 at predetermined intervals on the inner peripheral surface. The attached reaction vessel outer wall 16 is disposed with a heat insulating space 18 interposed therebetween. In FIG. 2, the other components are substantially the same as those shown in FIG. 1, so they are designated by the same reference numerals, and a detailed explanation of the structure will be omitted.

第2図に示す真空用反応容器においては、反応容器内壁
15の外周面をランプヒータ17により加熱し、反応容
器内壁15の内周面を昇温させ、反応容器内壁15の内
周面に付着した不純物を脱離させることができる。
In the vacuum reaction vessel shown in FIG. 2, the outer circumferential surface of the inner wall 15 of the reaction vessel is heated by the lamp heater 17 to raise the temperature of the inner circumferential surface of the inner wall 15 of the reaction vessel. impurities can be removed.

本実施例では、特に反応容器内壁15にはべ一り用ヒー
タを取り付けていないので反応容器内壁15の肉厚をよ
り薄くすることができ、したがって反応容器内壁15を
昇温時間の短縮を図ることができる。
In this embodiment, since no heating heater is attached to the inner wall 15 of the reaction vessel, the thickness of the inner wall 15 of the reaction vessel can be made thinner, and therefore the time required to raise the temperature of the inner wall 15 of the reaction vessel can be shortened. be able to.

なお、上記した実施例では、特にスパッタ装置を例を説
明したが、本発明は、減圧下に保持される反応容器で不
純物が容器内壁面に付着する恐れのあり、加熱により不
純物を脱離できる反応容器の何れにも適用することがで
きる。このような反応容器には、例えば、プラズマCV
D装置、真空蒸着装置、分子線エピタキシャル装置、減
圧CVD装置、イオンブレーティング法による装置、イ
オンエソチイング法による装置等を挙げることができる
In the above-mentioned embodiments, a sputtering apparatus was particularly explained as an example, but the present invention is designed to prevent impurities from adhering to the inner wall surface of a reaction vessel that is kept under reduced pressure, so that impurities can be removed by heating. It can be applied to any reaction vessel. Such a reaction vessel includes, for example, a plasma CV
Examples include a D device, a vacuum evaporation device, a molecular beam epitaxial device, a low pressure CVD device, a device using an ion blating method, a device using an ion etching method, and the like.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、反応容器の内壁面に付着
した不純物を加熱により脱離させるに際し、反応容器内
壁を昇温するに要する時間を短縮できる。また、反応容
器内壁の加熱時には、加熱領域が真空に維持可能である
ので熱損失を低減できる。したがって、短時間で高真空
に達成でき、かつ高純度に維持された所望の膜を形成す
ることができる。
As described above, according to the present invention, when removing impurities attached to the inner wall surface of the reaction container by heating, the time required to raise the temperature of the inner wall of the reaction container can be shortened. Further, when heating the inner wall of the reaction vessel, the heating region can be maintained in a vacuum, so heat loss can be reduced. Therefore, a high vacuum can be achieved in a short time, and a desired film maintained at high purity can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図は本発
明の他の実施例を示す断面図、第3図は従来の真空用反
応容器を示す断面図である。 l・・・・・・底板、2・・・・・・反応容器内壁、4
・・・・・・プラズマ発生用電極、5・・・・・・基板
、6・・・・・・ターゲット、7・・・・・・ガス供給
ノズル、8・・・・・・排気口、9・・・・・・ベータ
用ヒータ、lO・・・・・・反応容器外壁、13・・・
・・・反応空間部、14・・・・・・断熱空間部、15
・・・・・・反応容器内壁、16・・・・・・反応容器
外壁、17・・・・・・ランプヒータ。 代理人 弁理士 西 元 勝 − 第1図 第2図
FIG. 1 is a sectional view showing one embodiment of the present invention, FIG. 2 is a sectional view showing another embodiment of the invention, and FIG. 3 is a sectional view showing a conventional vacuum reaction vessel. l...Bottom plate, 2...Inner wall of reaction vessel, 4
..... Electrode for plasma generation, 5 ..... Substrate, 6 .... Target, 7 .... Gas supply nozzle, 8 .... Exhaust port, 9... Beta heater, lO... Reaction vessel outer wall, 13...
...Reaction space section, 14... Heat insulation space section, 15
...Inner wall of the reaction vessel, 16...Outer wall of the reaction container, 17...Lamp heater. Agent: Patent Attorney Masaru Nishimoto - Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 内部を真空に保持可能な反応容器を有する真空用反応容
器において、前記反応容器の少なくとも壁部を反応容器
内壁と反応容器外壁との間に空間部を有する二重構造と
し、該空間部を減圧可能に構成すると共に該空間部内に
前記反応容器内壁を加熱する加熱手段を設けたことを特
徴とする真空用反応容器。
In a vacuum reaction vessel having a reaction vessel capable of maintaining a vacuum inside, at least a wall portion of the reaction vessel has a double structure with a space between an inner wall of the reaction vessel and an outer wall of the reaction vessel, and the space is reduced in pressure. 1. A vacuum reaction vessel, characterized in that the space is configured to be capable of heating and heating means for heating the inner wall of the reaction vessel is provided in the space.
JP12074087A 1987-05-18 1987-05-18 Vacuum reactive vessel Pending JPS63283737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12074087A JPS63283737A (en) 1987-05-18 1987-05-18 Vacuum reactive vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12074087A JPS63283737A (en) 1987-05-18 1987-05-18 Vacuum reactive vessel

Publications (1)

Publication Number Publication Date
JPS63283737A true JPS63283737A (en) 1988-11-21

Family

ID=14793809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12074087A Pending JPS63283737A (en) 1987-05-18 1987-05-18 Vacuum reactive vessel

Country Status (1)

Country Link
JP (1) JPS63283737A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04281833A (en) * 1990-08-16 1992-10-07 Applied Materials Inc Method and device for reducing occurrence of fine particles caused by deflection of door or cover of high vacuum device
KR100560066B1 (en) * 2004-03-25 2006-03-15 주식회사 플라스포 Ion-Nitriding treatment device and method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04281833A (en) * 1990-08-16 1992-10-07 Applied Materials Inc Method and device for reducing occurrence of fine particles caused by deflection of door or cover of high vacuum device
KR100560066B1 (en) * 2004-03-25 2006-03-15 주식회사 플라스포 Ion-Nitriding treatment device and method therefor

Similar Documents

Publication Publication Date Title
EP0095887A1 (en) Apparatus for plasma chemical vapour deposition
JPH10229058A (en) Deposition chamber device with coating
JPS63283737A (en) Vacuum reactive vessel
JPS62193141A (en) Wafer holding mechanism
JPS61291965A (en) Superhigh-vacuum chamber
JP2000345343A5 (en)
JPS61272367A (en) Thin film forming device
JP2555093B2 (en) Wafer fixing device
JPH0885872A (en) Film forming device
JPH09320493A (en) Vacuum air-tight container
US4196022A (en) Surface hardening method
JPS6295828A (en) Plasma processor
JPS63290269A (en) Sputtering device
JPS6383261A (en) Sputtering device
JPS5953210B2 (en) Thin film silicon production method
JP4474015B2 (en) Sputtering equipment for insulator production
JP2717169B2 (en) Plasma processing method and apparatus
JPS58136764A (en) Formation of boron film
JPS6332861B2 (en)
JP3029953B2 (en) Semiconductor wafer heat treatment equipment
JPS62270777A (en) Electrode part structure for plasma cvd device
JPH11214377A (en) Vertical vacuum vapor phase growing device and method therefor
JPH01253238A (en) Plasma processor
JPH0519330Y2 (en)
JPS61246382A (en) Dry etching device