JPS63283080A - End-face photodetecting-type photodiode - Google Patents

End-face photodetecting-type photodiode

Info

Publication number
JPS63283080A
JPS63283080A JP62117517A JP11751787A JPS63283080A JP S63283080 A JPS63283080 A JP S63283080A JP 62117517 A JP62117517 A JP 62117517A JP 11751787 A JP11751787 A JP 11751787A JP S63283080 A JPS63283080 A JP S63283080A
Authority
JP
Japan
Prior art keywords
layer
light
photodiode
core
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62117517A
Other languages
Japanese (ja)
Other versions
JP2667168B2 (en
Inventor
Makoto Yamada
誠 山田
Hiroshi Terui
博 照井
Akira Himeno
明 姫野
Morio Kobayashi
盛男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62117517A priority Critical patent/JP2667168B2/en
Publication of JPS63283080A publication Critical patent/JPS63283080A/en
Application granted granted Critical
Publication of JP2667168B2 publication Critical patent/JP2667168B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To guide the incident light from an end part of a device to a photodetecting part efficiently by a method wherein a heterostructure light waveguide route composed of a clad part and a core part which have a forbidden band width bigger than the photodetecting part is formed as a window part at an end part on the incident side of the photodetecting part. CONSTITUTION:A core layer 47 has a forbidden band width which is smaller than a lower-part clad layer 46 and an upper-part clad layer 49, i.e. has a refractive index which is bigger than these layers. Because these three layers have the forbidden band width which is bigger than the energy corresponding to the wavelength of the incident light, they constitute a plasma waveguide route which is transparent with reference to the incident light 52. The core layer 47 forms a core part; the lower-part clad layer 46 and the upper-part clad layer 49 form clad parts. The incident light 52 is guided to a photodetecting part by the planar waveguide route composed of the core layer and the clad layers and is photodetected at a photodetecting part 51.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ハイブリッド型光集積回路用の端面受光型フ
ォトダイオードに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an edge-light receiving photodiode for a hybrid optical integrated circuit.

〔従来技術・発明が解決しようとする問題点〕近年、光
通信や光情報処理の分野で用いられる光部品は、高機能
化、恒産化、小型化の観点から従来のミラー、レンズ、
プリズムを基本としたバルク型部品から、光導波路を基
本とした光集積回路へと進展している。光集積回路には
、■−V族半導体基板上に、半導体膜を積層加工して、
受発光素子と光導波路を一体化形成するモノリシック型
光集積回路と、石英及び誘電体導波路に受発光素子など
の各種個別光要素部品を付加するハイブリッド型光集積
回路がある。ハイブリッド型光集積回路は、要求される
光機能に最も適した材料を選択し、それによって製作さ
れた光要素部品及び光導波路回路を組み合せるため高機
能で多機能な光部品が得られる長所がある。
[Prior art/problems to be solved by the invention] In recent years, optical components used in the fields of optical communication and optical information processing have been replaced by conventional mirrors, lenses,
Bulk components based on prisms are progressing to optical integrated circuits based on optical waveguides. For optical integrated circuits, semiconductor films are laminated on a ■-V group semiconductor substrate,
There are monolithic optical integrated circuits in which a light emitting/receiving element and an optical waveguide are integrally formed, and hybrid optical integrated circuits in which various individual optical components such as a light receiving/emitting element are added to a quartz and dielectric waveguide. Hybrid optical integrated circuits have the advantage of being able to obtain highly functional and multifunctional optical components by selecting the most suitable material for the required optical function and combining the optical elements and optical waveguide circuits manufactured using these materials. be.

このようなハイブリッド型光集積回路に用いる受光素子
としてはpinフォトダイオードとアバランシェフォト
ダイオ゛−ドがある。第4図に波長1礪以上の波長用受
光素子として用いられる従来の平面型フォトダイオード
の一例としてInGaAsP−pinフォトダイオード
を示す。その構造は図中1は、n’−1nP基板、2は
n−1nPバッファ層、3はn−InGaAsP光吸収
層、4はn−InP窓層、5はp−拡散領域、6は5L
3Na絶縁膜、7は上部電極、8は下部電極である。そ
の他に外部回路として9は駆動電源、10は負荷抵抗、
11はカップリングコンデンサ、12は出力端子、13
は入射光である。
Light receiving elements used in such hybrid optical integrated circuits include pin photodiodes and avalanche photodiodes. FIG. 4 shows an InGaAsP-pin photodiode as an example of a conventional planar photodiode used as a light receiving element for a wavelength of 1 cm or more. In the figure, 1 is an n'-1nP substrate, 2 is an n-1nP buffer layer, 3 is an n-InGaAsP light absorption layer, 4 is an n-InP window layer, 5 is a p-diffusion region, and 6 is a 5L
3Na insulating film, 7 is an upper electrode, and 8 is a lower electrode. In addition, as an external circuit, 9 is a drive power supply, 10 is a load resistance,
11 is a coupling capacitor, 12 is an output terminal, 13
is the incident light.

駆動電源9によって逆バイアスが印加されたpinフォ
トダイオードに信号成分を含む入射光13が導入される
とn−1nGaAsP光吸収層3で電子−ホール対が生
成され、光電流となり、負荷抵抗10及びカップリング
コンデンサ11を介して出力端子12から、電気信号が
出力される。
When the incident light 13 containing a signal component is introduced into the pin photodiode to which a reverse bias is applied by the drive power supply 9, electron-hole pairs are generated in the n-1nGaAsP light absorption layer 3, resulting in a photocurrent and the load resistor 10 and An electrical signal is output from the output terminal 12 via the coupling capacitor 11.

このような平面型のフォトダイオードを光導波回路にハ
イブリッド集積するための従来の方法を第5図(a)、
(b)に示す。図中14は平面型フォトダイオード、1
5は基板、16は光導波回路を構成する光導波路、17
はコア部、18はクラッド部、19は反射ミラーブロッ
ク、20は反則面、21は導波光である。反射ミラーブ
ロック19は、静などをガラスブロックの45膜斜面に
蒸着した反射面20を有する。この反射ミラーブロック
19を導波路16端に押し当てて固定し、更にその上部
に平面型フォトダイオード14を受光面を下側にして配
置して、ハイブリッド集積化が行なわれる。導波光21
は、反射面20で反射され平面型フォトダイオード14
に入射し、電気信号に変換される。しかし、この方法で
は、反射ミラーブロック19を用意する必要があること
、及び光導波路16と反射ミラーブロック19と平面型
フォトダイオード14を精密に位置合せし、固定する必
要があることのため、■程が複雑で量産化に欠け、また
構成が複雑となり、さらに小型化が難しいという欠点が
ある。
The conventional method for hybrid integration of such a planar photodiode into an optical waveguide circuit is shown in Fig. 5(a).
Shown in (b). In the figure, 14 is a planar photodiode, 1
5 is a substrate, 16 is an optical waveguide constituting an optical waveguide circuit, 17
18 is a core portion, 18 is a cladding portion, 19 is a reflecting mirror block, 20 is a refractory surface, and 21 is a guided light. The reflective mirror block 19 has a reflective surface 20 in which a film 45 of the glass block is deposited on the slope. This reflective mirror block 19 is pressed against and fixed to the end of the waveguide 16, and a planar photodiode 14 is placed above it with the light-receiving surface facing downward, thereby performing hybrid integration. Waveguide light 21
is reflected by the reflective surface 20 and the planar photodiode 14
and is converted into an electrical signal. However, with this method, it is necessary to prepare the reflective mirror block 19, and it is necessary to precisely align and fix the optical waveguide 16, the reflective mirror block 19, and the planar photodiode 14; The disadvantages are that the process is complicated and cannot be mass-produced, the structure is complicated, and it is difficult to miniaturize.

このような欠点を解決する方法として、端面受光型フォ
トダイオードを光導波路端に直接ボンディングによりハ
イブリッド集積する方法が考えられる。第6図(a)は
、端面受光型フォトダイオードの光導波路端への直接ボ
ンディングを説明するだめの斜視図、第3図(b)は同
断面図である。図中22は、端面受光型フォトダイオー
ド、23はフォトダイオード固定用の低融点金属蒸着薄
膜(例えばAu−5n)である。端面受光型フォトダイ
オード22はぞの端面から光を入射し受光する。
As a method to solve these drawbacks, a method of hybrid-integrating an edge-receiving photodiode by direct bonding to the end of an optical waveguide can be considered. FIG. 6(a) is a perspective view for explaining the direct bonding of the edge-light receiving type photodiode to the end of the optical waveguide, and FIG. 3(b) is a sectional view thereof. In the figure, reference numeral 22 indicates an edge-light receiving type photodiode, and reference numeral 23 indicates a low melting point metal vapor-deposited thin film (for example, Au-5n) for fixing the photodiode. The edge-receiving photodiode 22 receives light from its end surface.

この端面受光型フォトダイオード22は基板15にのせ
、光導波路16との位置合せ後、基板15を加熱して、
低融点金属蒸着薄膜23を融かすことにより、端面受光
型フォトダイオードを固定する。このようなハイブリッ
ド集積法を用いることで、量産性に富み、小型化できる
利点を持つ。このような端面受光型フォトダイオードと
しては、ず−Cニ波長1.3tIJn帯1nGaAsP
端面受光型pinフォトダイオード(1,E、Bowe
rs and C,A、Burrus旧gh−spee
d zero bias waveguide pho
todetectors、 Electron 、 L
ett 、、1986 、 Vol 22 、 No、
17 、 p905〜906)や波長1.3」帯Ge、
 SLl、 / Si超格了構造端面受光型アバランシ
ェフォトダイオード(T、P、Pearsall 、 
H,Temkin 、 John、C,Bean an
d Serge Luryi 、 AualanCll
e (la:n In Geχ5L1−χ/SL  I
nfrared WaVe(ILI!de Detec
tors IEEE Electron  Devic
e  Lett、、Vol、EDL−7、No5 .1
986  、p330〜332)などが報告されている
This edge-receiving photodiode 22 is placed on the substrate 15, and after alignment with the optical waveguide 16, the substrate 15 is heated.
By melting the low melting point metal vapor deposited thin film 23, the edge receiving type photodiode is fixed. The use of such a hybrid integration method has the advantage of being highly mass-producible and capable of miniaturization. As such an edge-light receiving type photodiode, Z-C di-wavelength 1.3tIJn band 1nGaAsP is used.
Edge-receiving pin photodiode (1, E, Bowe
rs and C, A, Burrus old gh-spee
d zero bias waveguide pho
todetectors, Electron, L
ett,, 1986, Vol 22, No.
17, p905-906) and wavelength 1.3'' band Ge,
SLl,/Si superstructure edge-sensitive avalanche photodiode (T, P, Pearsall,
H, Temkin, John, C, Bean an.
d Serge Luryi, AualanCll
e (la:n In Geχ5L1-χ/SL I
nfrared WaVe(ILI!de Detec
tors IEEE Electron Device
e Lett, Vol, EDL-7, No5. 1
986, p330-332), etc. have been reported.

−例として、第7図に1. E、 BowersとC八
、Bu r ruSによって報告されたTnGaAsP
端面受光型pinフォトダイオードの構造を示す。図中
24は、n+−InP層、25は1−1nGaAsP光
吸収層、26はp−1nP層、27はp” InGaA
sPキーpツブ層、28はSし02膜、29は絶縁樹脂
、30は下部電極、31は上部電極、32は入射光であ
る。
- As an example, 1. TnGaAsP reported by E. Bowers and C. BurruS.
The structure of an edge-receiving pin photodiode is shown. In the figure, 24 is an n+-InP layer, 25 is a 1-1nGaAsP light absorption layer, 26 is a p-1nP layer, and 27 is a p'' InGaA layer.
sP key p-tube layer; 28, S02 film; 29, insulating resin; 30, lower electrode; 31, upper electrode; and 32, incident light.

しかしながら、これら報告された素子は、光が入射する
端面にp−n接合面が露出している。したがって、これ
らの素子は取り扱いに非常な性態を要するとともに、端
面リーク電流の経時的増加等信頼性に欠け、また、入射
光を効率良く受光するための光が入射する端面への無反
射コーテイング膜を付加できないという欠点があり、実
用性からは程遠いものであった。
However, in these reported devices, the pn junction surface is exposed at the end surface where light enters. Therefore, these elements require extreme handling, are unreliable due to an increase in end face leakage current over time, and require non-reflective coating on the end face where the light enters in order to efficiently receive the incident light. This method had the disadvantage of not being able to add a membrane, and was far from practical.

この欠点を解決するため、光吸収層の両側に半導体窓層
を設けpn接合面が端部に露出しないようにしたInG
aAsP端面受光型p1nフォトダイオード(特願昭6
1−182995 )が報告されている。
In order to solve this drawback, InG
aAsP edge-receiving p1n photodiode (patent application 1986)
1-182995) has been reported.

第8図(a) 、 (b) 、 (c)にその構造を示
す。図(a)は斜視図、図(b)は斜視図(a)のA−
A′線に沿って切断した断面図、図(C)は斜視図(a
)のB−B’線に沿って切断した断面図である。図中3
3はn”−1nP基板、34はn−1npバッファ層、
35は1−1nGaASP光吸収層、36は叶拡散領域
、37はn−1nP窓層、38は5i3Na絶縁膜、3
9は上部電極、40は下部電極、41は無反射」−ティ
ング膜、42は入射光、43はn−1nP上部層である
。叶拡散領域36は、n−1nP上部層43およびn−
1nP窓層37のそれぞれ一部に形成されている。また
、44は巨1nGaAsP光吸収層35のうち、素子に
逆バイアスを印加することによって空乏層を形成し、実
際に光を受光する光受光部を示す。
The structure is shown in FIGS. 8(a), (b), and (c). Figure (a) is a perspective view, and figure (b) is a perspective view of A-
A sectional view taken along line A', Figure (C) is a perspective view (a
) is a sectional view taken along line BB' of FIG. 3 in the diagram
3 is an n''-1nP substrate, 34 is an n-1np buffer layer,
35 is a 1-1nGaASP light absorption layer, 36 is a leaf diffusion region, 37 is an n-1nP window layer, 38 is a 5i3Na insulating film, 3
9 is an upper electrode, 40 is a lower electrode, 41 is a non-reflective coating film, 42 is an incident light, and 43 is an n-1nP upper layer. The leaf diffusion region 36 is composed of the n-1nP upper layer 43 and the n-
They are formed in each part of the 1nP window layer 37. Further, 44 indicates a light receiving portion of the giant 1nGaAsP light absorption layer 35 which forms a depletion layer by applying a reverse bias to the device and actually receives light.

しかし、この端面受光型フォトダイオードでは、光導波
路16により入射した入射光42はn−1nP窓層37
で導波路16の放射角の分だけ広がるため光受光部44
への結合効率が落ち、受光感度が劣化し易いという欠点
があった。すなわち、このような窓部を有する端面受光
型フォトダイオードの受光感度を保証するためには、窓
部の長さを極力短かくする必要があり、窓部の長さ制御
に極めて高度の作製技術を必要としていた。そのため、
素子価格が高価になるという問題点があった。
However, in this edge-light receiving type photodiode, the incident light 42 incident through the optical waveguide 16 is transmitted through the n-1nP window layer 37.
The light receiving section 44 spreads by the radiation angle of the waveguide 16.
The disadvantages are that the coupling efficiency to the photoreceptor decreases and the light-receiving sensitivity tends to deteriorate. In other words, in order to guarantee the light-receiving sensitivity of an edge-receiving photodiode with such a window, the length of the window must be made as short as possible, and extremely advanced manufacturing technology is required to control the length of the window. was needed. Therefore,
There was a problem that the device cost was high.

この発明の目的は、窓部を有する端面受光型フォトダイ
オードにおいて、窓部の長さの増加による受光感度の低
下する点を解決し、窓部の長さに依存することなく、光
導波回路の光導波路端より入射する光を充分に受光し、
高い受光感度と高い歩止まり率を得る新構造の端面受光
型フォトダイオードを提供することにある。
An object of the present invention is to solve the problem that the light receiving sensitivity decreases due to an increase in the length of the window in an edge-receiving photodiode having a window. Receives sufficient light entering from the end of the optical waveguide,
The object of the present invention is to provide a new structure of an edge-receiving photodiode that achieves high light-receiving sensitivity and high yield rate.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、導電型のクラッド部と、該クラッド部の禁制
帯幅より小さくかつ入射光波長に対応するエネルギーよ
り大きな禁制帯幅を有する組成の導電型のコア部とから
成る半導体光導波路において、前記コア部の中に埋め込
まれ、入射光波長に対応するエネルギーより小さな禁制
帯幅を有する組成の導電型の光吸収部と、該光吸収部の
少なくとも一部に空乏領域を形成するため、該光吸収部
に対して一方の側のコア部及びクラッド部の一部に、そ
の境界が導波路の端部に露出しないように形成された導
電型領域と、一対の電極とを有してイ≧るものである。
The present invention provides a semiconductor optical waveguide comprising a conductive type cladding part and a conductive type core part having a composition having a forbidden band width smaller than the forbidden band width of the cladding part and larger than the energy corresponding to the wavelength of incident light. a conductive type light absorption part embedded in the core part and having a composition having a forbidden band width smaller than the energy corresponding to the wavelength of the incident light, and a depletion region formed in at least a part of the light absorption part; A conductivity type region formed in a part of the core part and cladding part on one side with respect to the light absorption part so that the boundary thereof is not exposed to the end of the waveguide, and a pair of electrodes. ≧

本発明の特徴は、光受光部の両端または片側(光の入射
する側)に、窓部として前記光受光部と同系の半導体材
料からなるコア部とクラッド部から形成されるヘテロ構
造光導波部を設けたことである。
A feature of the present invention is that a heterostructure optical waveguide is formed as a window portion at both ends or one side (the side where light enters) of the light receiving portion, and is made of a core portion and a cladding portion made of the same type of semiconductor material as the light receiving portion. This is because we have established the following.

第1図に、本発明による端面受光型フォトダイオードの
原理的構成を示す。同図(a)は斜視図、同図(b)は
斜視図(a)のA−A’線に沿って切断した断面図であ
り、図中46は下部クラッド層、47はコア層、48は
光吸収層、49は上部クラッド層、50はpn接合を形
成するためのp−拡散領域、51は光吸収層のうち、素
子に逆バイアスを印加することによって空乏層を形成し
、実際に光を受光する光受光部、52は入射光である。
FIG. 1 shows the basic structure of an edge-light receiving type photodiode according to the present invention. Figure (a) is a perspective view, Figure (b) is a cross-sectional view taken along line AA' in perspective view (a), where 46 is a lower cladding layer, 47 is a core layer, and 48 49 is a light absorption layer, 49 is an upper cladding layer, 50 is a p-diffusion region for forming a pn junction, and 51 is a light absorption layer, which forms a depletion layer by applying a reverse bias to the element, and actually A light receiving section 52 that receives light is incident light.

ここで、コア層47は下部クラッド層46及び上部クラ
ッド層49より小ざな禁制帯幅を、すなわち大きな屈折
率を有する。これら3つの層は、入射光波長に対応する
エネルギーより大きな禁制帯幅であるため、入射光52
に対して透明にプレーナ導波路を構成している。また、
光吸収層48はコア層47の中に埋め込まれており、そ
の禁制帯幅は入射光波長に対応するエネルギーより小ざ
な値である。すなわち、コア層47はコア部を形成し、
下部クラッド層11.6と上部クラッド層49はクラッ
ド部を形成する(本構成例では、前記コア層とクラッド
層からなるプレーナ導波路を光導波部として示すが、光
導波部はプレーナ導波路に限定されず、コア部を矩形状
にし、そのまわりをクラッド部で囲む、チャネル導波路
も含む)。入射光52は前記プレーナ導波路により光受
光部まで導波され、光受光部51で受光される。従来の
端面受光型フォトダイオードでは、光受光部の両端を単
一の半導体材料から成る窓層を有する構造であり、この
窓層は光を導波する機能を持たない。
Here, the core layer 47 has a smaller forbidden band width, that is, a larger refractive index, than the lower cladding layer 46 and the upper cladding layer 49. These three layers have a forbidden band width larger than the energy corresponding to the incident light wavelength, so the incident light 52
The planar waveguide is transparent to the outside. Also,
The light absorption layer 48 is embedded in the core layer 47, and its forbidden band width is a value smaller than the energy corresponding to the wavelength of the incident light. That is, the core layer 47 forms a core part,
The lower cladding layer 11.6 and the upper cladding layer 49 form a cladding section (in this configuration example, a planar waveguide consisting of the core layer and cladding layer is shown as an optical waveguide section; (This includes, but is not limited to, a channel waveguide in which the core portion is rectangular and is surrounded by a cladding portion.) The incident light 52 is guided by the planar waveguide to the light receiving section and is received by the light receiving section 51 . A conventional edge-light receiving type photodiode has a structure in which a window layer made of a single semiconductor material is provided at both ends of a light-receiving portion, and this window layer does not have the function of guiding light.

これに対して、本発明では窓部としてヘアロ構造の導波
構造を設けている。
In contrast, in the present invention, a waveguide structure having a hair structure is provided as the window portion.

〔実施例〕〔Example〕

以下に本発明の実施例を第2図を用いて説明する。第2
図は、光受光部の両端に半導体材料からなるコア層とそ
の上下のクラッド層より構成されるブレーナ導波構造を
有する光導波部を持つ波長1.3應帯端面受光型1nG
aAsP pinフォトダイオードを説明するための図
であり、図(a)は斜視図、図(b)は同図(a)のA
−A’線に沿って切断した断面図、図(C)は同図(a
)のB−8’線に沿って切断した断面図、同図(d)は
同図(a)のc−c’線に沿って切断した断面図である
。図中53はn・−1nP基板、54はn−1nP下部
クラッド層(バッフ7層)、55はn−InGaAsP
下部コア層、56は1−1nGaAsρ光吸収層、57
はInGaAsP光吸収層を保護ツるn−1nGaAs
P保護層、58はn−InGaAsP上部コア層、59
はn−1nP上部クラッド層、60はSi、3N4絶縁
膜、61は上部電極、62は下部電極、63は無反射コ
ーテイング膜、64はp−拡散領域、65は光受光部、
66は光導波部、67は入射光を示す。
An embodiment of the present invention will be described below with reference to FIG. Second
The figure shows a 1nG wavelength 1.3 band end-receiving type optical waveguide having a Brener waveguide structure consisting of a core layer made of a semiconductor material and cladding layers above and below the core layer at both ends of the light receiving section.
FIG. 2 is a diagram for explaining the aAsP pin photodiode, where (a) is a perspective view, and (b) is a perspective view of the AAsP pin photodiode.
- A cross-sectional view taken along line A', Figure (C) is the same figure (a
) is a cross-sectional view taken along line B-8' in FIG. In the figure, 53 is an n-1nP substrate, 54 is an n-1nP lower cladding layer (7 buffer layers), and 55 is n-InGaAsP.
Lower core layer, 56 1-1nGaAsρ light absorption layer, 57
is n-1nGaAs that protects the InGaAsP light absorption layer.
P protective layer, 58 is n-InGaAsP upper core layer, 59
is an n-1nP upper cladding layer, 60 is a Si, 3N4 insulating film, 61 is an upper electrode, 62 is a lower electrode, 63 is a non-reflection coating film, 64 is a p-diffusion region, 65 is a light receiving part,
Reference numeral 66 indicates an optical waveguide, and reference numeral 67 indicates incident light.

光導波部66(Z方向厚5〜15帽)において、n−I
nGaAsP上部コア層58と下部コア層55をコア層
として、n−1nP上部クラッド層59を上部クラッド
層およびn−InP下部クラッド層(バッファ層)54
を下部クラッド層とするプレーナ導波路を形成する(図
(d)参照)。また、素子内部においても、InGaA
sP光吸収層56光吸収層端6sP下部コアPji55
とInGaAsP保護層57とTnGaAsP上部コア
層5上部コア層58n−1nP下部クラッド層(バッフ
ァ’1l)54とn−InPクラッド層59をクラッド
とするプレーナ導波路を形成する(図(C)参照)本例
のフォトダイオードの構造は第2図(b)において、キ
ャリア密度10+8/c−at’のn” −InP基板
53の上方にキレリア密度10”/c−m’のn−1n
P 下部クラッド層(バッファ層)54(3uR厚)キ
ャリア密度1017/c−m”のn−InGaAsP下
部コア層55(素子中央においては2帽厚、光導波部6
6においてはエツチングでそれよりうすくなっている)
キトリア密度10/cvl’の1−1nGaAsP光吸
収層56(2礪厚)、キトリア密度10+6/dのn−
InGaAsP保護層57(1伽厚)、キャリア密度1
016/cmのn−InGaAsP上部コア層58(素
子中央においては2澗厚、光導波部66においては5層
M厚)、キトリア密度1016/cm’のn−1nP上
部クラッド層59(3IiR厚)を積層して、n−In
Pクラッド層59とn−InGaAsP上部コア層58
とn−InGaAsP保護層57の一部にキレリア密度
10′8/cil’のp−拡散領域64を持つ構造であ
る。ここでInGaAsP光吸収層56光吸収層端61
.551aとし、InO,590,410,92PO,
08混晶比を、また、n−InGaGa      A
s AsP上部コア層58、下部コア層55、保護層57は
光吸収端を1.05zaとし、In    GaO,8
90,1 10,2S PO,75混晶比を用いた。
In the optical waveguide 66 (Z direction thickness 5 to 15), n-I
The nGaAsP upper core layer 58 and the lower core layer 55 are used as core layers, the n-1nP upper cladding layer 59 is used as the upper cladding layer, and the n-InP lower cladding layer (buffer layer) 54.
A planar waveguide is formed with the lower cladding layer (see figure (d)). Also, inside the device, InGaA
sP light absorption layer 56 light absorption layer end 6sP lower core Pji55
A planar waveguide is formed with the InGaAsP protective layer 57, the TnGaAsP upper core layer 5, the upper core layer 58n-1nP lower cladding layer (buffer '1l) 54, and the n-InP cladding layer 59 as cladding (see Figure (C)). The structure of the photodiode of this example is shown in FIG. 2(b), in which an n-1n layer with a chirelia density of 10''/c-m' is placed above an n''-InP substrate 53 with a carrier density of 10+8/c-at'.
P lower cladding layer (buffer layer) 54 (3uR thickness) n-InGaAsP lower core layer 55 with carrier density 1017/cm" (2 cap thickness at the center of the element, optical waveguide 6
6, it is thinner due to etching)
1-1 n GaAsP light absorption layer 56 (2 cm thick) with a chytria density of 10/cvl', n- with a chytria density of 10+6/d
InGaAsP protective layer 57 (1 gath thickness), carrier density 1
016/cm' n-InGaAsP upper core layer 58 (2 thick at the center of the device, 5 layers M thick at the optical waveguide 66), n-1 nP upper cladding layer 59 (3IiR thick) with chitria density 1016/cm' by laminating n-In
P cladding layer 59 and n-InGaAsP upper core layer 58
This structure has a p- diffusion region 64 having a chirelia density of 10'8/cil' in a part of the n-InGaAsP protective layer 57. Here, InGaAsP light absorption layer 56 light absorption layer end 61
.. 551a, InO, 590, 410, 92PO,
08 mixed crystal ratio, and n-InGaGaA
s AsP upper core layer 58, lower core layer 55, and protective layer 57 have a light absorption edge of 1.05za, and are made of InGaO,8
A mixed crystal ratio of 90,1 10,2S PO,75 was used.

As 従って、1.3層M帯の入射光67は、光導波部66に
おいて、コア部が光吸収端LO5澗帯0InGaAsP
で形成され、クラッド部が光吸収端0゜92膣のInP
で形成されるため、光導波部を吸収なく伝搬し、光吸収
端1.55mのInGaAsP光吸収層56光吸収層端
6れる。
As Therefore, the incident light 67 of the 1.3-layer M band is transmitted to the optical waveguide 66, where the core portion has the optical absorption edge LO5 and the band 0InGaAsP.
The cladding part is made of InP with a light absorption edge of 0°92
Since the light is formed by the InGaAsP light absorption layer 56, the light propagates through the optical waveguide without absorption, and the light absorption edge 6 of the InGaAsP light absorption layer 56 is 1.55 m.

更に、素子上面の保護と電気絶縁のために、n−InP
上部クラッド層59の上部及びp−拡散領域64の端部
に5L3Na絶縁膜60を形成し、このS。
Furthermore, n-InP is used to protect the top surface of the device and to electrically insulate it.
A 5L3Na insulating film 60 is formed on the upper part of the upper cladding layer 59 and at the end of the p- diffusion region 64.

3N4絶縁膜60の一部を含めp−拡散領域64の上部
にAu−Znの上部電極61を設ける。またn+−In
P基板53の底面にAu−3nの下部電極62を設ける
。入射光67が入射される側には、無反射コーテイング
膜63を蒸着する。光導波路66のn−InGaAsP
上下コア層55.58の屈折率をNs空気の屈折率をN
a(=1)とすると(Na−Ns)  0°5の0.5 屈折率値を持つ膜厚λ/(4・(Na−Ns)   )
の膜を付加したとき、反射率が極小にできることが光学
的に知られている。ここでλは、入射される光の波長で
ある。本素子作製においては、波長1.31虎で使用す
るため、屈折率1.789のSし0ア膜を約0.182
a厚で蒸着した。Znを拡散して形成するp−拡散領域
64の構造はpn接合によって生ずる接合容量を極力低
減するため、図(C)に示す様にn−1nGaAsP光
吸収層56上の全面にZnを拡散するのでなく、光導波
路部を通過した光を十分に受光できる必要最小限の幅に
とどめた。具体的には20m幅にした。また、深さ方向
くY方向)についてはp−拡散領域64の界面をn−1
nGaASP光吸収層の上面と一致させた。
An upper electrode 61 of Au--Zn is provided above the p- diffusion region 64, including a part of the 3N4 insulating film 60. Also n+-In
An Au-3n lower electrode 62 is provided on the bottom surface of the P substrate 53. A non-reflective coating film 63 is deposited on the side where the incident light 67 is incident. n-InGaAsP of optical waveguide 66
The refractive index of the upper and lower core layers 55.58 is Ns The refractive index of air is N
If a(=1), then (Na-Ns) the film thickness with a refractive index value of 0.5 at 0°5 is λ/(4・(Na-Ns))
It is optically known that when a film is added, the reflectance can be minimized. Here, λ is the wavelength of the incident light. In manufacturing this device, since it is used at a wavelength of 1.31, the S0A film with a refractive index of 1.789 is used at a wavelength of approximately 0.182.
It was deposited to a thickness of a. The structure of the p-diffusion region 64 formed by diffusing Zn is to diffuse Zn over the entire surface of the n-1nGaAsP light absorption layer 56 as shown in Figure (C) in order to minimize the junction capacitance caused by the pn junction. Rather, the width was kept to the minimum necessary to sufficiently receive the light that passed through the optical waveguide section. Specifically, it was made 20m wide. In addition, regarding the depth direction and the Y direction), the interface of the p-diffusion region 64 is n-1
It was made to coincide with the top surface of the nGaASP light absorption layer.

次に作用について説明する。入射光67は無反射コーテ
イング膜63と光導波部66を通過し光受光部65に結
合した後、徐々に光吸収されながら、この中を伝搬して
ゆく。光の受光は、光吸収層56のうち、pn接合によ
って形成される空乏領域である光受光部65のみで行な
われる。光導波部66は、1.3亙帯の入射光に対して
透明であり、光は効率良く光受光部65まで導波され、
光受光部65において、光によって発光した電子−正孔
対は光電流となり電気信号として検出される。
Next, the effect will be explained. The incident light 67 passes through the non-reflection coating film 63 and the optical waveguide section 66 and is coupled to the light receiving section 65, and then propagates therein while being gradually absorbed. Light reception is performed only in the light receiving portion 65 of the light absorption layer 56, which is a depletion region formed by a pn junction. The optical waveguide section 66 is transparent to incident light in the 1.3 band, and the light is efficiently guided to the light receiving section 65.
In the light receiving section 65, the electron-hole pairs emitted by the light become a photocurrent and are detected as an electrical signal.

第3図に光受光部65の長さを変えたときの理想状態(
光吸収部を通過する光により生成される電子−正孔対が
全で光電流に変換された場合)の受光感度の計算値(実
線)と、従来の窓部を有する端面受光型フォトダイオー
ドの受光特性のバラツキ値(測定値、図中P1斜線で表
示)と、本発明のバラツキ値(測定値、図中P2斜線で
表示)を示す。計算による受光効率に比べ各測定値の受
光効率は低いが、これは光受光部で生成された電子−正
孔対の一部が再結合して光電流に寄与しないことが主要
因である。通常の平面受光型フォトダイオードの受光感
度は約80%である。図中の窓部を有する端面受光型フ
ォトダイオードに比べ、本発明は素子特性のバラツキが
小さく高い受光効率(0,6〜0.7A/W )に飽和
する特性を持つと判明した。すなわら、歩止まり率が向
上することもわかる。また光受光部の長さは、p−拡散
領域64により形成されるpn接合による静電容量が、
光受光部65の長さに比例する。このため、光受光部6
5を長くすることは、素子の応答速度特性を劣化させる
。従って本素子は光受光部65の長さに対して受光効率
の飽和が起こる最短の受光部65の長さ120礪で素子
の作成を行ない、pn接合容量1.51)F(逆バイア
ス10v)パッケージ 16一 時に付加される容1flo、5pFを得ており、50Ω
伝送系では、1.5GHzの高速応答性も得た。
Figure 3 shows the ideal state when the length of the light receiving section 65 is changed (
Calculated light sensitivity (solid line) when all electron-hole pairs generated by light passing through the light absorption part are converted into photocurrent (solid line) and that of a conventional edge-sensing photodiode with a window part. The variation value of the light receiving characteristics (measured value, indicated by diagonal line P1 in the figure) and the variation value of the present invention (measured value, indicated by diagonal line P2 in the figure) are shown. The light receiving efficiency of each measured value is lower than the calculated light receiving efficiency, but this is mainly due to the fact that some of the electron-hole pairs generated in the light receiving section recombine and do not contribute to the photocurrent. The light-receiving sensitivity of a normal planar photodiode is about 80%. It has been found that, compared to the edge-light receiving type photodiode having a window shown in the figure, the present invention has a characteristic of having small variations in device characteristics and saturating at a high light receiving efficiency (0.6 to 0.7 A/W). In other words, it can be seen that the yield rate is improved. The length of the light receiving section is determined by the capacitance due to the pn junction formed by the p-diffusion region 64.
It is proportional to the length of the light receiving section 65. For this reason, the light receiving section 6
Increasing the length of 5 deteriorates the response speed characteristics of the element. Therefore, this device was fabricated with the shortest length of the light receiving section 65 at which saturation of the light receiving efficiency occurs with respect to the length of the light receiving section 65, 120 cm, and the pn junction capacitance was 1.51) F (reverse bias 10 V). Package 16 has a capacitance of 1flo, 5pF, and 50Ω
The transmission system also achieved high-speed response of 1.5 GHz.

次に製造法について述べる。Next, the manufacturing method will be described.

(100)面n”−1nP基板53の上に、液相エピタ
キシャル法により、n−InP下部クラッド層(バッフ
ァ層)54、n−1nGaAsP下部コア層55.1−
1nGa八sPへ吸収層56、n−1nGaAsP保護
層57を積層する。次に光導波部66を形成するために
上記エビ膜を(重クロム酸カリ+酢酸+水)エツチング
液を用いて<110>方向に沿ってn−InGaASP
下部コア層55に達する溝を作る。次に、この溝を液相
エピタキシャル法により、n−InGaAsP上部コア
層58で埋め、ざらにn−1nP上部クラッド層59を
積層する。次に素子上面にCVD法により5L3N4絶
縁膜60を付着させ、第2図(b)(C)のような5L
3Na絶縁膜60をフォトレジストによるマスクパター
ンと緩衝フッ酸のエツチング液を用いて形成する。この
5j3Na絶縁膜60は最終的には素子端部に電圧が印
加されないようにするための電気絶縁膜として用いるが
、同時にp−拡散領域64を形成するためのマスクとし
ても用いる。5i3Na絶縁膜60は、Znの拡張長を
考慮して、光受光部65の端部にまでかかるように形成
する。5L3Na絶縁膜60形成後、素子をZnとPの
入ったガラス管に真空封入し、電気炉中でZnの熱拡散
を行う。この工程中に酎−1nP基板53底部にZn拡
散によって形成された叶拡散層を研磨除去する。
On the (100) plane n''-1nP substrate 53, an n-InP lower cladding layer (buffer layer) 54 and an n-1nGaAsP lower core layer 55.1-
An absorption layer 56 and an n-1nGaAsP protective layer 57 are laminated on the 1nGa8sP layer. Next, in order to form the optical waveguide 66, the above shrimp film is etched along the <110> direction using an etching solution (potassium dichromate + acetic acid + water).
A groove reaching the lower core layer 55 is created. Next, this groove is filled with an n-InGaAsP upper core layer 58 by liquid phase epitaxial method, and an n-1nP upper cladding layer 59 is roughly laminated. Next, a 5L3N4 insulating film 60 is deposited on the top surface of the device by the CVD method to form a 5L3N4 insulating film 60 as shown in FIGS.
A 3Na insulating film 60 is formed using a photoresist mask pattern and a buffered hydrofluoric acid etching solution. This 5j3Na insulating film 60 is ultimately used as an electrical insulating film to prevent voltage from being applied to the end of the element, but is also used as a mask for forming the p- diffusion region 64 at the same time. The 5i3Na insulating film 60 is formed so as to cover the end of the light receiving section 65 in consideration of the expansion length of Zn. After forming the 5L3Na insulating film 60, the device is vacuum sealed in a glass tube containing Zn and P, and Zn is thermally diffused in an electric furnace. During this step, the base diffusion layer formed on the bottom of the 1nP substrate 53 by Zn diffusion is removed by polishing.

次に素子上部にAu−Znを蒸着して上部電極61を形
成する。第6図の光導波路16のコア17と、光受光部
65との位置合わせのため、必要に応じてメッキ法によ
り、Au−Zn電極上に更にAuを所望の厚さをメッキ
する。(これを上部電極61を下側にして光導波路16
の端面に直接ボンディングするためである)次に素子下
部にAu−8nを蒸着して下部1wA62を形成する。
Next, Au--Zn is deposited on the top of the element to form the top electrode 61. In order to align the core 17 of the optical waveguide 16 shown in FIG. 6 with the light receiving section 65, if necessary, the Au--Zn electrode is further plated with Au to a desired thickness by a plating method. (With the upper electrode 61 facing downward, the optical waveguide 16
(This is for direct bonding to the end face of the element.) Next, Au-8n is vapor deposited on the lower part of the element to form a lower part 1wA62.

次に、光導波部66をへき開により切り分ける。素子の
Y方向もハイブリッドしやずい幅(通常50〜1oO繻
)にへき開により切り分ける。次に入力光側にSLOえ
膜を蒸着により付着させる。
Next, the optical waveguide section 66 is cut into pieces by cleavage. The element is also cut into hybrid fiber widths (usually 50 to 100 degrees) by cleavage in the Y direction. Next, an SLO film is deposited on the input light side by vapor deposition.

以上の工程により光導波部を有する端面受光型フォトダ
イオードが製造できる。
Through the above steps, an edge-receiving photodiode having an optical waveguide can be manufactured.

この端面受光型フォトダイオードを光導波路16の端部
にハイブリッド集積する方法としては、第6図により、
従来の方法としで述べた端面直接ボンディング法を用い
る。
As shown in FIG.
As a conventional method, the end surface direct bonding method described above is used.

以上の実施例では、波長1.3應帯の端面受光型1nG
aASP pinフォトダイオードに対して第1の導電
型としてのn型、第2の電導型としてP型について述べ
たが、この発明は、これに限られるものではな(、第1
の導電型としてP型、第2の電導型としてn型としても
良く、また、さらに、端面受光1nGaAsPアバラン
シエフAトダイオードや、半導体材料をGaAs系とし
た端面受光pinフォトダイオード及び端面受光アバラ
ンシェフォトダイオードも製作でき、波長帯も1.3廟
に限定しない。
In the above embodiment, the edge-receiving type 1nG with a wavelength of 1.3° is used.
Although the n-type as the first conductivity type and the p-type as the second conductivity type have been described for the aASP pin photodiode, the present invention is not limited to this.
The conductivity type may be P type, and the second conductivity type may be n type.Furthermore, an edge-lighting 1nGaAsP avalanche A diode, an edge-lighting pin photodiode and an edge-lighting avalanche photodiode using GaAs-based semiconductor materials may be used. can also be produced, and the wavelength band is not limited to 1.3 myo.

また、光導波部の構造もブレーナ導波路だけでなく、チ
ャネル導波路にもでき、製造法も液相エピタキシャル法
だ【プに限られるわけではなく、有機金属気相成長法(
MOCVD)や分子ビームエピタキシセル法なども利用
できる。
In addition, the structure of the optical waveguide can be not only a Brener waveguide but also a channel waveguide, and the manufacturing method is not limited to liquid phase epitaxial method [but is not limited to metal organic vapor phase epitaxy].
MOCVD), molecular beam epitaxy cell method, etc. can also be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明による端面受光型フォト
ダイオードは、半導体材料からなる光受光部の光の入射
する側の端部に、該光受光部より大ぎな禁制帯幅を有づ
るクラッド部とコア部からなるヘテロ構造光導波路を窓
層として具備しているため、入射光を素子端部から光受
光部まで効率良く光を導入でき、高感度の端面受光型フ
ォトダイオードを安定に作製できる。そのため、窓層の
長さに対する加工精度が大幅に緩和されるので、歩止ま
りが大幅に向上し、低価格の端面受光型フォトダイオー
ドが供給できる。
As explained above, the edge-light receiving type photodiode according to the present invention includes a cladding portion having a larger forbidden band width than the light receiving portion at the end of the light receiving portion made of a semiconductor material on the light incident side. Since the heterostructure optical waveguide consisting of the core part is provided as a window layer, incident light can be efficiently introduced from the element end to the light receiving part, and a highly sensitive edge-receiving photodiode can be stably manufactured. Therefore, the processing accuracy with respect to the length of the window layer is significantly relaxed, so the yield is significantly improved, and a low-cost edge-receiving photodiode can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は本発明による端面受光型フ
ォトダイオードの原理的構成を示す図であって、第1図
(a)は斜視図、第1図(b)は第1図(a) (7)
A−A’線線断断面図ある。第2図(a)〜(d)は本
発明の一実施例を示す図であって、第2図(a)は斜視
図、第2図(b)は第2図(a)A−A’線視新面図、
第2図(c)は第2図(a)B−8’線視断面図、第2
図(d)ハ第2図(a)のc−c’線線断断面図ある。 第3図は本発明の詳細な説明するための図であって、従
来の窓部を有する端面受光型フォトダイオードの特性の
バラツキと本発明の特性のバラツキを示す図である。第
4図は従来の平面型フォトダイオードの構成図である。 第5図(a) 、 (b)は平面型フォトダイオードを
ハイブリッド集積する方法を示す図である。第6図(a
)。 (b)は直接ボンディングにより端面受光型フォトダイ
オードをハイブリッド集積する方法を示す図である。第
7図は従来の端面受光型フォトダイオードの構成図であ
る。第8図(a)〜(C)は従来の窓部を有する端面受
光型フォトダイオードの構成を示す図であって、第8図
(a)は斜視図、第8図(b)は第8図(a)A−A’
線線断断面図第8図(C)は第8図(a)B−B’線線
断断面図ある。 46・・・下部クラッド層、47・・・コア層、48・
・・光吸収層、49・・・上部クラッド層、50・・・
p−拡散領域、51・・・光受光部、52・・・入射光
、53・・・n“−1nP基板、54・・・n−InP
下部クラッド層(バッフ7 B ) 、55−n−1n
GaAsPT部コア層、56 ・・・1−1nGaAs
P光吸収層、57 ・n−1nGaAsP保護層、58
−n−1nGaAsP上部コア層、59 ・n−1nP
上部クラッド層、60・・・Si3N4絶縁膜、61・
・・上部電極、62・・・下部電極、63・・・無反射
コーテイング膜、64・・・p−拡散領域、65・・・
光受光部、66・・・光導波路、67・・・入射光。 第3図 第4図 °゛−°  ・      5 9.・、−4,;:j゛、二、、:f’:、     
     4丁     − 第5図 (a) (b)
FIGS. 1(a) and 1(b) are diagrams showing the basic structure of an edge-light receiving type photodiode according to the present invention, in which FIG. 1(a) is a perspective view, and FIG. 1(b) is a perspective view. (a) (7)
There is a sectional view taken along the line AA'. 2(a) to 2(d) are diagrams showing an embodiment of the present invention, in which FIG. 2(a) is a perspective view, and FIG. 2(b) is a diagram illustrating an embodiment of the present invention. 'Line view new surface view,
Figure 2(c) is a sectional view taken along line B-8' of Figure 2(a),
Figure (d) is a sectional view taken along the line c-c' of Figure 2 (a). FIG. 3 is a diagram for explaining the present invention in detail, and is a diagram showing variations in the characteristics of a conventional edge-receiving photodiode having a window portion and variations in the characteristics of the present invention. FIG. 4 is a configuration diagram of a conventional planar photodiode. FIGS. 5(a) and 5(b) are diagrams showing a method of hybrid integration of planar photodiodes. Figure 6 (a
). (b) is a diagram showing a method of hybrid integration of edge-light receiving type photodiodes by direct bonding. FIG. 7 is a configuration diagram of a conventional edge-receiving photodiode. FIGS. 8(a) to 8(C) are diagrams showing the configuration of a conventional edge-receiving photodiode having a window portion, in which FIG. 8(a) is a perspective view, and FIG. 8(b) is a perspective view of an Figure (a) A-A'
8(C) is a sectional view taken along line BB' in FIG. 8(a). 46... Lower cladding layer, 47... Core layer, 48.
...Light absorption layer, 49... Upper cladding layer, 50...
p-diffusion region, 51... light receiving section, 52... incident light, 53... n''-1nP substrate, 54... n-InP
Lower cladding layer (buff 7B), 55-n-1n
GaAsPT core layer, 56...1-1nGaAs
P light absorption layer, 57 ・n-1nGaAsP protective layer, 58
-n-1nGaAsP upper core layer, 59 ・n-1nP
Upper cladding layer, 60...Si3N4 insulating film, 61.
...Top electrode, 62...Bottom electrode, 63...Non-reflection coating film, 64...p-diffusion region, 65...
Light receiving section, 66... Optical waveguide, 67... Incident light. Figure 3 Figure 4 °゛-°・5 9.・, -4,;:j゛,2,,:f':,
4th knife - Figure 5 (a) (b)

Claims (1)

【特許請求の範囲】 導電型のクラッド部と、該クラッド部の禁制帯幅より小
さくかつ入射光波長に対応するエネルギーより大きな禁
制帯幅を有する組成の導電型のコア部とから成る半導体
光導波路において、 前記コア部の中に埋め込まれ、入射光波長に対応するエ
ネルギーより小さな禁制帯幅を有する組成の導電型の光
吸収部と、該光吸収部の少なくとも一部に空乏領域を形
成するため、該光吸収部に対して一方の側のコア部及び
クラッド部の一部に、その境界が導波路の端部に露出し
ないように形成された導電型領域と、一対の電極とを有
することを特徴とする端面受光型フォトダイオード。
[Scope of Claims] A semiconductor optical waveguide comprising a conductive type cladding part and a conductive type core part having a composition having a forbidden band width smaller than the forbidden band width of the cladding part and larger than the energy corresponding to the wavelength of incident light. A conductive type light absorption part embedded in the core part and having a composition having a forbidden band width smaller than the energy corresponding to the wavelength of the incident light, and a depletion region formed in at least a part of the light absorption part. , a conductivity type region formed in a part of the core part and cladding part on one side with respect to the light absorption part so that the boundary thereof is not exposed to the end of the waveguide, and a pair of electrodes. An edge-receiving photodiode featuring:
JP62117517A 1987-05-14 1987-05-14 Edge-receiving photodiode Expired - Fee Related JP2667168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62117517A JP2667168B2 (en) 1987-05-14 1987-05-14 Edge-receiving photodiode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62117517A JP2667168B2 (en) 1987-05-14 1987-05-14 Edge-receiving photodiode

Publications (2)

Publication Number Publication Date
JPS63283080A true JPS63283080A (en) 1988-11-18
JP2667168B2 JP2667168B2 (en) 1997-10-27

Family

ID=14713727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62117517A Expired - Fee Related JP2667168B2 (en) 1987-05-14 1987-05-14 Edge-receiving photodiode

Country Status (1)

Country Link
JP (1) JP2667168B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191401A (en) * 2003-12-26 2005-07-14 Hamamatsu Photonics Kk Semiconductor light-receiving element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068676A (en) * 1983-09-26 1985-04-19 Nippon Telegr & Teleph Corp <Ntt> Wavelength selective photodetector device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068676A (en) * 1983-09-26 1985-04-19 Nippon Telegr & Teleph Corp <Ntt> Wavelength selective photodetector device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191401A (en) * 2003-12-26 2005-07-14 Hamamatsu Photonics Kk Semiconductor light-receiving element

Also Published As

Publication number Publication date
JP2667168B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
JP3221916B2 (en) Optoelectronic device with integrated optical guide and photodetector
KR100745274B1 (en) Polycrystalline germanium-based waveguide detector integrated on a thin silicon-on-insulator ??? platform
US6831265B2 (en) Photodetector having improved photoresponsitivity over a broad wavelength region
EP0446056B1 (en) Integrated optical semiconductor device
US7629663B2 (en) MSM type photodetection device with resonant cavity comprising a mirror with a network of metallic electrodes
JP2748914B2 (en) Semiconductor device for photodetection
EP0763757A2 (en) Wavelength-selective devices using silicon-on-insulator
US6710378B1 (en) Semiconductor light reception device of end face light incidence type
US5280189A (en) Semiconductor element with a silicon layer
KR100532281B1 (en) Side illuminated refracting-facet photodetector and method for fabricating the same
WO2010021073A1 (en) Semiconductor photoreceptor, optical communication device, optical interconnect module, photoelectric conversion method
US6049638A (en) Photodetector module
US6661960B2 (en) Semiconductor waveguide photodetector
JPH03290606A (en) Optical semiconductor device
JPH08111559A (en) Semiconductor light emitting/receiving element and device
JPH06268196A (en) Optical integrated device
JP2002203982A (en) Semiconductor light receiving device and its fabricating method
JP2667168B2 (en) Edge-receiving photodiode
JPH0832102A (en) Photodetector
JP3831707B2 (en) Semiconductor light-receiving element for repeatedly propagating incident light in a light absorption layer and method for manufacturing the same
JP2970575B2 (en) Waveguide type semiconductor photo detector
KR100265858B1 (en) Wavelength division multiplexing device with monolithically integrated semiconductor laser and photodiode
JPH11340497A (en) Waveguide type semiconductor optical element
JPS6338269A (en) End face type photodiode
JPH0511609B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees