JPH08111559A - Semiconductor light emitting/receiving element and device - Google Patents

Semiconductor light emitting/receiving element and device

Info

Publication number
JPH08111559A
JPH08111559A JP24368394A JP24368394A JPH08111559A JP H08111559 A JPH08111559 A JP H08111559A JP 24368394 A JP24368394 A JP 24368394A JP 24368394 A JP24368394 A JP 24368394A JP H08111559 A JPH08111559 A JP H08111559A
Authority
JP
Japan
Prior art keywords
light emitting
semiconductor
semiconductor light
receiving element
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24368394A
Other languages
Japanese (ja)
Inventor
Masato Shishikura
正人 宍倉
Hitoshi Nakamura
均 中村
Shinji Tsuji
伸二 辻
Shoichi Hanatani
昌一 花谷
Shigehisa Tanaka
滋久 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24368394A priority Critical patent/JPH08111559A/en
Publication of JPH08111559A publication Critical patent/JPH08111559A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE: To provide a compact bidirectional semiconductor light emitting/ receiving element and a device, which are suitable for expansion of an information service network, at low cost. CONSTITUTION: The title semiconductor light emitting/receiving element is a surface-mounting type element, a light-absorbing layer 22, to be used to detect a signal light, and an active layer 2, to be used to emit a signal light, are provided thereon, and the above-mentioned layers are laminated or integrated. Also, a circular groove, to be used to fix optical fiber 27, is formed on the P-InP substrate 21 located on an active layer, and a signal light of long wavelength is transmitted from a transmitting/receiving wavelength band. If the surface-mounting type semiconductor light emitting/receiving element and its device are used, a compact bidirectional light-transmitting/receiving module can be manufactured at low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光通信分野、特に光加入
者系、光インタコネクション等に用いられる半導体発受
光素子および半導体発受光装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field of optical communication, and more particularly to a semiconductor light emitting / receiving element and a semiconductor light emitting / receiving device used in an optical subscriber system, optical interconnection and the like.

【0002】[0002]

【従来の技術】近年の情報産業の発展と情報サービスへ
のニーズの進展から、一般家庭への情報サービスの拡充
を図るため、加入者系の全光化を目指した光加入者系シ
ステムの開発が進められている。このシステムで用いら
れる光送受信モジュールは、対象が一般家庭であること
からコンパクトで低価格であることが望まれる。
2. Description of the Related Art Due to the recent development of the information industry and the need for information services, the development of an optical subscriber system aiming at all-optical subscriber system in order to expand the information service to general households. Is being promoted. The optical transmitter-receiver module used in this system is desired to be compact and low-priced because the target is a general household.

【0003】現在、経済上の観点から、光加入者系シス
テムの一つとして、波長1.3μm帯を用いた時分割双
方向多重通信と映像分配サービス行う波長1.5μm帯
光信号が波長多重されるシステムが挙げられる。これに
は1.3μm一芯双方向光送受信機能とともに、1.3
/1.5μm波長多重合分波機能を兼ね備えた光送受信
モジュールが必要である。
At present, from an economical point of view, as one of optical subscriber systems, wavelength division multiplexing of optical signals of wavelength 1.5 μm for time division bidirectional multiplex communication and video distribution service using wavelength 1.3 μm band. There is a system that is used. This includes 1.3 μm single-core bidirectional optical transmission / reception function,
An optical transceiver module that also has a /1.5 μm wavelength multiplex demultiplexing function is required.

【0004】従来、上記1.3/1.5μm波長多重合
分波機能等を有する光回路には、光ファイバを部品とし
て用いていた。光ファイバを部品で構成する光回路は光
ファイバの曲げ半径による制限からモジュールを小型化
することは困難であった。そこで、IEEE Phot
onics Technology Letter,V
ol.4, No.6, p660(1992)記載の
光送受信モジュールでは、低損失で再現性、耐環境性に
優れ、光ファイバとも整合性の良い石英系光波回路を用
いている。石英系光波回路は、光ファイバ部品を用いる
よりも小型でかつ生産性に優れたものである。また、こ
の石英系光波回路に半導体発光素子および受光素子を端
面ハイブリッド実装することにより、光送受信モジュー
ルを作製している。
Conventionally, an optical fiber has been used as a component in the above-mentioned optical circuit having the 1.3 / 1.5 μm wavelength multiplex demultiplexing function and the like. It has been difficult to miniaturize the module of an optical circuit that is composed of optical fibers because of the limitation of the bending radius of the optical fiber. So, IEEE Photo
onics Technology Letter, V
ol. 4, No. 6, the optical transceiver module described in p660 (1992) uses a silica-based lightwave circuit which has low loss, excellent reproducibility and environment resistance, and good compatibility with an optical fiber. Quartz-based lightwave circuits are smaller and more productive than those using optical fiber components. In addition, an optical transceiver module is manufactured by mounting a semiconductor light emitting element and a light receiving element on this quartz lightwave circuit in an end face hybrid.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術では、
1.3/1.5μm分波器や1.3μm3dB結合器等
の光波回路として、石英系の光導波路を採用している。
この石英系導波路基板は、光ファイバで構成するよりも
小型であるが、幅3mm、長さ26mmと依然大きい。
この基板は、光送受信モジュールのほぼ半分の大きさを
占めており、経済性の観点から更なる小型化が必要であ
る。
In the above prior art,
A silica optical waveguide is used as a light wave circuit such as a 1.3 / 1.5 μm demultiplexer or a 1.3 μm 3 dB coupler.
Although this silica-based waveguide substrate is smaller than the optical waveguide substrate, it is still large with a width of 3 mm and a length of 26 mm.
This substrate occupies almost half the size of the optical transceiver module, and further miniaturization is necessary from the economical point of view.

【0006】また、送信器である半導体レーザと受信器
であるフォトダイオードを端面ハイブリッド実装してい
る。この手法は3次元の位置あわせが必要であり、時間
も掛かり、また部品点数も多いので、材料および実装に
かかるコストを低減することは困難である。
Further, a semiconductor laser which is a transmitter and a photodiode which is a receiver are hybridly mounted on an end face. This method requires three-dimensional alignment, is time consuming, and has a large number of parts. Therefore, it is difficult to reduce costs for materials and mounting.

【0007】本発明の目的は、光波回路の小型化を図る
と同時に、部品点数および位置あわせ等の実装コストを
低減し、経済性に優れた低コストの光送受信モジュール
を提供することである。
It is an object of the present invention to provide a low-cost optical transceiver module which is economical and has a reduced mounting cost such as the number of parts and alignment, while at the same time reducing the size of the lightwave circuit.

【0008】[0008]

【課題を解決するための手段】本発明では、上記課題を
解決するために、信号光の入出射方向が基板面内垂直方
向で、上下に配置された半導体あるいは誘電体で構成さ
れた反射鏡構造の間に発光機能と受光機能を同時に有す
る半導体層からなる面型発受光素子において、外部信号
光入射側の反射鏡構造の反射率を、反射鏡に電流等を注
入することによって制御する。
According to the present invention, in order to solve the above-mentioned problems, a reflecting mirror composed of semiconductors or dielectrics arranged above and below, in which a signal light enters and exits in a direction perpendicular to the plane of the substrate. In a planar light emitting / receiving element including a semiconductor layer having a light emitting function and a light receiving function at the same time between structures, the reflectance of the reflecting mirror structure on the external signal light incident side is controlled by injecting a current or the like into the reflecting mirror.

【0009】また、信号光の入出射方向が基板面内垂直
方向で、上下に配置された半導体あるいは誘電体で構成
された反射鏡構造の間に発光機能を有する半導体層と、
上下に配置された反射鏡構造の外側であり、外部信号光
入射側に受光機能を有する半導体層からなる面型発受光
素子において、受光機能を有する半導体層に電圧を印加
する等の方法を用いて光吸収効率を制御する。
Further, a semiconductor layer having a light-emitting function is provided between reflecting mirror structures composed of semiconductors or dielectrics arranged above and below, in which a signal light is incident and emitted in a direction perpendicular to a substrate surface.
In a planar light emitting and receiving element which is outside the reflecting mirror structure arranged above and below and which has a light receiving function on the external signal light incident side, a method such as applying a voltage to the semiconductor layer having a light receiving function is used. Control the light absorption efficiency.

【0010】上記2つの発光機能と受光機能を一体化し
た面型半導体発受光素子において、以下の手段を組み合
わせる。上記半導体発受光素子の発光領域からの発光光
をモニタする受光部を反射鏡構造の外側でかつ外部から
の信号光入射側とは反対側に配置する。発光部からの出
射光上の半導体基板に円形の溝等の光ファイバを固定す
る手段を有する。発光領域または受光領域のメサ直径が
光ファイバの直径と同等あるいはそれ以下にする。発光
領域の発光波長と受光領域の受光波長が1.3μm帯等
の同一波長帯であり、それよりも長波長帯の1.55μ
m帯等の信号光は透過する。半導体部をIn1-x-yAlx
GayAs1-zz系(0≦x≦1、0≦y≦1、0≦z
≦1)半導体で構成する。片側の同一面、特に信号光の
入出射面とは反対側の同一面に、電圧印加あるいは信号
入出力用の電極構造を設ける。
The following means are combined in the above-mentioned surface type semiconductor light emitting and receiving element in which the two light emitting functions and the light receiving functions are integrated. A light receiving portion for monitoring the light emitted from the light emitting region of the semiconductor light emitting and receiving element is arranged outside the reflecting mirror structure and on the side opposite to the signal light incident side from the outside. A means for fixing an optical fiber such as a circular groove to the semiconductor substrate on the light emitted from the light emitting portion is provided. The mesa diameter of the light emitting area or the light receiving area is equal to or smaller than the diameter of the optical fiber. The emission wavelength of the light emitting region and the light receiving wavelength of the light receiving region are in the same wavelength band such as 1.3 μm band, which is longer than that and is 1.55 μm.
Signal light in the m band and the like is transmitted. The semiconductor part is In 1-xy Al x
Ga y As 1-z P z system (0 ≦ x ≦ 1,0 ≦ y ≦ 1,0 ≦ z
≦ 1) A semiconductor is used. An electrode structure for voltage application or signal input / output is provided on the same surface on one side, particularly on the same surface opposite to the input / output surface of the signal light.

【0011】上記手段を組み合わせた半導体発受光素子
をアレー状またはマトリックス状に配置する。また、そ
れらあるいは単体の半導体発受光素子の同一基板上に電
子デバイスをモノリシックに、あるいは電子デバイスを
集積化した集積回路基板、特に主にSiで構成された集
積回路基板上にハイブリッドに集積化する。
The semiconductor light emitting and receiving elements combined with the above means are arranged in an array or a matrix. Further, the electronic device is monolithically integrated on the same substrate of the semiconductor light emitting and receiving elements or a single semiconductor light emitting and receiving device, or integrated on the integrated circuit substrate in which the electronic devices are integrated, particularly on the integrated circuit substrate mainly composed of Si. .

【0012】[0012]

【作用】低コスト光モジュールの実現には、1.3/
1.55μm分波器や1.3μm結合器等から構成され
る光回路部をコンパクトにすること、部品点数を少なく
すること、実装を簡便にすること等が挙げられる。
Operation: To realize a low-cost optical module, 1.3 /
Examples include making the optical circuit unit composed of a 1.55 μm demultiplexer, a 1.3 μm coupler, etc. compact, reducing the number of parts, and simplifying mounting.

【0013】本発明の面型半導体発受光素子では、電流
注入等による反射鏡の反射率を制御し、受光領域のバン
ドギャップを受光波長と同程度とすることにより、安定
な発光と受光感度の向上が図れ、しかも受光波長よりも
長波長の信号光を透過することができる。また、多重量
子井戸構造等で構成された受光領域に電圧を印加するこ
とで吸収端波長近傍の吸収効率を制御することができる
ので、送信時には透明化し、受信時には電圧印加により
信号光を吸収し、しかも受信波長よりも長波長の信号光
を透過することができる。さらに送信光の変調が受光領
域の電圧変調によっても可能となる。したがって、1.
3μm結合器や1.3/1.55μm分波器等の光回路
基板が不用となり、部品点数が少なく、実装も簡便とな
るので、コンパクトなしかも低コストな光送受信モジュ
ールを構成することが可能となる。 また、発光領域か
らの光出力をモニタするための受光部を半導体発受光素
子に一体化することにより、部品点数および実装コスト
の低減を図ることができる。
In the surface-type semiconductor light emitting and receiving element of the present invention, the reflectance of the reflecting mirror is controlled by current injection or the like, and the band gap of the light receiving region is made approximately the same as the light receiving wavelength, so that stable light emission and light receiving sensitivity are achieved. The signal light having a wavelength longer than the light receiving wavelength can be transmitted. In addition, the absorption efficiency near the absorption edge wavelength can be controlled by applying a voltage to the light-receiving region composed of a multiple quantum well structure, etc., so it becomes transparent during transmission and absorbs the signal light by voltage application during reception. Moreover, it is possible to transmit signal light having a wavelength longer than the reception wavelength. Further, the transmission light can be modulated also by the voltage modulation of the light receiving region. Therefore, 1.
An optical circuit board such as a 3 μm coupler or a 1.3 / 1.55 μm demultiplexer is unnecessary, the number of parts is small, and mounting is simple, so a compact and low-cost optical transceiver module can be configured. Becomes Further, by integrating the light receiving portion for monitoring the light output from the light emitting region with the semiconductor light emitting and receiving element, the number of parts and the mounting cost can be reduced.

【0014】さらに、片側の同一面上に電極を配置する
ことによりワイヤが不用なフリップチップ実装が可能と
なり、また、基板に円形の溝を設けることにより差し込
むだけで光ファイバを固定することができるので、実装
を容易にすることができる。
Further, by arranging the electrodes on the same surface on one side, it is possible to perform flip chip mounting without wires, and by providing a circular groove in the substrate, the optical fiber can be fixed only by inserting. Therefore, the implementation can be facilitated.

【0015】In1-x-yAlxGayAs1-zz系の化合
物半導体で構成することにより、高性能な1.3μm帯
の半導体レーザとフォトダイオードを構成することがで
き、1.55μm帯の信号光に対して透明にすることが
可能となる。
A high-performance 1.3 μm band semiconductor laser and a photodiode can be formed by using an In 1-xy Al x Ga y As 1-z P z- based compound semiconductor, which is 1.55 μm. It is possible to make the signal light of the band transparent.

【0016】また、電子デバイスをモノリシックもしく
はハイブリッドに集積化することにより、光送受信モジ
ュールをコンパクトにしかも低コストに作製することが
可能となる。特に、高性能で低コストなSi系材料を用
いて集積回路を構成することにより、より一層の低コス
ト化が可能となる。
Further, by integrating the electronic devices into a monolithic or hybrid type, it becomes possible to manufacture the optical transmission / reception module compactly and at low cost. In particular, by forming an integrated circuit using a high-performance and low-cost Si-based material, it is possible to further reduce the cost.

【0017】また、アレー状またはマトリックス状に本
素子を配置することにより、低コストな光インタコネク
ション用等の光送受信モジュールの作製が可能である。
Further, by arranging the present elements in an array or a matrix, it is possible to manufacture a low-cost optical transceiver module for optical interconnection or the like.

【0018】[0018]

【実施例】以下に本発明を実施例により説明する。EXAMPLES The present invention will be described below with reference to examples.

【0019】実施例1 図1はIn1-xGaxAs1-yy(0≦x≦1、0≦y≦
1)系化合物半導体を用いた本発明の一実施例の断面構
造図である。p−InP基板1上に有機金属気相成長法
により、n−InP/InGaAsP上部多層反射鏡2
を20周期、n−InP上部クラッド層3を0.63μ
m、歪を加えたInGaAsP層を井戸層とした歪In
GaAsP/InGaAsP(λg=1.15μm)多
重量子井戸活性層4を2.5周期、p−InP下部クラ
ッド層5を0.63μm、p−InP/InGaAsP
下部多層反射鏡6を25周期、順次積層した。ここで、
上部多層反射鏡2および下部多層反射鏡6はInP、I
nGaAsP(λg=1.2μm)をそれぞれ光学膜厚
である104.2nm、96.2nmとした。多重量子
井戸活性層4の井戸層は圧縮歪を加えたInGaAsP
を5nm、障壁層であるInGaAsP(λg=1.1
5μm)を10nmとした。この多重量子井戸活性層4
は面発光レーザの活性層であり、かつフォトダイオード
の光吸収層である。エッチングにより上記多層構造にメ
サ構造を形成し、再び有機金属気相成長法により、電流
狭窄構造であるp−InP8、n−InP9、p−In
P10の各層を埋込成長した。その後、p−InGaA
sP(λg=1.2μm)コンタクト層7で平坦化を行
った。n型コンタクトおよび上部多層反射鏡2に電流を
注入するp型コンタクト形成のためのメサエッチング行
い、SiO211を形成し、真空蒸着によりp型電極1
2、n型電極13、p型電極14を形成した。最後に、
光ファイバ16を固定するための円形の溝を能動層上の
p−InP基板1形成し、反射防止膜15を形成した。
Example 1 FIG. 1 shows In 1-x Ga x As 1-y P y (0 ≦ x ≦ 1, 0 ≦ y ≦
FIG. 1 is a sectional structural view of an example of the present invention using a compound semiconductor. An n-InP / InGaAsP upper multilayer reflecting mirror 2 is formed on the p-InP substrate 1 by a metal organic chemical vapor deposition method.
For 20 cycles, and the n-InP upper cladding layer 3 has a thickness of 0.63 μm.
m, strained InGaAsP layer used as well layer
GaAsP / InGaAsP (λg = 1.15 μm) multiple quantum well active layer 4 for 2.5 periods, p-InP lower cladding layer 5 for 0.63 μm, p-InP / InGaAsP
The lower multilayer reflecting mirror 6 was sequentially laminated for 25 cycles. here,
The upper multilayer reflecting mirror 2 and the lower multilayer reflecting mirror 6 are made of InP, I
The optical film thicknesses of nGaAsP (λg = 1.2 μm) were 104.2 nm and 96.2 nm, respectively. The well layer of the multi-quantum well active layer 4 is InGaAsP with compressive strain applied.
Is 5 nm, and the barrier layer is InGaAsP (λg = 1.1
5 μm) was set to 10 nm. This multiple quantum well active layer 4
Is the active layer of the surface emitting laser and the light absorbing layer of the photodiode. A mesa structure is formed in the above-described multilayer structure by etching, and the current confinement structure of p-InP8, n-InP9, p-In is formed again by metal organic chemical vapor deposition.
Each layer of P10 was embedded and grown. After that, p-InGaA
The sP (λg = 1.2 μm) contact layer 7 was flattened. Mesa etching for forming a p-type contact for injecting a current into the n-type contact and the upper multilayer reflecting mirror 2 is performed to form SiO 2 11, and the p-type electrode 1 is formed by vacuum evaporation.
2, n-type electrode 13 and p-type electrode 14 were formed. Finally,
A circular groove for fixing the optical fiber 16 was formed in the p-InP substrate 1 on the active layer, and the antireflection film 15 was formed.

【0020】本実施例の半導体発受光素子のサイズは5
00μm×500μmである。本素子の発振波長は1.
3μmであり、しきい値電流は5mA程度であった。ま
た、1.3μm光に対する受光感度は、p型電極12と
n型電極13を用いて上部多層反射鏡2に電流注入する
ことにより反射率を低下させることで、量子効率約50
%を得た。1.55μm光の透過ロスは1dB程度であ
った。したがって、素子のサイズは500μm×500
μmとコンパクトでかつ低コストな光送受信素子を作製
することができた。また、構成元素にAlを含んだIn
1-x-yAlxGayAs1-zz系の化合物半導体を用いて
も同様の効果が得られる。
The size of the semiconductor light emitting and receiving element of this embodiment is 5
The size is 00 μm × 500 μm. The oscillation wavelength of this device is 1.
It was 3 μm, and the threshold current was about 5 mA. In addition, the light receiving sensitivity to 1.3 μm light is about 50 quantum efficiency by reducing the reflectance by injecting a current into the upper multilayer reflecting mirror 2 using the p-type electrode 12 and the n-type electrode 13.
Earned%. The transmission loss of 1.55 μm light was about 1 dB. Therefore, the size of the device is 500 μm × 500
It was possible to fabricate an optical transmitter / receiver that is as compact as μm and at low cost. In addition, In containing Al as a constituent element
Same effect with 1-xy Al x Ga y As 1-z P z based compound semiconductor can be obtained.

【0021】実施例2 図2はIn1-xGaxAs1-yy(0≦x≦1、0≦y≦
1)系化合物半導体を用いた本発明の一実施例の断面構
造図である。p−InP基板21上に有機金属気相成長
法により、アンドープInP/InGaAsP多重量子
井戸光吸収層22を50周期、n−InP/InGaA
sP上部多層反射鏡23を20周期、n−InP上部ク
ラッド層24を0.63μm、歪を加えたInGaAs
P層を井戸層とした歪InGaAsP/InGaAsP
(λg=1.15μm)多重量子井戸活性層25を2.
5周期、p−InP下部クラッド層26を0.63μ
m、p−InP/InGaAsP下部多層反射鏡27を
25周期、順次積層した。ここで、多重量子井戸光吸収
層22はInP障壁層を5nm、InGaAsP井戸層
5nmで構成され、上部多層反射鏡23および下部多層
反射鏡27はInP、InGaAsP(λg=1.2μ
m)をそれぞれ光学膜厚である104.2nm、96.
2nmとした。多重量子井戸活性層25の井戸層は圧縮
歪を加えたInGaAsPを5nm、障壁層であるIn
GaAsP(λg=1.15μm)を10nmとした。
エッチングにより上記多層構造にメサ構造を形成し、再
び有機金属気相成長法により、電流狭窄構造であるp−
InP29、n−InP30、p−InP31の各層を
埋込成長した。その後、p−InGaAsP(λg=
1.2μm)コンタクト層28で平坦化を行った。n型
コンタクトおよび多重量子井戸光吸収層22に電界を印
加するp型コンタクト形成のためのメサエッチング行
い、SiO232を形成し、真空蒸着によりp型電極3
3、n型電極34、p型電極35を形成した。最後に、
光ファイバ37を固定するための円形の溝を能動層上の
p−InP基板21形成し、反射防止膜36を形成し
た。
Example 2 FIG. 2 shows In 1-x Ga x As 1-y P y (0 ≦ x ≦ 1, 0 ≦ y ≦
FIG. 1 is a sectional structural view of an example of the present invention using a compound semiconductor. An undoped InP / InGaAsP multiple quantum well light absorption layer 22 is formed on the p-InP substrate 21 by metalorganic vapor phase epitaxy for 50 periods and n-InP / InGaA.
20 cycles of the sP upper multilayer reflecting mirror 23, 0.63 μm of the n-InP upper cladding layer 24, and strained InGaAs
Strained InGaAsP / InGaAsP with P layer as well layer
(Λg = 1.15 μm) 2.
5 periods, p-InP lower cladding layer 26 0.63μ
The m, p-InP / InGaAsP lower multilayer reflecting mirror 27 was sequentially laminated for 25 cycles. Here, the multiple quantum well light absorption layer 22 is composed of an InP barrier layer having a thickness of 5 nm and an InGaAsP well layer having a thickness of 5 nm, and the upper multilayer reflecting mirror 23 and the lower multilayer reflecting mirror 27 are made of InP, InGaAsP (λg = 1.2 μm).
m) are optical film thicknesses of 104.2 nm and 96.
It was set to 2 nm. The well layer of the multi-quantum well active layer 25 is made of InGaAsP with a compressive strain of 5 nm, and In is a barrier layer.
GaAsP (λg = 1.15 μm) was set to 10 nm.
A mesa structure is formed in the above-mentioned multilayer structure by etching, and a p-type current confining structure p-
Each layer of InP29, n-InP30, and p-InP31 was embedded and grown. After that, p-InGaAsP (λg =
The contact layer 28 was flattened. Mesa etching for forming a p-type contact for applying an electric field to the n-type contact and the multiple quantum well light absorption layer 22 is performed to form SiO 2 32, and the p-type electrode 3 is formed by vacuum vapor deposition.
3, n-type electrode 34, and p-type electrode 35 were formed. Finally,
A circular groove for fixing the optical fiber 37 was formed on the p-InP substrate 21 on the active layer, and the antireflection film 36 was formed.

【0022】本実施例の半導体発受光素子のサイズは5
00μm×500μmである。本素子の発振波長は1.
3μmであり、しきい値電流は5mA程度であった。ま
た、多重量子井戸光吸収層22は無バイアス時には1.
3μm、1.55μm光双方に対して透明である。一
方、逆バイアスを加えることにより1.55μm光に対
しては透明であるが、1.3μm光に対して受光感度を
有するようになる。逆バイアスを加えたときの量子効率
は約70%であった。1.55μm光の透過ロスは1d
B程度であった。また、多重量子井戸光吸収層22の印
加電圧に変調を掛けることにより、直接変調と同様な送
信光の変調特性が得られた。したがって、素子のサイズ
は500μm×500μmとコンパクトでかつ低コス
ト、高効率な光送受信素子を作製することができた。ま
た、構成元素にAlを含んだIn1-x-yAlxGayAs
1-zz系の化合物半導体を用いても同様の効果が得られ
る。
The size of the semiconductor light emitting and receiving element of this embodiment is 5
The size is 00 μm × 500 μm. The oscillation wavelength of this device is 1.
It was 3 μm, and the threshold current was about 5 mA. In addition, the multiple quantum well light absorption layer 22 is 1.
It is transparent to both 3 μm and 1.55 μm light. On the other hand, by applying a reverse bias, although it is transparent to 1.55 μm light, it becomes sensitive to 1.3 μm light. The quantum efficiency when a reverse bias was applied was about 70%. Transmission loss of 1.55 μm light is 1d
It was about B. Further, by modulating the applied voltage to the multiple quantum well light absorption layer 22, the modulation characteristic of the transmitted light similar to the direct modulation was obtained. Therefore, it was possible to fabricate a compact optical transmission / reception device with a size of 500 μm × 500 μm, low cost, and high efficiency. Further, containing Al as a constituent element In 1-xy Al x Ga y As
Same effect with 1-z P z based compound semiconductor can be obtained.

【0023】実施例3 図3は実施例2の半導体発受光素子にモニタ用の受光部
を一体化した本発明の一実施例の構造図である。p−I
nP基板41上に有機金属気相成長法により、アンドー
プInP/InGaAsP多重量子井戸光吸収層42を
50周期、n−InP/InGaAsP上部多層反射鏡
43を20周期、n−InP上部クラッド層44を0.
63μm、歪を加えたInGaAsP層を井戸層とした
歪InGaAsP/InGaAsP(λg=1.15μ
m)多重量子井戸活性層45を2.5周期、p−InP
下部クラッド層46を0.63μm、p−InP/In
GaAsP下部多層反射鏡47を25周期、順次積層し
た。ここで、多重量子井戸光吸収層42はInP障壁層
を5nm、InGaAsP井戸層5nmで構成され、上
部多層反射鏡43および下部多層反射鏡47はInP、
InGaAsP(λg=1.2μm)をそれぞれ光学膜
厚である104.2nm、96.2nmとした。多重量
子井戸活性層45の井戸層は圧縮歪を加えたInGaA
sPを5nm、障壁層であるInGaAsP(λg=
1.15μm)を10nmとした。エッチングにより上
記多層構造にメサ構造を形成し、再び有機金属気相成長
法により、電流狭窄構造であるp−InP49、n−I
nP50、p−InP51の各層を埋込成長した。その
後、p−InGaAsP(λg=1.2μm)コンタク
ト層48で平坦化を行い、アンドープInGaAsP
(λg=1.4μm)モニタ光吸収層52、n−InP
コンタクト層53を成長した。電極コンタクト形成のた
めのメサエッチング行い、SiO254を形成し、真空
蒸着によりp型電極55、n型電極56、n型電極5
7、p型電極58を形成した。最後に、光ファイバ60
を固定するための円形の溝を能動層上のp−InP基板
41形成し、反射防止膜59を形成した。
Embodiment 3 FIG. 3 is a structural diagram of an embodiment of the present invention in which a semiconductor light emitting / receiving element of Embodiment 2 is integrated with a light receiving portion for monitoring. p-I
An undoped InP / InGaAsP multiple quantum well optical absorption layer 42 for 50 cycles, an n-InP / InGaAsP upper multilayer reflecting mirror 43 for 20 cycles, and an n-InP upper cladding layer 44 for an nP substrate 41 on an nP substrate 41 by metal organic vapor phase epitaxy. 0.
63 μm, strained InGaAsP / InGaAsP with a strained InGaAsP layer as a well layer (λg = 1.15 μm
m) 2.5 cycles of the multiple quantum well active layer 45, p-InP
The lower clad layer 46 is 0.63 μm, p-InP / In
The GaAsP lower multilayer reflecting mirror 47 was sequentially laminated for 25 cycles. Here, the multi-quantum well light absorption layer 42 is composed of an InP barrier layer of 5 nm and an InGaAsP well layer of 5 nm, and the upper multilayer reflecting mirror 43 and the lower multilayer reflecting mirror 47 are made of InP.
InGaAsP (λg = 1.2 μm) was set to the optical film thickness of 104.2 nm and 96.2 nm, respectively. The well layer of the multiple quantum well active layer 45 is made of InGaA with compressive strain.
sP is 5 nm, InGaAsP (λg =
1.15 μm) was set to 10 nm. A mesa structure is formed in the above-described multilayer structure by etching, and the metal-metal vapor phase epitaxy method is used again to form p-InP49 and n-I which are current confinement structures.
Each layer of nP50 and p-InP51 was embedded and grown. Thereafter, the p-InGaAsP (λg = 1.2 μm) contact layer 48 is flattened, and undoped InGaAsP is used.
(Λg = 1.4 μm) Monitor light absorption layer 52, n-InP
The contact layer 53 was grown. Mesa etching for electrode contact formation is performed to form SiO 2 54, and p-type electrode 55, n-type electrode 56, and n-type electrode 5 are formed by vacuum evaporation.
7, the p-type electrode 58 was formed. Finally, the optical fiber 60
The p-InP substrate 41 on the active layer was formed with a circular groove for fixing the film, and the antireflection film 59 was formed.

【0024】実施例2と同様な特性が得られ、さらにn
型電極57、p型電極58に逆バイアスを加えることで
送信光をモニタすることができた。
The same characteristics as in Example 2 were obtained, and n
It was possible to monitor the transmitted light by applying a reverse bias to the mold electrode 57 and the p-type electrode 58.

【0025】実施例4 図4は実施例2の半導体発受光素子をSiの電子デバイ
スで構成された集積回路にハイブリッド実装した本発明
の一実施例の構造図である。実施例3の半導体発受光素
子61をSi系の電子デバイス62で構成された集積回
路基板63にAuSn半田を用いてフリップチップ実装
した。その後、光ファイバ64を半導体発受光素子61
の円形溝に固定した。1.3μm双方向光伝送を行った
結果、良好な伝送特性が得られた。
Embodiment 4 FIG. 4 is a structural diagram of an embodiment of the present invention in which the semiconductor light emitting and receiving element of Embodiment 2 is hybrid-mounted on an integrated circuit composed of Si electronic devices. The semiconductor light emitting and receiving element 61 of Example 3 was flip-chip mounted on the integrated circuit substrate 63 composed of the Si-based electronic device 62 using AuSn solder. After that, the optical fiber 64 is connected to the semiconductor light emitting and receiving element 61.
Fixed in a circular groove. As a result of performing 1.3 μm bidirectional optical transmission, good transmission characteristics were obtained.

【0026】実施例5 図5は実施例2の半導体発受光素子と同一基板上に電子
デバイスをモノリシック集積化した本発明の一実施例の
上面図である。実施例3の半導体発受光素子71を形成
した後に、In1-x-yAlxGayAs系の化合物半導体
を用いて電子デバイス72をモノリシックに集積化して
光電子集積回路73を作製した。電子集積回路部の結晶
成長法には分子線エピタキシ法を用いた。1.3μm双
方向光伝送を行った結果、良好な伝送特性が得られた。
また、1.55μm光の透過ロスは実施例3と同程度で
あった。
Embodiment 5 FIG. 5 is a top view of an embodiment of the present invention in which electronic devices are monolithically integrated on the same substrate as the semiconductor light emitting and receiving element of Embodiment 2. After the semiconductor light emitting and receiving element 71 of Example 3 was formed, the electronic device 72 was monolithically integrated using the In 1-xy Al x Ga y As based compound semiconductor to manufacture the optoelectronic integrated circuit 73. The molecular beam epitaxy method was used for the crystal growth method of the electronic integrated circuit part. As a result of performing 1.3 μm bidirectional optical transmission, good transmission characteristics were obtained.
Further, the transmission loss of 1.55 μm light was about the same as in Example 3.

【0027】実施例6 図6は実施例2の半導体発受光素子をマトリックス状に
集積化した本発明の一実施例の構造図である。形成方法
は実施例3と同様であり、81は半導体発受光素子、8
2は半導体発受光素子をマトリックス状に集積化した基
板である。均一な発光および受光特性が得られ、その特
性は実施例3と同様であった。
Embodiment 6 FIG. 6 is a structural diagram of an embodiment of the present invention in which the semiconductor light emitting and receiving elements of Embodiment 2 are integrated in a matrix. The forming method is the same as that of the third embodiment, 81 is a semiconductor light emitting and receiving element, 8
Reference numeral 2 is a substrate on which semiconductor light emitting and receiving elements are integrated in a matrix. Uniform light emitting and light receiving characteristics were obtained, and the characteristics were the same as in Example 3.

【0028】[0028]

【発明の効果】本発明の面型半導体発受光素子およびそ
の装置を用いれば、コンパクトでしかも低コストな双方
向光送受信モジュールを作製することができる。
By using the surface-type semiconductor light emitting and receiving element and the device thereof according to the present invention, a compact bidirectional optical transceiver module can be manufactured at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例1の面型半導体発受光素子の断面
構造図。
FIG. 1 is a sectional structural view of a planar semiconductor light emitting and receiving element according to a first embodiment of the present invention.

【図2】本発明実施例2の面型半導体発受光素子の断面
構造図。
FIG. 2 is a sectional structural view of a planar semiconductor light emitting and receiving element according to a second embodiment of the present invention.

【図3】本発明実施例3の面型半導体発受光素子の断面
構造図。
FIG. 3 is a sectional structural view of a planar semiconductor light emitting and receiving element according to a third embodiment of the present invention.

【図4】本発明実施例4のハイブリッド集積双方向光送
受信装置の構造図。
FIG. 4 is a structural diagram of a hybrid integrated bidirectional optical transceiver according to a fourth embodiment of the present invention.

【図5】本発明実施例5のモノリシック集積双方向光送
受信装置上面図。
FIG. 5 is a top view of a monolithic integrated bidirectional optical transceiver according to a fifth embodiment of the present invention.

【図6】本発明実施例6のマトリックス集積面型半導体
発受光素子の構造図。
FIG. 6 is a structural diagram of a matrix-integrated surface-type semiconductor light emitting and receiving element of Example 6 of the present invention.

【符号の説明】[Explanation of symbols]

1・・・p−InP基板、2・・・n−InP/InG
aAsP上部多層反射鏡、3・・・n−InP上部クラ
ッド層、4・・・歪InGaAsP/InGaAsP多
重量子井戸活性層、5・・・p−InP下部クラッド
層、6・・・p−InP/InGaAsP下部多層反射
鏡、7・・・p−InGaAsPコンタクト層、8・・
・p−InPブロック層、9・・・n−InPブロック
層、10・・・p−InPブロック層、11・・・Si
2、12・・・p型電極、13・・・n型電極、14
・・・p型電極、15・・・反射防止膜、16・・・光
ファイバ、21・・・p−InP基板、22・・・アン
ドープInP/InGaAsP多重量子井戸光吸収層、
23・・・n−InP/InGaAsP上部多層反射
鏡、24・・・n−InP上部クラッド層、25・・・
歪InGaAsP/InGaAsP多重量子井戸活性
層、26・・・p−InP下部クラッド層、27・・・
p−InP/InGaAsP下部多層反射鏡、28・・
・p−InGaAsPコンタクト層、29・・・p−I
nPブロック層、30・・・n−InPブロック層、3
1・・・p−InPブロック層、32・・・SiO2
33・・・p型電極、34・・・n型電極、35・・・
p型電極、36・・・反射防止膜、37・・・光ファイ
バ、41・・・p−InP基板、42・・・アンドープ
InP/InGaAsP多重量子井戸光吸収層、43・
・・n−InP/InGaAsP上部多層反射鏡、44
・・・n−InP上部クラッド層、45・・・歪InG
aAsP/InGaAsP多重量子井戸活性層、46・
・・p−InP下部クラッド層、47・・・p−InP
/InGaAsP下部多層反射鏡、48・・・p−In
GaAsPコンタクト層、49・・・p−InPブロッ
ク層、50・・・n−InPブロック層、51・・・p
−InPブロック層、52・・・モニタ光吸収層、53
・・・n−InPコンタクト層、54・・・SiO2
55・・・p型電極、56・・・n型電極、57・・・
n型電極、58・・・p型電極、59・・・反射防止
膜、60・・・光ファイバ、61・・・実施例2の半導
体発受光素子、62・・・Si系の電子デバイス、63
・・・集積回路基板、64・・・光ファイバ、71・・
・実施例2の半導体発受光素子、72・・・In1-x-y
AlxGayAs系電子デバイス、73・・・光電子集積
回路、81・・・半導体発受光素子、82・・・4×4
半導体発受光素子集積化基板。
1 ... p-InP substrate, 2 ... n-InP / InG
aAsP upper multilayer reflector, 3 ... n-InP upper cladding layer, 4 ... strained InGaAsP / InGaAsP multiple quantum well active layer, 5 ... p-InP lower cladding layer, 6 ... p-InP / InGaAsP lower multilayer reflector, 7 ... p-InGaAsP contact layer, 8 ...
-P-InP block layer, 9 ... n-InP block layer, 10 ... p-InP block layer, 11 ... Si
O 2 , 12 ... P-type electrode, 13 ... N-type electrode, 14
... p-type electrode, 15 ... antireflection film, 16 ... optical fiber, 21 ... p-InP substrate, 22 ... undoped InP / InGaAsP multiple quantum well light absorption layer,
23 ... n-InP / InGaAsP upper multilayer reflector, 24 ... n-InP upper cladding layer, 25 ...
Strained InGaAsP / InGaAsP multiple quantum well active layer, 26 ... p-InP lower cladding layer, 27 ...
p-InP / InGaAsP lower multilayer reflector, 28 ...
.P-InGaAsP contact layer, 29 ... p-I
nP block layer, 30 ... n-InP block layer, 3
1 ... p-InP block layer, 32 ... SiO 2 ,
33 ... P-type electrode, 34 ... N-type electrode, 35 ...
p-type electrode, 36 ... Antireflection film, 37 ... Optical fiber, 41 ... p-InP substrate, 42 ... Undoped InP / InGaAsP multiple quantum well light absorption layer, 43 ...
..N-InP / InGaAsP upper multilayer mirror, 44
... n-InP upper cladding layer, 45 ... Strained InG
aAsP / InGaAsP multiple quantum well active layer, 46.
.... p-InP lower clad layer, 47 ... p-InP
/ InGaAsP lower multilayer mirror, 48 ... p-In
GaAsP contact layer, 49 ... p-InP block layer, 50 ... n-InP block layer, 51 ... p
-InP block layer, 52 ... Monitor light absorption layer, 53
··· n-InP contact layer, 54 ··· SiO 2,
55 ... p-type electrode, 56 ... n-type electrode, 57 ...
n-type electrode, 58 ... P-type electrode, 59 ... Antireflection film, 60 ... Optical fiber, 61 ... Semiconductor light emitting / receiving device of Example 2, 62 ... Si-based electronic device, 63
... Integrated circuit board, 64 ... Optical fiber, 71 ...
.Semiconductor light emitting and receiving element of Example 2, 72 ... In 1-xy
Al x Ga y As based electronic devices, 73 ... optoelectronic integrated circuit, 81 ... semiconductor light emitting and receiving element, 82 ... 4 × 4
Semiconductor light emitting and receiving element integrated substrate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 花谷 昌一 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 田中 滋久 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shoichi Hanatani 1-280, Higashi Koikekubo, Kokubunji, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (72) Inventor Shigehisa Tanaka 1-280, Higashi Koikeku, Kokubunji, Tokyo Hitachi, Ltd. Central Research Center

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】信号光の入出射方向が基板面内垂直方向
で、上下に配置された半導体あるいは誘電体で構成され
た反射鏡構造の間に発光機能と受光機能を同時に有する
半導体層からなる面型発受光素子において、外部信号光
入射側の反射鏡構造の反射率を制御する手段を有するこ
とを特徴とする半導体発受光素子。
1. A semiconductor layer having a light emitting function and a light receiving function at the same time between a reflecting mirror structure composed of semiconductors or dielectrics arranged vertically, in which a signal light enters and exits in a direction perpendicular to a substrate surface. A planar light emitting and receiving element, comprising a means for controlling the reflectance of a reflecting mirror structure on the external signal light incident side.
【請求項2】請求項1記載の面型発受光素子において、
外部から電流を注入することにより、反射鏡構造の反射
率を制御することを特徴とする半導体発受光素子。
2. The planar light emitting and receiving element according to claim 1,
A semiconductor light emitting and receiving device characterized by controlling the reflectance of a reflecting mirror structure by injecting a current from the outside.
【請求項3】信号光の入出射方向が基板面内垂直方向
で、上下に配置された半導体あるいは誘電体で構成され
た反射鏡構造の間に発光機能を有する半導体層と、上下
に配置された反射鏡構造の外側であり、外部信号光入射
側に受光機能を有する半導体層からなる面型発受光素子
において、該受光機能を有する半導体層の光吸収効率を
制御する手段を有することを特徴とする半導体発受光素
子。
3. A semiconductor layer having a light-emitting function between a reflecting mirror structure composed of semiconductors or dielectrics arranged in the upper and lower directions, and a semiconductor layer having a light emitting function is arranged in the vertical direction. In a planar light emitting and receiving element which is outside the reflecting mirror structure and which has a light receiving function on the external signal light incident side, there is provided means for controlling the light absorption efficiency of the semiconductor layer having the light receiving function. A semiconductor light emitting and receiving element.
【請求項4】請求項3記載の面型発受光素子において、
外部から電圧を印加することにより、受光機能を有する
半導体層である光吸収層の吸収効率を制御することを特
徴とする半導体発受光素子。
4. The planar light emitting and receiving element according to claim 3,
A semiconductor light emitting and receiving element characterized by controlling the absorption efficiency of a light absorption layer which is a semiconductor layer having a light receiving function by applying a voltage from the outside.
【請求項5】請求項1〜4のいずれかに記載の半導体発
受光素子において、上記発光機能を有する半導体層から
の発光光をモニタするための受光部を、外部からの信号
光を受光する半導体層とは別に設け、これを上下に配置
された反射鏡構造の外側であり、外部信号光入射側とは
反対側に配置することを特徴とする半導体発受光素子。
5. The semiconductor light emitting and receiving element according to claim 1, wherein a light receiving portion for monitoring light emitted from the semiconductor layer having the light emitting function receives signal light from the outside. A semiconductor light emitting and receiving element, which is provided separately from a semiconductor layer, and is provided outside a reflecting mirror structure arranged above and below and on a side opposite to an external signal light incident side.
【請求項6】請求項1〜5のいずれかに記載の半導体発
受光素子において、光ファイバを固定する手段を有する
ことを特徴とする半導体発受光素子。
6. A semiconductor light emitting and receiving element according to claim 1, further comprising means for fixing an optical fiber.
【請求項7】請求項6記載の半導体発受光素子におい
て、上記半導体発受光素子が形成された半導体基板に光
ファイバを固定するための円形の溝を有し、その溝が発
光機能を有する半導体層からの出射光上に形成されてい
ることを特徴とする半導体発受光素子。
7. The semiconductor light emitting and receiving element according to claim 6, wherein a semiconductor substrate having the semiconductor light emitting and receiving element is provided with a circular groove for fixing an optical fiber, and the groove has a light emitting function. A semiconductor light emitting and receiving element, which is formed on light emitted from a layer.
【請求項8】請求項7記載の半導体発受光素子におい
て、発光領域または受光領域のメサ直径が、信号光を入
出射するための光ファイバの直径と同等あるいはそれよ
りも小さいことを特徴とする半導体発受光素子。
8. The semiconductor light emitting and receiving device according to claim 7, wherein the light emitting region or the light receiving region has a mesa diameter equal to or smaller than a diameter of an optical fiber for inputting and outputting the signal light. Semiconductor light emitting and receiving element.
【請求項9】請求項1〜8のいずれかに記載の半導体発
受光素子において、発光機能を有する半導体層で発光す
る波長と、受光機能を有する半導体層で受光する波長が
同一波長帯であることを特徴とする半導体発受光素子。
9. The semiconductor light emitting and receiving element according to claim 1, wherein the wavelength of light emitted by the semiconductor layer having a light emitting function and the wavelength of light received by the semiconductor layer having a light receiving function are in the same wavelength band. A semiconductor light emitting and receiving device characterized by the above.
【請求項10】請求項9記載の半導体発受光素子におい
て、発光波長帯および受光波長帯よりも長波長帯の信号
光が、該半導体発受光素子を透過することを特徴とする
半導体発受光素子。
10. The semiconductor light emitting and receiving element according to claim 9, wherein signal light in a light emitting wavelength band and a wavelength band longer than the light receiving wavelength band is transmitted through the semiconductor light emitting and receiving element. .
【請求項11】請求項10記載の半導体発受光素子にお
いて、該半導体発受光素子の発振波長帯および受信波長
帯が1.3μm帯であり、1.55μm帯の信号光は該
半導体発受光素子を透過することを特徴とする半導体発
受光素子。
11. The semiconductor light emitting and receiving element according to claim 10, wherein the oscillation wavelength band and the reception wavelength band of the semiconductor light emitting and receiving element are 1.3 μm band, and the signal light in the 1.55 μm band is the semiconductor light emitting and receiving device. A semiconductor light emitting and receiving device characterized by transmitting light.
【請求項12】請求項1〜11のいずれかに記載の半導
体発受光素子において、該半導体発受光素子の半導体部
がIn1-x-yAlxGayAs1-zz系(0≦x≦1、0
≦y≦1、0≦z≦1)の化合物半導体で構成されるこ
とを特徴とする半導体発受光素子。
12. The semiconductor light emitting and receiving element according to claim 1, wherein the semiconductor portion of the semiconductor light emitting and receiving element is an In 1-xy Al x Ga y As 1-z P z system (0 ≦ x ≤1,0
≦ y ≦ 1, 0 ≦ z ≦ 1) A semiconductor light emitting and receiving device, characterized by comprising a compound semiconductor.
【請求項13】請求項1〜12のいずれかに記載の半導
体発受光素子において、該半導体発受光素子の片側の同
一面側のみに、少なくとも1組の電圧印加または信号入
出力のための電極構造を有することを特徴とする半導体
発受光素子。
13. The semiconductor light emitting and receiving element according to claim 1, wherein at least one pair of electrodes for voltage application or signal input / output is provided only on the same surface side of one side of the semiconductor light emitting and receiving element. A semiconductor light emitting and receiving device having a structure.
【請求項14】請求項13記載の半導体発受光素子にお
いて、該半導体発受光素子の信号光の入出射面とは反対
側の同一面のみに、少なくとも1組の電圧印加または信
号入出力のための電極構造を有することを特徴とする半
導体発受光素子。
14. The semiconductor light emitting and receiving element according to claim 13, wherein at least one set of voltage application or signal input / output is provided only on the same surface of the semiconductor light emitting and receiving element opposite to the signal light input / output surface. A semiconductor light emitting and receiving device having the above electrode structure.
【請求項15】信号光の入出射方向が基板面内垂直方向
で、上下に配置された半導体あるいは誘電体で構成され
た反射鏡構造の間に発光機能と受光機能を同時に有する
半導体層からなる素子であって、外部信号光入射側の反
射鏡構造の反射率を制御する手段を有する半導体発受光
素子を複数アレー状またはマトリックス状に配置するこ
とを特徴とする半導体発受光装置。
15. A semiconductor layer having a light emitting function and a light receiving function at the same time between reflecting mirror structures composed of semiconductors or dielectrics arranged above and below, in which the signal light enters and exits in a direction perpendicular to the substrate surface. A semiconductor light emitting and receiving device comprising a plurality of semiconductor light emitting and receiving elements arranged in an array or a matrix, each element having a means for controlling the reflectance of a reflecting mirror structure on the external signal light incident side.
【請求項16】請求項15記載の半導体発受光装置にお
いて、該半導体発受光素子と同一基板上に電子デバイス
をモノリシックに集積化することを特徴とする半導体発
受光装置。
16. A semiconductor light emitting and receiving device according to claim 15, wherein an electronic device is monolithically integrated on the same substrate as the semiconductor light emitting and receiving device.
【請求項17】請求項16記載の半導体発受光装置にお
いて、主に電子デバイスからなる集積回路基板上に、該
半導体発受光素子をハイブリッドに集積化することを特
徴とする半導体発受光装置。
17. The semiconductor light emitting and receiving device according to claim 16, wherein the semiconductor light emitting and receiving device is hybridly integrated on an integrated circuit substrate mainly composed of electronic devices.
【請求項18】請求項17記載の半導体発受光装置にお
いて、主に電子デバイスからなる集積回路基板として、
主にSiで構成される集積回路基板を用いることを特徴
とする半導体発受光装置。
18. The semiconductor light emitting and receiving device according to claim 17, wherein the integrated circuit substrate mainly includes electronic devices,
A semiconductor light emitting and receiving device characterized by using an integrated circuit substrate mainly composed of Si.
JP24368394A 1994-10-07 1994-10-07 Semiconductor light emitting/receiving element and device Pending JPH08111559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24368394A JPH08111559A (en) 1994-10-07 1994-10-07 Semiconductor light emitting/receiving element and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24368394A JPH08111559A (en) 1994-10-07 1994-10-07 Semiconductor light emitting/receiving element and device

Publications (1)

Publication Number Publication Date
JPH08111559A true JPH08111559A (en) 1996-04-30

Family

ID=17107439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24368394A Pending JPH08111559A (en) 1994-10-07 1994-10-07 Semiconductor light emitting/receiving element and device

Country Status (1)

Country Link
JP (1) JPH08111559A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033546A (en) * 2000-07-19 2002-01-31 Canon Inc Surface emitting optical element, surface emitting optical element mount, its manufacturing method and optical wiring device using the same
WO2003026165A1 (en) * 2001-08-01 2003-03-27 Lumenlink, Co. Ltd. Integrated optical transmitter, receiver for free space optical communication and network system and application apparatus thereof
EP1410424A1 (en) * 2001-06-29 2004-04-21 Xanoptix, Inc. Opto-electronic device integration
US6803639B2 (en) 2001-01-19 2004-10-12 Matsushita Electric Industrial Co., Ltd. Photo-semiconductor module and method for manufacturing the same
JP2004319553A (en) * 2003-04-11 2004-11-11 Fuji Xerox Co Ltd Vertical cavity surface-emitting laser and its manufacturing method
WO2005067113A1 (en) * 2004-01-07 2005-07-21 Hamamatsu Photonics K.K. Semiconductor light-emitting device and its manufacturing method
US6932516B2 (en) 2000-07-19 2005-08-23 Canon Kabushiki Kaisha Surface optical device apparatus, method of fabricating the same, and apparatus using the same
US7723742B2 (en) 2004-04-13 2010-05-25 Hamamatsu Photonics K.K. Semiconductor light emitting element and manufacturing method thereof
JP2010219342A (en) * 2009-03-17 2010-09-30 Fuji Xerox Co Ltd Surface-emitting semiconductor laser, optical transmission device, and method of manufacturing surface-emitting semiconductor laser
JP2010251649A (en) * 2009-04-20 2010-11-04 Hitachi Ltd Surface emitting laser module and surface light receiving module
JP2011520272A (en) * 2008-05-08 2011-07-14 ウニヴェルズィテート・ウルム Fully tuned surface emitting semiconductor laser for surface mounting with optimized properties
JP2013004903A (en) * 2011-06-21 2013-01-07 Canon Inc Semiconductor optical integrated element and optical tomograph equipped with the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6932516B2 (en) 2000-07-19 2005-08-23 Canon Kabushiki Kaisha Surface optical device apparatus, method of fabricating the same, and apparatus using the same
JP2002033546A (en) * 2000-07-19 2002-01-31 Canon Inc Surface emitting optical element, surface emitting optical element mount, its manufacturing method and optical wiring device using the same
US6803639B2 (en) 2001-01-19 2004-10-12 Matsushita Electric Industrial Co., Ltd. Photo-semiconductor module and method for manufacturing the same
US6890789B2 (en) 2001-01-19 2005-05-10 Matsushita Electric Industrial Co., Ltd. Photo-semiconductor module and method for manufacturing the same
EP1410424A1 (en) * 2001-06-29 2004-04-21 Xanoptix, Inc. Opto-electronic device integration
EP1410424A4 (en) * 2001-06-29 2007-03-21 Xanoptix Inc Opto-electronic device integration
WO2003026165A1 (en) * 2001-08-01 2003-03-27 Lumenlink, Co. Ltd. Integrated optical transmitter, receiver for free space optical communication and network system and application apparatus thereof
JP2004319553A (en) * 2003-04-11 2004-11-11 Fuji Xerox Co Ltd Vertical cavity surface-emitting laser and its manufacturing method
JP4561042B2 (en) * 2003-04-11 2010-10-13 富士ゼロックス株式会社 Surface emitting semiconductor laser and manufacturing method thereof
WO2005067113A1 (en) * 2004-01-07 2005-07-21 Hamamatsu Photonics K.K. Semiconductor light-emitting device and its manufacturing method
US7719017B2 (en) 2004-01-07 2010-05-18 Hamamatsu Photonics K.K. Semiconductor light-emitting device and its manufacturing method
US7723742B2 (en) 2004-04-13 2010-05-25 Hamamatsu Photonics K.K. Semiconductor light emitting element and manufacturing method thereof
US8048700B2 (en) 2004-04-13 2011-11-01 Hamamatsu-shi Photonics K.K. Semiconductor light emitting element and manufacturing method thereof
JP2011520272A (en) * 2008-05-08 2011-07-14 ウニヴェルズィテート・ウルム Fully tuned surface emitting semiconductor laser for surface mounting with optimized properties
JP2010219342A (en) * 2009-03-17 2010-09-30 Fuji Xerox Co Ltd Surface-emitting semiconductor laser, optical transmission device, and method of manufacturing surface-emitting semiconductor laser
JP2010251649A (en) * 2009-04-20 2010-11-04 Hitachi Ltd Surface emitting laser module and surface light receiving module
JP2013004903A (en) * 2011-06-21 2013-01-07 Canon Inc Semiconductor optical integrated element and optical tomograph equipped with the same

Similar Documents

Publication Publication Date Title
CN101507065B (en) Electrically pumped semiconductor evanescent laser
JPH1048446A (en) Optical integrated circuit for two-way communications and its manufacture
JP2008218849A (en) Semiconductor optical device and manufacturing method therefor
JPH07183616A (en) Optical semiconductor transceiver and its manufacture
EP1670105B1 (en) Surface emitting laser device including optical sensor and optical waveguide device employing the same
JPH08111559A (en) Semiconductor light emitting/receiving element and device
US5793789A (en) Detector for photonic integrated transceivers
US20040101316A1 (en) Semiconductor electro-absorption optical modulator integrated light emission element, light emission element module and optical transmission system
US7409113B2 (en) Semiconductor electro-absorption optical modulator, semiconductor electro-absorption optical modulator integrated laser, optical transmitter module and optical module
US6459840B1 (en) Optical transmission device
JP2000208862A (en) Semiconductor optical integrated device and its manufacture
JP2001221985A (en) Light emitting element with integrated semiconductor field absorption optical modulator, light emitting element module and optical transmission system
JPH0575093A (en) Integrated optical circuit
EP1130708B1 (en) Semiconductor electro-absorption optical modulator integrated light emitting element and module, and optical transmission system
JPH0529602A (en) Semiconductor optical integrated element and manufacture thereof
JPH0637299A (en) Optical integrated circuit
JPH0832102A (en) Photodetector
JP3331828B2 (en) Optical transmission / reception module
JPH08130508A (en) Optical transmission system, bidirectional optical transmission system, optical multiplex transmission system, spatial optical transmission system, and spatial optical multiplex transmission system
KR100289043B1 (en) Vertical fluorescent integrated circuit
JPH1090540A (en) Semiconductor photodetector, semiconductor photodetecting device and semiconductor device
JP3311238B2 (en) Optical semiconductor device and method of manufacturing the same
JP3232998B2 (en) Optical transmission / reception module
KR100445917B1 (en) Bidirectional transceiver and method of driving the same
JPH08234031A (en) Hybrid wavelength multiplex optical module