JPS63282149A - Hydraulic composition - Google Patents
Hydraulic compositionInfo
- Publication number
- JPS63282149A JPS63282149A JP11748087A JP11748087A JPS63282149A JP S63282149 A JPS63282149 A JP S63282149A JP 11748087 A JP11748087 A JP 11748087A JP 11748087 A JP11748087 A JP 11748087A JP S63282149 A JPS63282149 A JP S63282149A
- Authority
- JP
- Japan
- Prior art keywords
- water
- blast furnace
- furnace slag
- slag powder
- hydraulic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 24
- 239000002893 slag Substances 0.000 claims abstract description 25
- 239000000843 powder Substances 0.000 claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 33
- 238000002156 mixing Methods 0.000 abstract description 11
- 238000000465 moulding Methods 0.000 abstract description 9
- 239000003513 alkali Substances 0.000 abstract description 4
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 abstract description 4
- 239000000920 calcium hydroxide Substances 0.000 abstract description 4
- 229910001861 calcium hydroxide Inorganic materials 0.000 abstract description 4
- 235000011116 calcium hydroxide Nutrition 0.000 abstract description 4
- 239000003795 chemical substances by application Substances 0.000 abstract description 4
- 239000012779 reinforcing material Substances 0.000 abstract description 4
- 239000002270 dispersing agent Substances 0.000 abstract description 3
- 229920000642 polymer Polymers 0.000 abstract description 3
- 229920000578 graft copolymer Polymers 0.000 abstract description 2
- 229920002472 Starch Polymers 0.000 abstract 1
- 238000013329 compounding Methods 0.000 abstract 1
- 235000019698 starch Nutrition 0.000 abstract 1
- 239000008107 starch Substances 0.000 abstract 1
- 239000000047 product Substances 0.000 description 17
- 238000001723 curing Methods 0.000 description 16
- 239000000017 hydrogel Substances 0.000 description 12
- 239000000499 gel Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 239000011398 Portland cement Substances 0.000 description 5
- 239000004568 cement Substances 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 239000011400 blast furnace cement Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910000805 Pig iron Inorganic materials 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 229910052570 clay Inorganic materials 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 239000010451 perlite Substances 0.000 description 2
- 235000019362 perlite Nutrition 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- AOBIOSPNXBMOAT-UHFFFAOYSA-N 2-[2-(oxiran-2-ylmethoxy)ethoxymethyl]oxirane Chemical compound C1OC1COCCOCC1CO1 AOBIOSPNXBMOAT-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 239000011805 ball Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000010454 slate Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229920000247 superabsorbent polymer Polymers 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/24—Macromolecular compounds
- C04B24/26—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B24/2641—Polyacrylates; Polymethacrylates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は新規な水硬性組成物に関し、更に詳しくは、高
炉スラグ粉末を用いた水硬性組成物に関する◇
(従来の技術)
高炉スラグは、銑鉄製造時に副生ずるものであり、産業
廃棄物として埋立てなどに用いられているが、処理コス
トがかかるなどの問題がある。ところが、高炉スラグは
、水中あるいは空中などで急冷するとガラス質となり、
これを粉末化したものは、アルカリ成分の存在下で硬化
するようになる。このようなそれ自体では水硬性がない
がアルカリ成分の存在下で硬化する性質を潜在水硬性と
いうが、高炉スラグ粉末はこの性質を活かして、水利反
応により石灰分を遊離するポルトランドセメントなどと
混合して高炉セメントとして利用されている。Detailed Description of the Invention (Industrial Application Field) The present invention relates to a novel hydraulic composition, and more particularly, to a hydraulic composition using blast furnace slag powder. (Prior Art) Blast furnace slag is It is a by-product during the production of pig iron and is used in landfills as industrial waste, but there are problems such as high processing costs. However, when blast furnace slag is rapidly cooled in water or air, it becomes glassy.
A powdered version of this hardens in the presence of an alkaline component. The property of having no hydraulic property by itself but hardening in the presence of alkaline components is called latent hydraulic property.Blast furnace slag powder takes advantage of this property and can be mixed with materials such as Portland cement, which liberates lime content through water use reactions. It is used as blast furnace cement.
(発明が解決しようとする問題点)
高炉スラグ粉末とアルカリ成分とを組合わせたものは、
低発熱性であること、塩水に対する抵抗性が大きいこと
などの利点を有するが、通常のセメント組成物に比べて
強度発現が緩やかであり、一定の強度を示すようになる
までの時間が長いという問題点がある。このため、高炉
セメントについてのJ工S規格において、高炉セメント
中の高炉スラグの混合割合は70%以下とされている0
このような状況から、上述の高炉スラグの性能上の利点
を活かし、また、安価であるという経済的な利点を活用
するため、高炉スラグ粉末を多量に用いて、強度の発現
が早く、しかも、高強度の硬化物を得る方法が求められ
ていた。(Problems to be solved by the invention) A combination of blast furnace slag powder and an alkaline component is
It has advantages such as low heat generation and high resistance to salt water, but it develops strength more slowly than normal cement compositions, and it takes a long time to reach a certain level of strength. There is a problem. For this reason, in the J Engineering S Standard for blast furnace cement, the mixing ratio of blast furnace slag in blast furnace cement is set at 70% or less.
Under these circumstances, in order to take advantage of the above-mentioned performance advantages of blast furnace slag, as well as its economic advantage of being inexpensive, a large amount of blast furnace slag powder is used to develop strength quickly, and There was a need for a method to obtain a cured product with high strength.
本発明者らは、このような課題を達成すべく鋭意検討の
結果、高炉スラグ粉末、アルカリ成分及び水を用いて水
硬性組成物を得るときに、使用する水の供給源として有
機含水ゲルを使用すると、分散性に優れた均一な硬化性
組成物が得られ、低水分量で硬化可能となり、その結果
として、強度の発現が早く、しかも強度の高い硬化物が
得られることを見出し、この知見に基いて本発明を完成
するに至った。As a result of intensive studies to achieve these problems, the present inventors have discovered that an organic hydrous gel can be used as a water supply source when obtaining a hydraulic composition using blast furnace slag powder, an alkaline component, and water. We discovered that when used, a uniform curable composition with excellent dispersibility can be obtained, which can be cured with a low moisture content, and as a result, a cured product with quick strength development and high strength can be obtained. Based on this knowledge, we have completed the present invention.
(問題点を解決するための手段)
かくして本発明によれば、高炉スラグ粉末、アルカリ成
分および有機含水ゲルを主成分とする水硬性組成物が提
供される。(Means for Solving the Problems) According to the present invention, there is provided a hydraulic composition whose main components are blast furnace slag powder, an alkaline component, and an organic hydrous gel.
本発明において用いられる高炉スラグ粉末は、鉄鉱石に
コークス、石灰石などを加え高炉で加熱還元して銑鉄を
生産するときに副産物として得られるスラグ(鉱滓)を
、水中などで急冷処理を行ない、ガラス質、かつ、多孔
質とし、これを更に粉末化したもので、ケイ酸、酸化カ
ルシウム、アルミナを主成分とするものでらる0高炉ス
ラグはJIS R5211に規定されているが、これに
限定されることはない。The blast furnace slag powder used in the present invention is produced by quenching slag (mine slag) obtained as a byproduct when producing pig iron by adding coke, limestone, etc. to iron ore and heating and reducing it in a blast furnace. Blast furnace slag is defined in JIS R5211, which is made into a powder that is porous and has silicic acid, calcium oxide, and alumina as its main components, but is not limited to this. It never happens.
本発明において用いられるアルカリ成分は、従来、1在
水硬性を有する高炉スラグ粉末を硬化させることが知ら
れているものを使用することができ、特に限定嘔れない
。その具体例としては、ナトリウム、カリウム、カルシ
ウム、マグネシウム、アルミニウムなどの金属の酸化物
あるいは水酸化物、水と水利反応を起こすと水酸化カル
シウムを生成する各種セメントなどが挙げられる。経済
的には、消石灰、ポルトランドセメントが有利である0
本発明において、アルカリ成分の量は、通常、潜在水硬
性成分が反応に必要とする量となるが、目的物の要求性
能や用途などにより、適宜選択される。例えば、アルカ
リ成分として消石灰を用いる場合には、高炉スラグ粉末
100重量部に対して、通常、0.5〜20重量部であ
り、これ以上では、硬化物の性能に問題が生ずる。また
、アルカリ成分としてポルトランドセメントを用いる場
合には、高炉スラグ粉末100重量部に対して、通常、
1重量部以上40重量部以下であり、これ以上の使用量
では、経済的に不利である。The alkaline component used in the present invention can be any one that has been known to harden blast furnace slag powder having hydraulic properties, and is not particularly limited. Specific examples thereof include oxides or hydroxides of metals such as sodium, potassium, calcium, magnesium, and aluminum, and various cements that produce calcium hydroxide when subjected to a water-use reaction with water. Economically, slaked lime and Portland cement are advantageous. In the present invention, the amount of alkaline component is usually the amount required for the reaction of the latent hydraulic component, but it may vary depending on the required performance of the target product and its use. , is selected as appropriate. For example, when slaked lime is used as the alkaline component, the amount is usually 0.5 to 20 parts by weight per 100 parts by weight of blast furnace slag powder, and if it is more than this, problems will arise in the performance of the cured product. In addition, when using Portland cement as the alkaline component, usually
The amount is 1 part by weight or more and 40 parts by weight or less, and if it is used in an amount larger than this, it is economically disadvantageous.
一方、本発明で用いられる有機含水ゲルは、多量の水、
例えば自重の5〜1000倍、好ましくは10〜800
倍の水を含有しているゲル状の有機物であればいずれで
もよく、その具体例として、例えば、デンプン−アクリ
ロニトリルグラフト共重合体系、カルボキシメチルセル
ロース系、ポリアクリロニトリル系、ポリエチレンオキ
サイド系、酢酸ビニル−アクリル酸塩共重合体系、ビニ
ルアルコール−アクリル酸塩共重合体系、ポリアクリル
酸塩系、オレフィン−無水マレイン酸共重合体系などの
ごとき高吸水性ポリマーに水を吸収させて得られる含水
ゲル、ポリアクリル酸塩やオレフィン−無水マレイン酸
共重合体塩などのごときポリカルボン酸塩を水の存在下
に架橋剤と反応させて得られる含水ゲルなどが例示され
る。On the other hand, the organic hydrogel used in the present invention contains a large amount of water,
For example, 5 to 1000 times its own weight, preferably 10 to 800 times
Any gel-like organic material containing twice as much water may be used, and specific examples include starch-acrylonitrile graft copolymer systems, carboxymethyl cellulose systems, polyacrylonitrile systems, polyethylene oxide systems, and vinyl acetate-acrylic systems. Polyacrylic, a water-containing gel obtained by absorbing water into a highly water-absorbing polymer such as an acid salt copolymer system, a vinyl alcohol-acrylate copolymer system, a polyacrylate system, an olefin-maleic anhydride copolymer system, etc. Examples include hydrogels obtained by reacting polycarboxylic acid salts such as acid salts and olefin-maleic anhydride copolymer salts with a crosslinking agent in the presence of water.
上記の高吸収性ポリマーの種類は格別制限されるもので
は々く、一般に市販されているものであればいずれも使
用できる。The type of superabsorbent polymer mentioned above is not particularly limited, and any commercially available polymer can be used.
本発明において有機含水ゲルの混合量は、通常、使用水
量を供給しうる量となるが、その量は目的物の要求性能
や用途などくよって適宜選択される。In the present invention, the amount of organic hydrogel to be mixed is usually an amount that can supply the amount of water used, but the amount is appropriately selected depending on the required performance of the target product and the intended use.
しかし、含水ゲルを構成する有機分の量は全水硬性成分
100重量部当り5x量部以下に保つのが好ましい。However, it is preferable to keep the amount of organic components constituting the hydrogel at less than 5x parts per 100 parts by weight of total hydraulic components.
ここで、全水硬性成分とは、高炉スラグ粉末と、アルカ
リ成分として用いられるもののうちポルトランドセメン
トなどの、それ自体水硬性を有する、ものとをいう。Here, the term "all hydraulic components" refers to blast furnace slag powder and components that are hydraulic in themselves, such as Portland cement among those used as alkaline components.
また、かかる有機含水ゲルの形状は粒状、板状、棒状な
どがあり、使用方法などくより特に限定されないが、混
合の仕易さの点で粒状ゲルとして用いるのが好ましい◎
用いられる水は、特に制限されないが、通常、水道水、
地下水、海水などが用いられる。In addition, the shape of the organic hydrous gel may be granular, plate-like, rod-like, etc., and the method of use is not particularly limited, but from the viewpoint of ease of mixing, it is preferable to use it as a granular gel.◎ The water used is: Although not particularly limited, usually tap water,
Groundwater, seawater, etc. are used.
本発明の水硬性組成物中の水量は、使用材料及びその組
成により異なるため一概には決められないが、その上限
は硬化物の強度を低下式せないために、通常、全水硬性
成分の50重量%以下、好ましくは40重量%以下であ
る。The amount of water in the hydraulic composition of the present invention cannot be determined unconditionally because it varies depending on the materials used and its composition, but the upper limit is usually determined by the amount of total hydraulic components because the strength of the cured product cannot be reduced. It is 50% by weight or less, preferably 40% by weight or less.
また、使用水量の下限は限定されないが、通常は全水硬
性成分の5重量%以上、好ましくは10重量%以上であ
る。水量の下限は全水硬性成分の化学量論的比率よりは
るかに少ない量であるが、水硬性成分は徐々に水和物を
生成し養生期間等に外部から必要な水が補給嘔れること
により少ない水量で硬化物の製造が可能となる。Further, the lower limit of the amount of water used is not limited, but it is usually 5% by weight or more, preferably 10% by weight or more of the total hydraulic components. The lower limit of the amount of water is far less than the stoichiometric ratio of all hydraulic components, but the hydraulic components gradually form hydrates and are replenished with water required from outside during the curing period, etc. It is possible to produce a cured product with a small amount of water.
本発明では、必要に応じて高炉スラグ粉末、アルカリ成
分と有機含水ゲルの他に通常用いられている骨材、補強
材を適宜配合することができる。In the present invention, in addition to the blast furnace slag powder, alkaline component, and organic hydrous gel, commonly used aggregates and reinforcing materials can be appropriately blended as needed.
骨材や補強材の具体例としては、砂、砂利、パーライト
等の軽量骨材、鋼球、パライト等の加重材、石膏、粘土
、クレー、ベントナイト、石灰、樹脂繊維、パルプ繊維
、カーボン繊維、アラミド繊維、金属繊維、ガラス繊維
、石綿、木片などが例示される。Specific examples of aggregates and reinforcing materials include lightweight aggregates such as sand, gravel, and perlite, weighted materials such as steel balls and perlite, gypsum, clay, clay, bentonite, lime, resin fibers, pulp fibers, carbon fibers, Examples include aramid fiber, metal fiber, glass fiber, asbestos, and wood chips.
さらに必要に応じて混和剤も配合することができる。混
和剤の具体例としては、減水剤、バインダー、分散剤、
空気連行剤、湿潤分散剤、膨張剤、防水剤、強度増進剤
、硬化促進剤、硬化遅延剤、凝結促進剤、凝結遅延剤、
増粘剤等が例示される。Furthermore, an admixture can be added as necessary. Specific examples of admixtures include water reducing agents, binders, dispersants,
Air entraining agents, wetting and dispersing agents, swelling agents, waterproofing agents, strength enhancers, curing accelerators, curing retarders, setting accelerators, setting retarders,
Examples include thickeners and the like.
かかる混和剤は予め高吸水性樹脂に含有させることがで
きる場合は、含有させて用いる方が好ましいO
本発明における混合順序は、目的物の使用目的に応じて
適宜選択することができる。その具体的な方法としては
、例えば高炉スラグ粉末、アルカリ成分と有機含水ゲル
を混合した後に、必要に応じて骨材、補強材などを混合
する方法、予め有機含水ゲルと骨材などを混合した後、
高炉スラグ粉末、アルカリ成分を混合する方法、全ての
材料を同時に混合する方法などが挙げられる。混合する
際には、通常、ホバートミキサー、傾胴形ミキサー、強
制練りミキサーなどが用いられるが、特に限定されるも
のではない◎
かくして得られる本発明の水硬性組成物は、水で流動化
した通常のスラリー状組成物と異なり、固体粒子同士の
混合物である。この組成物を硬化する方法はとくに限定
されるものではなく、例えば加圧成型、振動成型、遠心
成型などの方法が適用嘔れる。例えば加圧成型の場合に
は、組成物を型枠に充填したのち加圧することKより型
取りが行われる。When such an admixture can be included in the superabsorbent resin in advance, it is preferable to use it in the superabsorbent resin.The mixing order in the present invention can be appropriately selected depending on the purpose of use of the target product. Specific methods include, for example, mixing blast furnace slag powder, alkaline components, and organic hydrous gel, and then mixing aggregate, reinforcing material, etc. as necessary; or mixing organic hydrous gel and aggregate in advance. rear,
Examples include a method of mixing blast furnace slag powder and an alkali component, and a method of mixing all materials at the same time. When mixing, a Hobart mixer, a tilting mixer, a forced kneading mixer, etc. are usually used, but there are no particular limitations.◎ The hydraulic composition of the present invention obtained in this way can be Unlike ordinary slurry compositions, it is a mixture of solid particles. The method for curing this composition is not particularly limited, and methods such as pressure molding, vibration molding, and centrifugal molding can be used. For example, in the case of pressure molding, molding is performed by filling the composition into a mold and applying pressure.
加圧の方法は、プレス、ローラー、ロールなどを用いて
行われ、圧力は水硬性組成物の組成によって必ずしも一
様ではないが、通常、5 ′q/aa”以上である。加
圧に要する時間は圧力、組成などによって必ずしも一定
ではないが、通常は1分以上加圧を継続することが好ま
しい。また振動成型の場合には、型枠に充填後、振動に
よって型取りが行われる。Pressure is applied using a press, roller, roll, etc., and the pressure is not necessarily uniform depending on the composition of the hydraulic composition, but is usually 5'q/aa'' or more.Required for pressurization. Although the time is not necessarily constant depending on the pressure, composition, etc., it is usually preferable to continue applying pressure for one minute or more.In addition, in the case of vibration molding, after filling the mold, molding is performed by vibration.
型取りされた組成物は、必要に応じて型枠をとりはずし
たのち、必要に応じて養生に供される。After the molded composition is removed from the mold, if necessary, it is subjected to curing, if necessary.
養生の方法は格別制限されるものではなく、その具体例
として水中養生、湿空養生、スチーム養生、オートクレ
ーブ養生などが例示される。The curing method is not particularly limited, and specific examples include water curing, humid air curing, steam curing, and autoclave curing.
本発明の場合、養生の間に含水ゲル中の水分が徐々に滲
み出し、その水分によって硬化が進行するが、含水ゲル
中の水分量が硬化に必要な理論量よりも少ない場合には
養生の段階で外部から水分をとり込むことによって硬化
が完全なものとなる◇このようにして得られる硬化物は
種々の用途に使用しうるが、とくにパネル、セメント瓦
、敷石、スレート、床材、ブロックなどのごとき二次製
品として有用である。In the case of the present invention, the water in the hydrogel gradually oozes out during curing, and the curing progresses due to that water. However, if the amount of water in the hydrogel is less than the theoretical amount required for curing, curing is not necessary. The curing is completed by taking in moisture from the outside at this stage ◇ The cured product obtained in this way can be used for various purposes, but especially for panels, cement tiles, paving stones, slate, flooring, and blocks. It is useful as a secondary product such as.
(発明の効果)
かくして、本発明によれば、水の供給源として有機含水
ゲルを用いることによって、分散性がよく、低水分量で
硬化することができ、その結果として品質及び経済性に
優れた硬化物を与える水硬性組成物を得ることができる
。(Effects of the Invention) Thus, according to the present invention, by using an organic hydrogel as a water supply source, it has good dispersibility and can be cured with a low water content, resulting in excellent quality and economic efficiency. A hydraulic composition that provides a cured product can be obtained.
(実施例)
以下に実施例を挙げて本発明をさらに具体的に説明する
。なお、実施例、比較例及び参考側中の部はとくに断り
のないかぎり重量基準である◇参考例1
第1表に示す各種高吸水性樹脂に所定量の水を吸収させ
て含水ゲル(I)〜(Ill)を得た。得られた各含水
ゲルは粒径約1冨烏の粒子状であった。(Example) The present invention will be described in more detail with reference to Examples below. Note that the parts in Examples, Comparative Examples, and Reference Side are based on weight unless otherwise specified. ◇Reference Example 1 Various super absorbent resins shown in Table 1 are made to absorb a predetermined amount of water to form a hydrogel (I). ) to (Ill) were obtained. Each of the obtained hydrogels was in the form of particles with a particle size of about 1 tom.
第 1 表
本l: 日本触媒化学社製、アクアリック*2:三洋化
成社裂、サンウェット
*3: クラレイソブレン社製、KIゲル参考例2
イソブチレン−無水マレイン酸共重合体(クラレイソプ
レンケミカル■裂、イソパン10)ナトリウム塩(中和
度0.78)の8%水溶液144部にポリエチレングリ
コールジグリシジルエーテル(共栄社油脂化学工業■裂
、エポライ)400E)8チ水溶液75部を加え、均一
に混合した後、ステンレス裂容器に流し込み水分が蒸発
しないよう密封し、60℃のオーブン中で2時間加熱し
架橋反応を行った。得られた含水ゲル(■)は50X5
0×10龍の直方体であった。Table 1 Book l: manufactured by Nippon Shokubai Kagaku Co., Ltd., Aqualic *2: Sanyo Kasei Co., Ltd., Rip, Sunwet *3: manufactured by Kuraray Sobrene Co., Ltd., KI Gel Reference Example 2 Isobutylene-maleic anhydride copolymer (Claraysoprene Chemical Co., Ltd.) 75 parts of an 8% aqueous solution of polyethylene glycol diglycidyl ether (Kyoeisha Yushi Kagaku Kogyo ■Crack, Epolai) 400E) was added to 144 parts of an 8% aqueous solution of Sodium salt (neutralization degree 0.78), and the mixture was evenly distributed. After mixing, the mixture was poured into a stainless steel container, sealed to prevent moisture from evaporating, and heated in an oven at 60° C. for 2 hours to perform a crosslinking reaction. The obtained hydrogel (■) is 50×5
It was a 0x10 dragon rectangular parallelepiped.
実施例1
高炉水砕スラグ(セラメント、第一セメント社g)1s
oor、セメント(アサノ普通ポルトランドセメント)
759に砂(豊浦標準砂)15752及び第2表に示す
含水量に相当する量の含水ゲル(I)〜(R’)Hll
し、ホバート型モルタルミキサーで3分間混練したのち
、フロー値をJIS R5201に準じて測定した。結
果を第2表に示す。Example 1 Granulated blast furnace slag (cerament, Daiichi Cement Co., Ltd.) 1s
oor, cement (Asano Ordinary Portland Cement)
759, sand (Toyoura standard sand) 15752 and hydrogels (I) to (R') Hll in an amount corresponding to the water content shown in Table 2.
After kneading for 3 minutes using a Hobart type mortar mixer, the flow value was measured according to JIS R5201. The results are shown in Table 2.
次に、5crrLφX10(mのモルタル用型枠に充填
し、第2表に示す所定圧力を5分間かけて成型品を作り
、20℃湿空にて一晩饗生し、JIS A 1132
に準じて成型品の上面仕上げを行なったのち、脱型し2
0゛Cの水中で所定材令まで養生を行なった。Next, it was filled into a mortar mold of 5 crrLφ
After finishing the top surface of the molded product in accordance with 2.
The material was cured in water at 0°C until the specified age.
得られた硬化物の圧縮強度をJIS A 110B
に単じて測定した。結果を第2表に示す。The compressive strength of the obtained cured product was determined according to JIS A 110B.
It was measured simply. The results are shown in Table 2.
また、比較のため、含水ゲルの代わりに水を用いた場合
についても、実施例1と同様に操作をしく但し、加圧操
作は省略)、フロー値及び得られた硬化物の圧縮強度を
測定した◎結果を第2表に示す。For comparison, when water was used instead of the hydrous gel, the same procedure as in Example 1 was carried out, but the pressure operation was omitted), and the flow value and compressive strength of the obtained cured product were measured. The results are shown in Table 2.
第 2 表
;
□□□□□□−具
* (高炉スラグ粉末+セメン))100部に対する水
分量この結果から、本発明の場合には、低水分量で硬化
することができ、得られた硬化物の強度が著しく高度な
ことが分る。Table 2; □□□□□□ - Moisture content per 100 parts of (blast furnace slag powder + cement) From this result, in the case of the present invention, it is possible to cure with a low moisture content, and the obtained It can be seen that the strength of the cured product is extremely high.
実施例2
含水ゲル(1) 575 r、砂150(l及び第5表
に示すアルカリ成分を所定量添加すること以外は実施例
1と同様に操作してフロー値及び圧縮強度を測定した。Example 2 The flow value and compressive strength were measured in the same manner as in Example 1, except that 575 liters of hydrogel (1), 150 liters of sand, and a predetermined amount of the alkaline component shown in Table 5 were added.
また、比較のため、含水ゲルの代わりに水を用いた場合
についても、同様に操作をしく但し、加圧操作は省略)
、フロー値及び得られた硬化物の圧縮強度を測定した。Also, for comparison, when water is used instead of the hydrous gel, the same procedure is performed, but the pressurization procedure is omitted)
, the flow value and the compressive strength of the obtained cured product were measured.
結果を第6表に示す。The results are shown in Table 6.
この結果から、アルカリ成分の種類を変えても、低水分
量で硬化することができ、得られた硬化物の強度が著し
く高度なことが分る。These results show that even if the type of alkali component is changed, curing can be achieved with a low moisture content, and the strength of the obtained cured product is extremely high.
Claims (1)
成分とする水硬性組成物Hydraulic composition mainly composed of blast furnace slag powder, alkaline component and organic hydrous gel
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11748087A JPS63282149A (en) | 1987-05-14 | 1987-05-14 | Hydraulic composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11748087A JPS63282149A (en) | 1987-05-14 | 1987-05-14 | Hydraulic composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63282149A true JPS63282149A (en) | 1988-11-18 |
Family
ID=14712745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11748087A Pending JPS63282149A (en) | 1987-05-14 | 1987-05-14 | Hydraulic composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63282149A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990014320A1 (en) * | 1989-05-22 | 1990-11-29 | Nippon Kayaku Kabushiki Kaisha | High-strength composite material and method of producing the same |
JPH06157118A (en) * | 1992-11-17 | 1994-06-03 | Kubota Corp | Production of ceramic product |
US5391437A (en) * | 1989-05-22 | 1995-02-21 | Nippon Kayaku Kabushiki Kaisha | High-strength composite material and process for producing the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5930746A (en) * | 1982-08-16 | 1984-02-18 | 電気化学工業株式会社 | High chemical resistance binder |
-
1987
- 1987-05-14 JP JP11748087A patent/JPS63282149A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5930746A (en) * | 1982-08-16 | 1984-02-18 | 電気化学工業株式会社 | High chemical resistance binder |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990014320A1 (en) * | 1989-05-22 | 1990-11-29 | Nippon Kayaku Kabushiki Kaisha | High-strength composite material and method of producing the same |
US5391437A (en) * | 1989-05-22 | 1995-02-21 | Nippon Kayaku Kabushiki Kaisha | High-strength composite material and process for producing the same |
JPH06157118A (en) * | 1992-11-17 | 1994-06-03 | Kubota Corp | Production of ceramic product |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20000029043A (en) | Method of solidifying steel-making slag and material produced by the method | |
US4883535A (en) | Novel hydraulic composition | |
KR101179506B1 (en) | Composition of organic and inorganic hybrid cement zero concrete with high strength | |
JPS61275153A (en) | Pretreatment for pozzolanic enhancement of pozzolan material | |
CN117279875A (en) | Accelerator for reaction of steelmaking slag and water | |
US5185039A (en) | Hydraulic composition | |
JPS6081051A (en) | Manufacture of coal ash solidified body | |
KR20190099765A (en) | Artificial light weight aggregates composition using cement zero binder and manufacturing method thereof | |
KR102042779B1 (en) | The soil fill materials enhanced strength and manufacturing method of the same | |
JPS63282149A (en) | Hydraulic composition | |
JP6985547B1 (en) | Grout material, grout mortar composition and cured product | |
JP5107557B2 (en) | Cement composition | |
JP3398224B2 (en) | Slag hardening material | |
JPS63282150A (en) | Hydraulic composition | |
KR102103471B1 (en) | Noncement Concrete Based on Industrial By-products | |
JP3888931B2 (en) | Hardened cement and method for producing the same | |
JPS63100081A (en) | Manufacture of hydraulic matter | |
JP4659475B2 (en) | Calcium silicate molded body | |
JP2006188398A (en) | Cementitious composition | |
KR102621993B1 (en) | White cement composition comprising calcium carbonate | |
JPH1045457A (en) | Nonshrinkage-hardening composition and its hardened body | |
KR102721744B1 (en) | Method of manufacturing eco-friendly concrete secondary products using industrial by-products and concrete secondary products manufactured by the same | |
JPS63319238A (en) | Novel hydraulic composition | |
KR102712556B1 (en) | Manufacturing method of non-alkali binder for concrete using industrial by-products and non-alkali binder for concrete manufactured by the same | |
JP6985548B1 (en) | Repair mortar material, repair mortar composition and cured product |