JPS63319238A - Novel hydraulic composition - Google Patents

Novel hydraulic composition

Info

Publication number
JPS63319238A
JPS63319238A JP15310287A JP15310287A JPS63319238A JP S63319238 A JPS63319238 A JP S63319238A JP 15310287 A JP15310287 A JP 15310287A JP 15310287 A JP15310287 A JP 15310287A JP S63319238 A JPS63319238 A JP S63319238A
Authority
JP
Japan
Prior art keywords
cement
water
composition
superfine powder
org
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15310287A
Other languages
Japanese (ja)
Other versions
JPH0829967B2 (en
Inventor
Tetsuo Hamaguchi
浜口 哲夫
Toshimata Matsui
利又 松井
Yoshio Natsuume
伊男 夏梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP62153102A priority Critical patent/JPH0829967B2/en
Publication of JPS63319238A publication Critical patent/JPS63319238A/en
Publication of JPH0829967B2 publication Critical patent/JPH0829967B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To produce the title novel hydraulic composition having excellent dispersibility and capable of providing high-strength cement by mixing cement, superfine powder, and aggregates with the use of an org. hydrogel. CONSTITUTION:Cement (ordinary cement, etc.), superfine powder, aggregates (river sand, etc., having >=about 6 Mohs' hardness), and an org. hydrogel are mixed to prepare a composition. In addition, the superfine powder such as silica dust having <=about 10mu mean particle diameter is used, and 3-40pts.wt. of the powder is mixed with 100pts.wt. cement. A starch-acrylonitrile graft copolymer-based gel, etc., contg. water in the amt. of about 5-1,000 times its own weight is used as the org. hydrogel, the amt. is controlled to about 5-35pts.wt., based on 100pts.wt. of the cement plus superfine powder, and the amt. of the org. component is adjusted to <=about 5pts.wt., based on 100pts.wt. of the cement plus superfine powder. The composition is a uniform mixture having excellent dispersibility, and a high-strength mortar or concrete product can be obtained by molding and curing the composition.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は新規な水硬性組成物に関し、更に詳しくは、分
散性に優れ、高強度のセメント製品を与える新規な水硬
性組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a novel hydraulic composition, and more particularly to a novel hydraulic composition that has excellent dispersibility and provides a high-strength cement product.

(従来の技術) モルタルやコンクリートなどのセメント製品は、土木・
建築構造物の材料として広く用いられているが、構造物
が長大化、高層化するに伴い、高強度のセメント製品に
対する要鯖が強まっている。
(Conventional technology) Cement products such as mortar and concrete are used in civil engineering and
It is widely used as a material for building structures, but as structures become longer and taller, there is an increasing need for high-strength cement products.

セメント製品の強度向上のための一つの方法として、水
/セメント比を下げることによってセメントイーストの
強度を高めることが考えられる。
One way to improve the strength of cement products is to increase the strength of cement yeast by lowering the water/cement ratio.

この水/セメント比は、高性能減水剤を使用するととK
より、0.3程度にまで低下させることが可能である。
This water/cement ratio can be reduced by using a high performance water reducer.
Therefore, it is possible to reduce it to about 0.3.

しかし、一方では、モルタルあるいはコンクリートを線
上げる際の混練性及び作業性を保つために、モルタルあ
るいはコンクリートの単位容積肖り、一定の水量が必要
とされる。したがって、モルタルあるいはコンクリート
の水/セメント比を維持し、かつ、流動性を保つために
、モルタルあるいはコンクリートの単位容積abのセメ
ント量を増やすことが行なわれている。ところがこの方
法では、セメント量の増大に伴う発熱量増加のためにセ
メント製品のヒビ割れが起こるという問題があシ、また
経済的にも不利である。さらに、高性能減水剤を多量に
用いるため、僅かの水量の変化でスランプ値が大きく変
動する、スランプ値の経時変化が大きい、モルタル分の
流動性がよいために骨材分離が起こシやすいなど施工管
理上の問題も多い。
However, on the other hand, in order to maintain kneading and workability when raising mortar or concrete, a certain amount of water is required per unit volume of mortar or concrete. Therefore, in order to maintain the water/cement ratio of mortar or concrete and maintain fluidity, the amount of cement per unit volume ab of mortar or concrete is increased. However, this method has the problem that the cement product cracks due to the increase in calorific value accompanying the increase in the amount of cement, and is also economically disadvantageous. Furthermore, since a large amount of high-performance water reducing agent is used, the slump value fluctuates greatly due to a small change in the amount of water, the slump value changes significantly over time, and the mortar has good fluidity, making it easy for aggregate separation to occur. There are also many problems with construction management.

また、セメント製品の強度向上のための他の方法として
、セメントに硫酸カルシウムや超微粉を混合してモルタ
ルあるいはコンクリートの空隙を少なくする方法が提案
されている(特開昭61−21953、同6l−247
651)。しかし、この方法においても、モルタルある
いはコンクリートの単位容積あた夛のセメント量を多く
し、高性能減水剤を使用せざるを得ないために、上述の
セメント製品のヒビ割れ、経済性あるいは施工管理上の
問題は解決されていない。
In addition, as another method for improving the strength of cement products, a method has been proposed in which calcium sulfate or ultrafine powder is mixed with cement to reduce the voids in mortar or concrete (Japanese Patent Laid-Open No. 61-21953, 6l. -247
651). However, even with this method, it is necessary to increase the amount of cement per unit volume of mortar or concrete and use a high-performance water reducing agent, resulting in the above-mentioned cracking of the cement product, economical issues, and construction management issues. The above problem is not resolved.

(発明が解決しようとする問題点) このため、モルタルあるいはコンクリートの単位容積あ
たシのセメント量を増やすことなく、水/セメント比を
小さく保って、高強度のセメント製品を得る方法が求め
られていた。
(Problem to be solved by the invention) Therefore, there is a need for a method of obtaining a high-strength cement product by keeping the water/cement ratio small without increasing the amount of cement per unit volume of mortar or concrete. was.

本発明者らは、この課題を達成すべく鋭意研究の結果、
使用水の供給源として有機含水グルを使用して、セメン
ト、超微粉及び骨材を混合することによシ、分散性に優
れた均一な混合物が得られ、これを成形、硬化すること
によル高強度のモルタルまたはコンクリート製品が得ら
れることを見出し、この知見に基いて本発明を完成する
に至った。
As a result of intensive research to achieve this problem, the inventors of the present invention found that
By mixing cement, ultrafine powder, and aggregate using organic hydrous glue as a water source, a homogeneous mixture with excellent dispersibility can be obtained, which can be shaped and hardened. The present inventors have discovered that a mortar or concrete product with high strength can be obtained, and based on this knowledge, they have completed the present invention.

(問題点を解決するための手段) かくして本発明によれば、セメント、超微粉、骨材及び
有機含水ゲルを含有してなることを特徴とする新規な水
硬性組成物が提供される。
(Means for Solving the Problems) Thus, according to the present invention, there is provided a novel hydraulic composition characterized by containing cement, ultrafine powder, aggregate, and organic hydrogel.

本発明において用いられるセメントは特に限定されない
が、通常、普通セメント、早強セメント、超早強セメン
ト、本しくは白色セメントなどの各[/ルトランFセメ
ントが用いられる。さらK。
The cement used in the present invention is not particularly limited, but usually, ordinary cement, early-strengthening cement, ultra-early-strengthening cement, or Lutran F cement such as white cement is used. Sara K.

膨腰セメント、高炉スラグやフライアッシ為などを混合
した混合セメントなども用いることができる。
Bulky cement, mixed cement containing blast furnace slag, fly ash, etc. can also be used.

本発明における超微粉は、10#m以下、好ましくは1
μm以下の平均粒子径を有する、一種または二種以上の
金属酸化物を主構成成分とする粉末である。具体例とし
ては、フヱロシリコンなどを製造する際に副生ずるシリ
カダスト(シリカヒエ−人)のようなシリカ質ダストが
特に好適であるが、戻酸カルシウム、シリカゲル、酸化
チタン、酸化アルミニウム、オ・ナール質珪石などを微
粉砕したものを用いること本できる。
The ultrafine powder in the present invention is 10#m or less, preferably 1
It is a powder whose main constituent is one or more metal oxides and has an average particle diameter of μm or less. As a specific example, silica dust such as silica dust (silica dust) which is produced as a by-product during the production of fluorosilicon etc. is particularly suitable, but silica dust such as rehydrated calcium oxide, silica gel, titanium oxide, aluminum oxide, and minerals are particularly suitable. You can also use finely crushed silica stone.

本発明における超微粉の添加量は、セメント100重量
部に対して3〜40重量部、好ましくは5〜35重量部
である。3重量部未満では強度を高める効果がなく、4
0重量部を超えて混合しても、より高い効果を期待する
ことはできないし、経済的に不利である。
The amount of ultrafine powder added in the present invention is 3 to 40 parts by weight, preferably 5 to 35 parts by weight, per 100 parts by weight of cement. If it is less than 3 parts by weight, there is no effect of increasing the strength;
Even if more than 0 parts by weight is mixed, higher effects cannot be expected and it is economically disadvantageous.

本発明における骨材は、通常、モルタルまたはコンクリ
ートに用いられているものであればよく、具体例として
通常の川砂、川砂利、山砂、山砂利、砕石、砕砂、海砂
表とが挙げられる。特に高強度のセメントを必要とする
ときは、モース硬度6以上、好ましくは7以上の硬質骨
材を用いることが望ましい。
The aggregate used in the present invention may be one that is normally used in mortar or concrete, and specific examples include ordinary river sand, river gravel, mountain sand, mountain gravel, crushed stone, crushed sand, and sea sand. . Particularly when high-strength cement is required, it is desirable to use hard aggregate with a Mohs hardness of 6 or higher, preferably 7 or higher.

一方、本発明で用いられる有機含水ゲルは、多量の水、
例えば自重の5〜1000倍、好ましくは10〜800
倍の水を含有しているグル状の有機物であればいずれで
もよく、その具体例として、例えば、デンプン−アクリ
ロニトリルグラフト共重合体系、カル?キシメチルセル
ロース系、ポリアクリロニトリル系、ホリエチレンオキ
サイド系、酢酸ビニル−アクリル酸塩共重合体系、ビニ
ルアルコール−アクリル酸塩共重合体系、ポリアクリk
 酸塩系、オレフィン−無水iレイン酸共重合体系など
のごとき高吸水性?リマーに水を吸収させて得られる含
水グル、?リアクリル酸塩やオレフィン−無水マレイン
酸共重合体塩などのごときIリカルぎン酸塩を水の存在
下に架橋剤と反応させて得られる含水グルなどが例示さ
れる。
On the other hand, the organic hydrogel used in the present invention contains a large amount of water,
For example, 5 to 1000 times its own weight, preferably 10 to 800 times
Any glue-like organic substance containing twice as much water may be used, and specific examples thereof include starch-acrylonitrile graft copolymer system, cal? oxymethylcellulose, polyacrylonitrile, polyethylene oxide, vinyl acetate-acrylate copolymer, vinyl alcohol-acrylate copolymer, polyacrylic
High water absorption such as acid salt system, olefin-leic anhydride copolymer system, etc.? Water-containing glue obtained by absorbing water in a rimmer? Examples include hydrous glues obtained by reacting I-lycarginates such as lyacrylates and olefin-maleic anhydride copolymer salts with a crosslinking agent in the presence of water.

上記の高吸収性?リマーの種類は格別制限される本ので
は表く、一般に市販されている本のであればいずれも使
用できる。
Highly absorbent as above? There are special restrictions on the type of rimmer, but any book that is generally available on the market can be used.

本発明において有機含水グルの混合量は、通常、使用水
量を供給しうる量であればよく、その量は目的物の要求
性能や用途などによって適宜選択されるが、セメントと
超微粉との合計100重量部に対して5〜35重量部、
好ましくは10〜30重量部である。また、含水グルを
構成する有機分の量は、セメントと超微粉との合計10
0重量部に対して5重量部以下に保つのが好ましい。
In the present invention, the amount of organic water-containing glue to be mixed is normally sufficient as long as it can supply the amount of water used, and the amount is appropriately selected depending on the required performance and usage of the target product, but 5 to 35 parts by weight per 100 parts by weight,
Preferably it is 10 to 30 parts by weight. In addition, the amount of organic content constituting the water-containing glue is 10 in total, including cement and ultrafine powder.
It is preferable to keep the content at 5 parts by weight or less relative to 0 parts by weight.

また、かかる有機含水グルの形状は粒状、板状、棒状な
どかあシ、使用方法などKより特に限定されないが、混
合の仕易さの点で粒状ゲルとして用いるのが好ましい。
Further, the shape of the organic water-containing gel is not particularly limited, such as granules, plates, rods, etc., and the method of use is not particularly limited, but it is preferable to use it as a granular gel from the viewpoint of ease of mixing.

用いられる水は、特に制限されないが、通常、水道水、
地下水、海水かとが用いられる。
The water used is not particularly limited, but usually tap water,
Groundwater and seawater are used.

本発明ではセメント、超微粉、骨材と有機含水ゲルの他
に必要に応じてスチールファイバー、グラスファイバー
、炭素繊維などの繊維性補強材を添加することができる
In the present invention, in addition to cement, ultrafine powder, aggregate, and organic hydrous gel, fibrous reinforcing materials such as steel fibers, glass fibers, and carbon fibers can be added as necessary.

さらに必要に応じて混和剤も配合することができる。混
和剤の具体例としては、減水剤、バインダー、分散剤、
空気連行剤、湿潤分散剤、膨張剤、防水剤、強度増進剤
、硬化促進剤、硬化遅延剤、凝結促進剤、凝結遅延剤、
増粘剤等が例示される。
Furthermore, an admixture can be added as necessary. Specific examples of admixtures include water reducing agents, binders, dispersants,
Air entraining agents, wetting and dispersing agents, swelling agents, waterproofing agents, strength enhancers, curing accelerators, curing retarders, setting accelerators, setting retarders,
Examples include thickeners and the like.

かかる混和剤は予め高吸水性樹脂に含有させることがで
きる場合は、含有させて用いる方が好ましい。
If such an admixture can be included in the superabsorbent resin in advance, it is preferable to include it in the superabsorbent resin.

本発明における混合順序は、目的物の使用目的に応じて
適宜選択することができる。その具体的な方法としては
、例えばセメント、超微粉と有機含水ゲルを混合した後
に、骨材、必要に応じて補、強材などを混合する方法、
予め有機含水ゲルと骨材などを混合した後、セメント、
超微粉を混合する方法、全ての材料を同時に混合する方
法などが挙げられる。混合する際には、通常、ホノクー
トミキサー、傾胴形ミキサー、強制練りミキサーなどが
用いられるが、特に限定されるものではない。
The mixing order in the present invention can be appropriately selected depending on the intended use of the target product. Specific methods include, for example, mixing cement, ultrafine powder, and organic hydrous gel, and then mixing aggregate and, if necessary, supplements and reinforcing materials.
After mixing organic hydrous gel and aggregate etc. in advance, cement,
Examples include a method of mixing ultrafine powder and a method of mixing all materials at the same time. When mixing, a honokuto mixer, a tilting mixer, a forced kneading mixer, etc. are usually used, but there are no particular limitations.

かくして得られる本発明の水硬性組成物は、水で流動化
した通常のスラリー状組成物と異なり、固体粒子同士の
混合物である。この組成物を硬化する方法はとくに限定
されるものではなく、例えば加圧成型、振動成型、遠心
成型などの方法が適用される。例えば加圧成型の場合に
は、組成物を型枠に充填したのち加圧することにより型
取りが行われる。
The hydraulic composition of the present invention thus obtained is a mixture of solid particles, unlike a typical slurry composition fluidized with water. The method for curing this composition is not particularly limited, and methods such as pressure molding, vibration molding, and centrifugal molding may be applied. For example, in the case of pressure molding, molding is performed by filling a mold with the composition and applying pressure.

締め固めには、通常、水硬性製品製造に用いら遠心力を
利用する遠心成型などがある。これらの締め固め方法は
、適宜組合せてもよい。その例として、混合物を型枠に
充填し、振動を与えたのちに予備加圧し、更に再度振動
を与えたのちに加圧して成形する方法を示すことができ
る。
Compaction methods include centrifugal molding, which utilizes centrifugal force and is commonly used in the manufacture of hydraulic products. These compaction methods may be combined as appropriate. As an example, a method can be shown in which a mixture is filled into a mold, subjected to vibration and then pre-pressurized, and further subjected to vibration again and then pressurized and molded.

締め固めに要する時間は型取シ可能な時間であれば特に
限定されず、締め固め方法、組成などによって必ずし本
一定では力いが、通常30秒以上締め固めを継続するこ
とが好ましい。
The time required for compaction is not particularly limited as long as it is possible to make a mold, and depending on the compaction method, composition, etc., it may not necessarily take a certain amount of force, but it is usually preferable to continue compaction for 30 seconds or more.

型取りされた組成物は、必要に応じて型枠をとシはずし
たのち、必要に応じて養生に供される。
The molded composition is removed from the mold, if necessary, and then subjected to curing, if necessary.

養生の方法は格別制限されるものではなく、その具体例
として水中警手、湿空養生、スチーム養生、オートクレ
ーブ養生などが例示される。
The curing method is not particularly limited, and specific examples include underwater curing, humid air curing, steam curing, and autoclave curing.

本発明の場合、養生の間に含水ゲル中の水分が徐々に滲
み出し、その水分によって硬化が進行するが、含水ゲル
中の水分量が硬化に必要な理論量よりも少々い場合には
養生の段階で外部から水分をとシ込むことによって硬化
が完全な本のとなる。
In the case of the present invention, the water in the hydrogel gradually oozes out during curing, and the hardening progresses due to the moisture, but if the amount of water in the hydrogel is slightly lower than the theoretical amount required for curing, At this stage, moisture is introduced from the outside to completely cure the book.

このようにして得られる硬化物は種々の用途に使用しう
るが、とくにノネル、セメント瓦、敷石、スレート、床
材、ブロックなどのごとき二次製品として有用である。
The thus obtained cured product can be used for various purposes, but is particularly useful as secondary products such as nonel, cement tiles, paving stones, slate, flooring materials, blocks, etc.

(発明の効果) かくして、本発明によれば、水の供給源として有機含水
ゲルを用いることによって、分散性がよく、低水分量で
硬化することができ、その結果として品質及び経済性に
優れた硬化物を与える水硬性組成物を得ることができる
(Effects of the Invention) Thus, according to the present invention, by using an organic hydrogel as a water supply source, it has good dispersibility and can be cured with a low water content, resulting in excellent quality and economic efficiency. A hydraulic composition that provides a cured product can be obtained.

(実施例) 以下に実施例を挙げて本発明をさらに具体的に説明する
。なお、実施例、比較例及び参考例中の部はとくに断シ
のないかぎり重量基準である。
(Example) The present invention will be described in more detail with reference to Examples below. Note that parts in Examples, Comparative Examples, and Reference Examples are based on weight unless otherwise specified.

参考例1 第1表に示す各種高吸水性樹脂に所定量の水を吸収させ
て含水ゲル(1)〜(至)を得た。得られた各含水ゲル
は粒径的1mの粒状であった。
Reference Example 1 Hydrogels (1) to (1) were obtained by absorbing a predetermined amount of water into various superabsorbent resins shown in Table 1. Each of the obtained hydrogels had a particle size of 1 m.

第  1  表 *1 :日本触媒化学社製、アクアリンク本2:三洋化
成社製、サンウェット *s:クラレイソデレン社製、KIグル参参考2 イソブチレン−無水マレイン酸共重合体(クラレイソデ
レンケミカル(株)製、イソパン10)ナトリウム塩(
中和度o、7s)の8%水溶液144部にポリエチレン
グリコールジグリシジルエーテル(共栄社油脂化学工業
(株)製、エポライト400E ’) 8%水溶液73
部を加え、均一に混合した後、ステンレス製容器に流し
込み水分が蒸発しないよう密封し、60℃のオーブン中
で2時間加熱し架橋反応を行った。得られた含水グル(
IV)は50X50X10m”の直方体でありた。
Table 1 *1: Manufactured by Nippon Shokubai Kagaku Co., Ltd., Aqualink Book 2: Manufactured by Sanyo Kasei Co., Ltd., Sunwet Co., Ltd., isopane 10) sodium salt (
Polyethylene glycol diglycidyl ether (manufactured by Kyoeisha Yushi Kagaku Kogyo Co., Ltd., Epolite 400E') 8% aqueous solution 73
The mixture was poured into a stainless steel container, sealed to prevent moisture from evaporating, and heated in an oven at 60° C. for 2 hours to carry out a crosslinking reaction. The obtained hydrated glue (
IV) was a rectangular parallelepiped of 50 x 50 x 10 m''.

実施例1 セメント(アサノ普通ポルトランドセメント)100 
ON、第2表に示す量のシリカヒユーム(日本重化学社
製、平均粒径0.1μm)、珪砂(粒子径5■以下)2
000#および第2表に示す量の水を含む含水グル(1
)〜(■)を添加し、ホバート型モルタルミキサーで3
分間混練した。得られた混合物を、5ct11φ×10
譚のモルタル用型枠に充填し、振動数300orpm、
振@IIIIIKの振動台上で1分間振動したのち、面
圧30 ky 7cm”で予備加圧し、さらに、1分間
振動を与えたのち、面圧100 kg / 備”で加圧
して成形品を作製した。このものを20℃湿空にて一晩
養生し、JIS A 1132に準じて成型品の上面仕
上げを行なったのち、脱型し20℃の水中で所定材令ま
で養生を行なった。
Example 1 Cement (Asano Ordinary Portland Cement) 100
ON, silica fume (manufactured by Nihon Heavy Chemical Co., Ltd., average particle size 0.1 μm) in the amounts shown in Table 2, silica sand (particle size 5 μm or less) 2
000# and water-containing glue (1
) ~ (■) and mix with a Hobart type mortar mixer.
Kneaded for a minute. The obtained mixture was divided into 5ct11φ×10
Filled into the formwork for mortar of Tan, the vibration frequency is 300 orpm,
After vibrating for 1 minute on the vibration table of Shake@IIIK, pre-pressurize with a surface pressure of 30 ky 7cm", further vibrate for 1 minute, and pressurize with a surface pressure of 100 kg / 7cm" to create a molded product. did. This product was cured overnight in a humid atmosphere at 20°C, and the upper surface of the molded product was finished according to JIS A 1132, and then removed from the mold and cured in water at 20°C to a specified age.

得られた硬化物の圧縮強度をJIS A 1108に準
じて測定した。結果を第2表に示す。
The compressive strength of the obtained cured product was measured according to JIS A 1108. The results are shown in Table 2.

また、比較のため、含水グルの代わシに水を用いた場合
についても、実施例1と同様に操作をし、得られた硬化
物の圧縮強度を測定した。結果を第2表に示す。
For comparison, the same operation as in Example 1 was carried out in the case where water was used instead of the water-containing glue, and the compressive strength of the obtained cured product was measured. The results are shown in Table 2.

この結果から、本発明においては、有機含水ゲルを用い
ることにより、低水分量で配合物を均一に分散させるこ
とができ、強度が著しく高度な硬化物が得られることが
分る。
This result shows that in the present invention, by using an organic hydrogel, the compound can be uniformly dispersed with a low water content, and a cured product with extremely high strength can be obtained.

実施例2 第3表に示すコンクリート配合に従って配合したのち、
傾胴型ミキサーで3分間混練した。得られたコンクリー
トの15kl?を遠心成形用型枠(200Hx 300
 tx ) K仕込み、6Gで4分間、続−て20Gで
5分間の遠心成形を行なった。成形後4時間放置し、3
時間かけて75℃に昇温し、次いでこの温度で4時間放
置したのち、−晩放冷し、脱型した。得られた成形物を
室温で養生し、材令7日の圧縮強度を測定した。
Example 2 After mixing according to the concrete composition shown in Table 3,
The mixture was kneaded for 3 minutes using a tilting mixer. 15kl of concrete obtained? Formwork for centrifugal molding (200H x 300
tx) K, and centrifugal molding was performed at 6G for 4 minutes, followed by 20G for 5 minutes. After molding, leave for 4 hours,
The temperature was raised to 75°C over a period of time, and then left at this temperature for 4 hours, then allowed to cool overnight and demolded. The obtained molded product was cured at room temperature, and the compressive strength at 7 days of age was measured.

また、比較のため、常法に従って高性能減水剤を使用し
て第3表に示す配合でスラリー状配合物を調製した。こ
の配合物について同様に遠心成形、後処理を行なって得
られた成形物の圧縮強度を測定した。結果を合せて第4
表に示す。
For comparison, slurry formulations were prepared according to the formulations shown in Table 3 using a high performance water reducing agent according to a conventional method. This mixture was subjected to centrifugal molding and post-treatment in the same manner, and the compressive strength of the molded product was measured. 4th result
Shown in the table.

この結果から、本発明においては、有機含水ゲルを用い
ることにより、低水分量で配合物を均一に分散させるこ
とができ、少ないセメント量で強度が著しく高度な硬化
物が得られることが分る。
These results show that in the present invention, by using an organic hydrogel, the compound can be uniformly dispersed with a low moisture content, and a cured product with extremely high strength can be obtained with a small amount of cement. .

Claims (1)

【特許請求の範囲】[Claims] 1、セメント、超微粉、骨材及び有機含水ゲルを含有し
てなることを特徴とする新規な水硬性組成物
1. A novel hydraulic composition containing cement, ultrafine powder, aggregate, and organic hydrogel
JP62153102A 1987-06-19 1987-06-19 Novel hydraulic composition Expired - Lifetime JPH0829967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62153102A JPH0829967B2 (en) 1987-06-19 1987-06-19 Novel hydraulic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62153102A JPH0829967B2 (en) 1987-06-19 1987-06-19 Novel hydraulic composition

Publications (2)

Publication Number Publication Date
JPS63319238A true JPS63319238A (en) 1988-12-27
JPH0829967B2 JPH0829967B2 (en) 1996-03-27

Family

ID=15555016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62153102A Expired - Lifetime JPH0829967B2 (en) 1987-06-19 1987-06-19 Novel hydraulic composition

Country Status (1)

Country Link
JP (1) JPH0829967B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116023124A (en) * 2023-03-28 2023-04-28 成都超纯应用材料有限责任公司 Alumina ceramic based on injection molding and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186254A (en) * 1985-02-14 1986-08-19 電気化学工業株式会社 Artificial rock
JPS61191551A (en) * 1985-02-20 1986-08-26 松下電工株式会社 Manufacture of cementitious cured body
JPS6339304A (en) * 1986-08-05 1988-02-19 ニチエ−吉田株式会社 Manufacture of mortar into which water is not mixed at working site

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186254A (en) * 1985-02-14 1986-08-19 電気化学工業株式会社 Artificial rock
JPS61191551A (en) * 1985-02-20 1986-08-26 松下電工株式会社 Manufacture of cementitious cured body
JPS6339304A (en) * 1986-08-05 1988-02-19 ニチエ−吉田株式会社 Manufacture of mortar into which water is not mixed at working site

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116023124A (en) * 2023-03-28 2023-04-28 成都超纯应用材料有限责任公司 Alumina ceramic based on injection molding and preparation method thereof

Also Published As

Publication number Publication date
JPH0829967B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
KR101989505B1 (en) Concrete additive composition having high early strength and concrete composition comprising the same
JP5544628B2 (en) Alkali active binder, alkali active mortar using the binder, concrete, concrete product and loess wet pavement
KR101912626B1 (en) Mortar composition for repairing and reinforcing underwater concrete structures, and method of repairing and reinforcing underwater concrete structures using the same
KR101420293B1 (en) Preparation method of soil brick with high compressive strength and low water-absorption ratio using non-baking formation
JPH06321590A (en) Cement composition and its preparation
JP5649780B2 (en) Method for producing concrete composition and concrete molded body
JPH02233539A (en) Slag block
US4883535A (en) Novel hydraulic composition
KR100867250B1 (en) Ultra high strength concrete containing non-sintering binder
US5185039A (en) Hydraulic composition
KR101415539B1 (en) Mortar composition for repairing and reinforcing underwater concrete structures with increased durability and adhesion property, and method of repairing and reinforcing underwater concrete structures using the same
JP2003002726A (en) Producing method of concrete like solid body using steel making slag
JP2008156168A (en) Ultrahigh-strength concrete product
JP6642506B2 (en) Manufacturing method of solidified body
JPS63319238A (en) Novel hydraulic composition
KR100876143B1 (en) High strength silica mortar composition and method of manufacturing the same
JP2013100190A (en) Method for producing concrete composition
JP3290171B2 (en) Manufacturing method of porous concrete
JP2016132578A (en) Manufacturing method of hydrated matrix
JPS63100081A (en) Manufacture of hydraulic matter
JPS63282149A (en) Hydraulic composition
KR102580103B1 (en) Preparation method of brick using non-baking formation with specific admixture with enhanced binding force between cement and soil
JP7195962B2 (en) Construction method of tunnel lining concrete
JP4220781B2 (en) Low density calcium silicate hydrate strength accelerator additive for cementitious products
JPS6389446A (en) Hydraulic composition