JPS63281734A - Device for manufacturing hydrodynamical grooved bearing - Google Patents

Device for manufacturing hydrodynamical grooved bearing

Info

Publication number
JPS63281734A
JPS63281734A JP11922587A JP11922587A JPS63281734A JP S63281734 A JPS63281734 A JP S63281734A JP 11922587 A JP11922587 A JP 11922587A JP 11922587 A JP11922587 A JP 11922587A JP S63281734 A JPS63281734 A JP S63281734A
Authority
JP
Japan
Prior art keywords
guide pin
bearing
guide sleeve
manufacturing
holding hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11922587A
Other languages
Japanese (ja)
Inventor
Katsuhiko Honda
豁彦 本田
Kaoru Fukuzawa
薫 福澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11922587A priority Critical patent/JPS63281734A/en
Publication of JPS63281734A publication Critical patent/JPS63281734A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H7/00Making articles not provided for in the preceding groups, e.g. agricultural tools, dinner forks, knives, spoons
    • B21H7/18Making articles not provided for in the preceding groups, e.g. agricultural tools, dinner forks, knives, spoons grooved pins; Rolling grooves, e.g. oil grooves, in articles
    • B21H7/187Rolling helical or rectilinear grooves

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To manufacture a hydrodynamical grooved bearing simply and at low cost by arranging a hard ball by holding it freely rollingly by a calking means in the holding hole of the outer diameter part of a guide pin arranged at the inner diameter part of a bearing bush. CONSTITUTION:A hard guide pin 10 is concentrically arranged at the inner diameter part of a bearing bush 2. The holding hole 10a of a semi-circular bottom part is arranged at plural places against the circumferential direction at the outer diameter part of this guide pin 10. The hard ball 4 in the diameter equal to or slightly smaller than the bore diameter is respectively inputted to these holding holes 10a. Moreover said ball 4 is held freely rollingly by the calking part 10b of the holding hole 10a. The axial direction feeding in arrow marks V, W directions relatively to said bearing bush 2 and a rotary movement are given to this guide pin 10. A fluidic groove 2a is thus formed at the inner diameter part of the bearing bush 2 to obtain a hydrodynamical grooved bearing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、軸と軸受ブシュを有し、双方の対応する表
面のうち、少なくともいづれか一方に、少なくとも一つ
のパターンの潤滑剤のポンプ送フ作用をする浅い溝が形
成された流体力学的溝付軸受の製造装置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention has a shaft and a bearing bush, and has at least one pattern of lubricant pumping on at least one of the corresponding surfaces of both. The present invention relates to an apparatus for manufacturing a hydrodynamic grooved bearing in which a shallow groove is formed for functioning.

〔従来の技術〕[Conventional technology]

この種の先行技術として特願昭62−57168号があ
る。この従来の溝付軸受の製造装置を第5図に示す。図
において、2は加工される軸受ブシュで、固定治具(図
示は略す)に固定されている。6は軸受ブシュ2と同心
に、支持手段(図示は略す)により回転自在に支持され
た硬質のガイドピンである。このガイドピン6には、硬
質のボール4の半径に等しいか、わずか大きい半径の円
弧面をもつ円孤形環状溝6aが設けられている。軸受ブ
シュ2とガイドピン6との間に、同心に支持手段(図示
は略す)によフ回転自在に支持され九ケージ5が介在さ
れている。このケージ5には軸中心に対し対称に放射方
向に複数のガイド穴5aが配設され、上記ボール4が転
勤自在にはめられている。
Japanese Patent Application No. 62-57168 is a prior art of this type. This conventional grooved bearing manufacturing apparatus is shown in FIG. In the figure, reference numeral 2 denotes a bearing bush to be machined, which is fixed to a fixing jig (not shown). Reference numeral 6 denotes a hard guide pin that is rotatably supported by support means (not shown) concentrically with the bearing bush 2 . This guide pin 6 is provided with an arc-shaped annular groove 6a having an arcuate surface with a radius equal to or slightly larger than the radius of the hard ball 4. A cage 5 is interposed between the bearing bush 2 and the guide pin 6 and is rotatably supported concentrically by support means (not shown). A plurality of guide holes 5a are arranged in the cage 5 in a radial direction symmetrically with respect to the axial center, and the balls 4 are fitted in the cage 5 so as to be freely movable.

上記従来の製造装置において、軸受ブシュ2に対してガ
イドピン6に回転速度Wp f与えケージ5に回転速度
Wkを与え、ともに送り速yvを与え、転動される各ボ
ール4により軸受ブシュ2の内径部に流体#l 2&を
塑性加工で形成する。
In the above-mentioned conventional manufacturing apparatus, the guide pin 6 is given a rotational speed Wp f, the cage 5 is given a rotational speed Wk, and both are given a feed rate yv, and each rolling ball 4 causes the bearing bush 2 to be Fluid #l 2 & is formed on the inner diameter part by plastic working.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の流体力学的溝付軸受の製造装置では
、ボール4をガイドピン6の環状溝7に保持するのにケ
ージ5を要し、機構が一11雑となり、それだけ設備費
が高くなるという問題点がめった。
In the conventional hydrodynamic grooved bearing manufacturing apparatus as described above, the cage 5 is required to hold the ball 4 in the annular groove 7 of the guide pin 6, making the mechanism complicated and the equipment cost correspondingly high. The problem of becoming one was rare.

この発明は、このような問題点を解決するためになされ
たもので、機構を簡単にし、設備費を低減した流体力学
的溝付軸受の製造装置を得ることを目的としている。
The present invention has been made to solve these problems, and aims to provide a hydrodynamic grooved bearing manufacturing apparatus that has a simplified mechanism and reduced equipment costs.

〔問題点を解決するための手段〕[Means for solving problems]

この発明Kかかる流体力学的溝付軸受の製造装置は、ガ
イドピンの外径部又はガイドスリーブの内径部に半円形
底部の保持穴を円周方向く対し複数箇所に配設し、これ
ら保持穴にそれぞれボールを入れ、かしめKより転動自
在に保持し、ケージを省いたものである。
The apparatus for manufacturing a hydrodynamic grooved bearing according to the present invention includes holding holes with semicircular bottoms arranged at a plurality of locations in the circumferential direction on the outer diameter part of the guide pin or the inner diameter part of the guide sleeve, and these holding holes A ball is placed in each, and the ball is held in place by a caulking K so that it can roll freely, and the cage is omitted.

〔作用〕[Effect]

この発明においては、ボールはガイドピン又はガイドス
リーブの半円形底部の保持穴に入れられ、かしめによジ
転動自在に保持されており、ガイドピン又はガイドスリ
ーブを相対的に回転させながら軸方向に送ることにより
、軸受ブシュ又は軸に流体溝がら旋状に形成される。
In this invention, the ball is placed in a holding hole in the semicircular bottom of the guide pin or guide sleeve, and is held by caulking so as to be freely rotatable, and while the guide pin or guide sleeve is relatively rotated, the ball is A fluid groove is formed in the bearing bush or shaft in a spiral shape.

〔実施例〕〔Example〕

第1図はこの発明による流体溝付軸受の製造装置の一実
施例を示す。図において、2は加工される軸受ブシュで
、固定治具(図示は略す)K固定されている。lOは軸
受ブシュ2と同心に、支持手段(図示は略す)により回
転自在に支持された硬質のガイドピンである。このガイ
ドピン10の外径部には半円形底部の保持穴10aが円
周方向に対し等開隔に複数箇所(図では2箇所)に配設
されてあり、硬質のボール4が入れられ、それぞれかし
め罠よp転勤自在に保持されている。ユobはかしめ部
である。
FIG. 1 shows an embodiment of a fluid grooved bearing manufacturing apparatus according to the present invention. In the figure, reference numeral 2 denotes a bearing bush to be machined, which is fixed to a fixing jig (not shown) K. IO is a hard guide pin that is rotatably supported by support means (not shown) concentrically with the bearing bush 2. On the outer diameter of the guide pin 10, holding holes 10a with semicircular bottoms are arranged at multiple locations (two locations in the figure) at equal intervals in the circumferential direction, and hard balls 4 are inserted into the holding holes 10a. Each of them is held in a crimped trap so that they can be transferred freely. Yu ob is the caulking part.

上記半円形底部の保持穴10aは、ボール4の直径に等
しいかわずか大きい穴径にしである。
The retaining hole 10a at the semicircular bottom has a diameter equal to or slightly larger than the diameter of the ball 4.

ボール番を保持したガイドピンloi、JdZ図に示す
。保持穴10aにはめられたボール4は、かしめ部10
bにより転動自在に、円周方向及び半径方向に保持され
ている。
The guide pin loi holding the ball number is shown in the JdZ diagram. The ball 4 fitted in the holding hole 10a is attached to the caulking part 10
b, and is held rotatably in the circumferential direction and radial direction.

上記のように構成された製造装置において、軸受ブシュ
2に対してガイドピン1を′gA!Il]手段(図示は
略す)により回転速度Wで回転させながら、軸方向に送
り速度Vで送ることにより、転勤する各ボール4により
軸受ブシュ2の内径部に流体溝2aがら旋状に塑性加工
で形成される。
In the manufacturing apparatus configured as described above, the guide pin 1 is moved to 'gA!' with respect to the bearing bush 2. Il] By rotating at a rotational speed W by a means (not shown) and feeding in the axial direction at a feed rate V, fluid grooves 2a are plastically worked into a spiral shape in the inner diameter part of the bearing bushing 2 by the transferring balls 4. is formed.

83図はこの発明の他の実施例を示す。1は加工場れる
軸で、固定治具(図示は略す)により固定されている。
Figure 83 shows another embodiment of the invention. Reference numeral 1 denotes a shaft used in the processing field, which is fixed by a fixing jig (not shown).

12は軸1に同心に支持手段(図示は略す)により回転
自在に支持された硬質のガイドスリーブである。このガ
イドスリーブ12には半円形底部の保持穴12aが円周
方向に対し等間隔に複数箇所(図では2箇所)に配設さ
れてあり、硬質のボール4が入れられ、それぞれかしめ
によυ転動自在に保持されているo12bはかしめ部で
ある0 上記保持穴12aは、ボール4の直径に等しいかわずか
大きい穴径にしである。
Reference numeral 12 denotes a hard guide sleeve that is rotatably supported concentrically with the shaft 1 by support means (not shown). This guide sleeve 12 has semicircular bottom holding holes 12a arranged at multiple locations (two locations in the figure) at equal intervals in the circumferential direction, into which hard balls 4 are inserted, and each is crimped by υ. The holding hole 12b, which is held so as to be able to roll freely, is a caulked portion.The holding hole 12a has a hole diameter that is equal to or slightly larger than the diameter of the ball 4.

ボール番を保持したガイドスリーブ12を、第4図に示
す。保持穴12aにはめられたボール4は、かしめ部1
2bにより転動自在に、円周方向及び半径方向に保持さ
れている。
The guide sleeve 12 holding the ball number is shown in FIG. The ball 4 fitted in the holding hole 12a is attached to the caulking part 1
2b, it is rotatably held in the circumferential direction and the radial direction.

上記装置において、軸1に対してガイドスリーブ12を
駆動手段(図示は略す)により回転速度Wで回転させな
がら、軸方向に送υ速KVで送ることによフ、転動する
各ボール4により軸1の外円周部に流体$ laから旋
状に塑性加工で形成される。
In the above device, by rotating the guide sleeve 12 with respect to the shaft 1 at a rotational speed W by a driving means (not shown) and feeding it in the axial direction at a feed speed KV, each rolling ball 4 is rotated. A helical shape is formed on the outer circumference of the shaft 1 using fluid $la by plastic working.

なお、ガイドビン10又はガイドスリーブ12を一方向
の回転で軸方向に所定距離送った後、逆回転させて送る
ことにより、ら旋方向の異なったヘリングボーン形式の
流体溝が形成される。
Note that by rotating the guide bottle 10 or the guide sleeve 12 a predetermined distance in the axial direction by rotating in one direction and then rotating it in the opposite direction, herringbone-type fluid grooves with different helical directions are formed.

また、ガイドビン10又はガイドスリーブ部2に円周方
向に複数段けられた保持穴の組を軸方向に複数箇所設け
、深さを同一にするか又は変えたものKすることにより
、深さが同一か又は異なった流体溝が複数箇所に同時に
形成される。
In addition, by providing a plurality of sets of retaining holes arranged in multiple stages in the circumferential direction in the guide bin 10 or the guide sleeve part 2 in the axial direction, and making the depths the same or different, the depth can be increased. Fluid grooves with the same or different values are simultaneously formed at a plurality of locations.

さらに、ガイドビン又はガイドスリーブの軸方向に対し
複数箇所設けられた保持式相互のボールの直径を変え念
ものにすることにより、深さの異なった流体溝が複数箇
所同時に形成される。
Furthermore, by changing the diameters of the mutually holding balls provided at multiple locations in the axial direction of the guide bottle or guide sleeve, fluid grooves with different depths can be simultaneously formed at multiple locations.

またさらに、上記実施例では円周方向に対する各保持穴
は同−穴深さにしたが、深さを変えたものにしてもよく
、あるいは、ボール径を変えたものKしてもよく、形成
される各条の流体溝の深さが異なったものになる。
Furthermore, in the above embodiment, each holding hole in the circumferential direction has the same hole depth, but the depth may be changed, or the ball diameter may be changed. The depth of the fluid grooves in each strip is different.

なおまた、上記実施例では、軸受ブシュ2又は軸1を固
定し、ガイドビン10又はガイドスリーブ12を回転さ
せながら送ったが、ガイドビン10又はガイドスリーブ
12を固定し、軸受ブシュ2又は軸1を回転させながら
送るようにしてもよい。
Furthermore, in the above embodiment, the bearing bush 2 or the shaft 1 is fixed and the guide bin 10 or the guide sleeve 12 is fed while being rotated, but the guide bin 10 or the guide sleeve 12 is fixed and the bearing bush 2 or the shaft 1 is It may also be sent while rotating.

さらにまた、上記実施例では、各ボール4はガイドビン
10の保持穴10a又はガイドプシュユ2の保持穴12
aは円周方向に対し等間隔に設けたが、不等間隔であっ
てもよい。この場合は各ボール4によって形成される流
体溝の条間隔は不等になる。
Furthermore, in the above embodiment, each ball 4 is inserted into the holding hole 10a of the guide bottle 10 or the holding hole 10a of the guide pushbutton 2.
Although a is provided at equal intervals in the circumferential direction, it may be provided at unequal intervals. In this case, the intervals between the fluid grooves formed by each ball 4 are unequal.

[発明の効果] 以上のように、この発明によれば、ガイドビンの外径部
又はガイドスリーブの内径部に、半円形底部の保持穴を
円周方向に対し複数箇所に配設し、それぞれボールを入
れ、かしめ手段によフ転動自在に支持したので、従来必
要であったケージを省くことができ、機構が簡単となり
、操作が容易になり、設備費が低減される。
[Effects of the Invention] As described above, according to the present invention, holding holes with semicircular bottoms are provided at a plurality of locations in the circumferential direction in the outer diameter portion of the guide bin or the inner diameter portion of the guide sleeve, and Since the balls are inserted and supported so as to be able to roll freely by the caulking means, the conventionally necessary cage can be omitted, the mechanism is simple, the operation is easy, and the equipment cost is reduced.

【図面の簡単な説明】[Brief explanation of drawings]

g1図はこの発明による流体力学的溝付−受の製造装置
の一実施例を示すtIfT面図、第2図は第1図のガイ
ドビン部の斜視図、第3図はこの発明の他の実施例によ
る流体力学的溝付軸受の製造装置を示す断面図、第4図
は第3図のガイドスリーブ部の一半部の断面斜視図、第
5図は従来の流体溝付軸受の製造装置を示す断面図であ
る。 1・・・軸、ユa・・・流体溝、2・・・軸受ブシュ、
2a・・・流体溝、4・・・ボール、10・・・ガイド
ビン、ユOa・・・半円形底部の保持穴、lob・・・
かしめ部、12・・・ガイドスリーブ、ユ2a・・・半
円形底部の保持穴、12b・・・かしめ部。
Fig. g1 is a tIfT plane view showing an embodiment of the hydrodynamic grooved receiver manufacturing device according to the present invention, Fig. 2 is a perspective view of the guide bin portion of Fig. 1, and Fig. 3 is a diagram showing another embodiment of the hydrodynamic grooved receiver manufacturing apparatus according to the present invention. FIG. 4 is a cross-sectional perspective view of a half of the guide sleeve portion of FIG. 3, and FIG. 5 is a cross-sectional view showing a conventional hydrodynamic grooved bearing manufacturing apparatus according to an embodiment. FIG. 1... Shaft, Yua... Fluid groove, 2... Bearing bush,
2a...Fluid groove, 4...Ball, 10...Guide bottle, Yu Oa...Holding hole at the semicircular bottom, lob...
Caulked portion, 12...Guide sleeve, U2a...Holding hole at semicircular bottom, 12b...Caulked portion.

Claims (6)

【特許請求の範囲】[Claims] (1)軸と軸受ブシュの対応する表面のうち、少なくと
もその一方の表面に、潤滑剤のポンプ送り作用をする少
なくとも一つのパターンの浅い流体溝が形成された流体
力学的溝付軸受の製造装置において、上記軸受ブシュの
内径部に硬質のガイドピンが同心的に配置されるか、又
は上記軸の外径部に硬質のガイドスリーブが同心的に配
置されており、上記ガイドピンの外径部又は上記ガイド
スリーブの内径部には、半円形底部の保持穴が円周方向
に対し複数箇所に配設されていて、これらの保持穴には
穴径に等しいか、わずかに小さい直径の硬質のボールが
それぞれ入れられていて、かしめ手段により転動自在に
保持されてあり、上記ガイドピンを上記軸受ブシュに、
又は上記ガイドスリーブを上記軸に、相対的に回転運動
及び軸方向送りを与える手段を備えたことを特徴とする
流体力学的溝付軸受の製造装置。
(1) A manufacturing device for a hydrodynamic grooved bearing in which at least one pattern of shallow fluid grooves for pumping lubricant is formed on at least one of the corresponding surfaces of the shaft and the bearing bushing. A hard guide pin is arranged concentrically on the inner diameter of the bearing bush, or a hard guide sleeve is arranged concentrically on the outer diameter of the shaft, and the outer diameter of the guide pin is arranged concentrically on the outer diameter of the shaft. Alternatively, in the inner diameter part of the guide sleeve, holding holes with semicircular bottoms are arranged at multiple locations in the circumferential direction, and these holding holes are filled with hard holes with a diameter equal to or slightly smaller than the hole diameter. Balls are inserted into each ball and are held rotatably by caulking means, and the guide pin is attached to the bearing bush.
Alternatively, an apparatus for manufacturing a hydrodynamic grooved bearing, characterized in that the device comprises means for imparting rotational movement and axial direction feed to the guide sleeve relative to the shaft.
(2)ガイドピンと軸受ブシュ、又はガイドスリーブと
軸との間の相対的回転運動の方向を、軸方向の所定送り
後逆転する駆動手段を備え、流体溝をヘリングボーン状
に形成するようにした特許請求の範囲第1項記載の流体
力学的溝付軸受の製造装置。
(2) A driving means is provided to reverse the direction of relative rotational motion between the guide pin and the bearing bush, or the guide sleeve and the shaft after a predetermined feed in the axial direction, so that the fluid groove is formed in a herringbone shape. An apparatus for manufacturing a hydrodynamic grooved bearing according to claim 1.
(3)ガイドピン又はガイドスリーブに保持穴群を軸方
向に対しても複数箇所に設け、相互の溝深さを同一又は
変えてあることを特徴とする特許請求の範囲第1項又は
第2項記載の流体力学的溝付軸受の製造装置。
(3) Claims 1 or 2, characterized in that the guide pin or the guide sleeve is provided with holding hole groups at a plurality of locations in the axial direction, and the mutual groove depths are the same or different. An apparatus for manufacturing a hydrodynamic grooved bearing as described in .
(4)ガイドピン又はガイドスリーブに保持穴群を軸方
向に対しても複数箇所に設け、相互のボールの直径を同
一又は変えてあることを特徴とする特許請求の範囲第1
項又は第2項記載の流体力学的溝付軸受の製造装置。
(4) The guide pin or the guide sleeve is provided with a plurality of holding hole groups in the axial direction, and the diameters of the balls are the same or different.
3. A manufacturing apparatus for a hydrodynamic grooved bearing according to item 1 or 2.
(5)ガイドピン又はガイドスリーブの円周方向に対す
る各保持穴の深さを、相互間で変えたことを特徴とする
特許請求の範囲第1項又は第2項記載の流体力学的溝付
軸受の製造装置。
(5) A hydrodynamic grooved bearing according to claim 1 or 2, characterized in that the depth of each holding hole in the circumferential direction of the guide pin or the guide sleeve is varied. manufacturing equipment.
(6)ガイドピン又はガイドスリーブの円周方向に対す
る各保持穴のボールの直径を、相互間で変えたことを特
徴とする特許請求の範囲第1項又は第2項記載の流体力
学的溝付軸受の製造装置。
(6) Hydrodynamic grooves according to claim 1 or 2, characterized in that the diameters of the balls in each holding hole in the circumferential direction of the guide pin or guide sleeve are changed from one another. Bearing manufacturing equipment.
JP11922587A 1987-05-15 1987-05-15 Device for manufacturing hydrodynamical grooved bearing Pending JPS63281734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11922587A JPS63281734A (en) 1987-05-15 1987-05-15 Device for manufacturing hydrodynamical grooved bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11922587A JPS63281734A (en) 1987-05-15 1987-05-15 Device for manufacturing hydrodynamical grooved bearing

Publications (1)

Publication Number Publication Date
JPS63281734A true JPS63281734A (en) 1988-11-18

Family

ID=14756054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11922587A Pending JPS63281734A (en) 1987-05-15 1987-05-15 Device for manufacturing hydrodynamical grooved bearing

Country Status (1)

Country Link
JP (1) JPS63281734A (en)

Similar Documents

Publication Publication Date Title
KR100449773B1 (en) Guide device for relative movement between ram and column formed of splittable members
US6752696B2 (en) Rolling elements for rolling bearing, method of producing the same, and rolling bearing
US4509871A (en) Play-free anti-friction bearing construction
JPH0788848B2 (en) Method for manufacturing double-row angular contact ball bearing
US3808839A (en) Endless sliding ball spline shaft bearing
JP3222998B2 (en) Ball spline
JP2011127631A (en) Toroidal type continuously variable transmission
JP2008286323A (en) Linear motion mechanism
JPS63281734A (en) Device for manufacturing hydrodynamical grooved bearing
US5207510A (en) Linear ball bearing assembly
JP2801153B2 (en) Rotary friction device
JPS63281731A (en) Device for manufacturing fluid dynamical grooved bearing
EP1101963A1 (en) Rolling member
US3989324A (en) Rolling contact bearings
JPS63281736A (en) Manufacturing device for hydrodynamical grooved bearing
JPS63225723A (en) Manufacturing device for hydrodynamic grooved bearing
JPS63281732A (en) Device for manufacturing fluid dynamical grooved bearing
JPS6053214A (en) Spline bearing and linearly guiding spline bearing
JP2926265B2 (en) Apparatus and method for manufacturing groove bearing
JPS63280921A (en) Device for manufacturing bearing having hydrodynamical groove
JPH09152004A (en) Planetary roller type power transmission
JPH02212651A (en) Speed change gear
US20080311998A1 (en) Constant Velocity Joint and Method of Manufacturing the Same
SU1293378A1 (en) Self-setting roller antifriction bearing
JPH0351491B2 (en)