JPS63281335A - Discharge tube for z pinch - Google Patents

Discharge tube for z pinch

Info

Publication number
JPS63281335A
JPS63281335A JP11460687A JP11460687A JPS63281335A JP S63281335 A JPS63281335 A JP S63281335A JP 11460687 A JP11460687 A JP 11460687A JP 11460687 A JP11460687 A JP 11460687A JP S63281335 A JPS63281335 A JP S63281335A
Authority
JP
Japan
Prior art keywords
discharge
electrodes
edge
periphery
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11460687A
Other languages
Japanese (ja)
Inventor
Yoshio Watanabe
渡辺 良男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11460687A priority Critical patent/JPS63281335A/en
Publication of JPS63281335A publication Critical patent/JPS63281335A/en
Pending legal-status Critical Current

Links

Landscapes

  • Microwave Tubes (AREA)

Abstract

PURPOSE:To generate the uniform discharge breakdown on the periphery of an air column without using the discharge breakdown on the surface of an insulator and prevent the deterioration of the insulator by making the gap at the peripheral section of mating disk-shaped electrodes shorter than that at the center section and providing loophole-shaped grooves on the periphery of the disk electrode. CONSTITUTION:A discharge container is made of coaxial double cylinders, mating disk-shaped electrodes are formed with the bottom section 2 of an outside container 1 and the end section 4 of an inside container 3, and the inside and outside containers are partitioned with an insulator 5. At least one of mating electrodes 2, 4 has an edge 6 on its periphery, and loophole-shaped grooves 7 are provided on at least one edge 6. The edge 6 is provided on the peripheral section of one of the mating disk-shaped electrodes, the electric field at the peripheral section is made larger than that at other portions, thus the electric discharge is started between the electrodes at the peripheral section, the loophole-shaped grooves 7 are provided on the edge of at least one electrode, thus the uniform discharge breakdown can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はZビンチグラズマを用いたX線源に係シ、特に
良好な初期放電破壊を得るのに好適な電極形状に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an X-ray source using a Z Vinci Glazma, and particularly to an electrode shape suitable for obtaining good initial discharge breakdown.

〔従来の技術〕[Conventional technology]

Zピンチの基本的な構造は対向円板電極を有する円柱状
放電容器からなる。この放電管に高速大電流の放電を行
なうと次の現象が発生する。
The basic structure of the Z-pinch consists of a cylindrical discharge vessel with opposing disk electrodes. When this discharge tube is subjected to high-speed, large-current discharge, the following phenomenon occurs.

電圧印加とともに円柱状気柱の周縁で放電破壊が生じ1
円筒状の薄い電流層が形成されるものとする。この電流
層が誘起する円周方向磁場と軸方向電流とで軸方向への
電磁力が発生し1円筒状電流層は軸に向って運動する。
As voltage is applied, discharge breakdown occurs at the periphery of the cylindrical air column.
It is assumed that a cylindrical thin current layer is formed. An electromagnetic force in the axial direction is generated by the circumferential magnetic field and the axial current induced by this current layer, and one cylindrical current layer moves toward the axis.

電流層よシ内側の粒子は電流層にとりこまれプラズマ化
する。プラズマは最終的に軸上にピンチし高密度プラズ
マを形成する。一方プラズマは放電電流によるジュール
加熱ならびに断熱圧縮によ□り加熱され高温になる。
Particles inside the current layer are absorbed into the current layer and turn into plasma. The plasma eventually pinches on the axis to form a high-density plasma. On the other hand, plasma is heated by Joule heating due to discharge current and adiabatic compression, and becomes high temperature.

この高温高密度プラズマからX線が発生する。X-rays are generated from this high-temperature, high-density plasma.

Zピンチ用放電管での問題点は円筒状の均周な初期電流
層をいかに形成するかである。従来の装置はジャーナル
・オプ・フイズイカル・ソサイアテイ・オプ・ジャパン
、52巻、10号、 (1983年)、第3425頁(
Journal of the phisicalSo
ciety of Japan、 Vol、 52.4
10. (1983)。
The problem with Z-pinch discharge tubes is how to form a cylindrical initial current layer with a uniform circumference. The conventional device is described in Journal of Physical Society of Japan, Vol. 52, No. 10, (1983), p. 3425 (
Journal of the physical So
Society of Japan, Vol, 52.4
10. (1983).

PP、3425)に示されているように、電極根元部の
円筒状絶縁物表面の沿面放電を用いていた。
PP, 3425), a creeping discharge on the surface of a cylindrical insulator at the base of the electrode was used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来技術は初期の円筒状放電破壊を円筒状絶縁物の沿面
放電を用いておシ、大電流放電になるため絶縁物の劣化
が無視できない。本発明の目的は絶縁物沿面の放電破壊
を用いずに気柱の周縁で均周な放電破壊を生じさせるこ
とにある。
The conventional technique uses creeping discharge of a cylindrical insulator for initial cylindrical discharge breakdown, and since the discharge results in a large current, deterioration of the insulator cannot be ignored. An object of the present invention is to cause uniform discharge breakdown at the periphery of an air column without using discharge breakdown along the surface of an insulator.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は対向円板状電極の周縁部の間隙を中央部よシ
短くして周縁部で放電破壊を容易にすると同時に、均周
な放電破壊を得るために、円板電極の周縁に銃眼状の溝
を切ることにより達成される。
The purpose of the above is to shorten the gap between the peripheral edges of the opposing disc-shaped electrodes compared to the center to facilitate discharge breakdown at the peripheral edges, and at the same time to create crenelated edges on the disc electrodes in order to achieve uniform discharge breakdown. This is achieved by cutting a groove in the

〔作用〕[Effect]

対向する円板状電極で、その周縁部に縁を設は周縁部で
の電界が他の部分よシ大になるようにする。これにより
周縁部の電極間で放電が開始するようにし、少なくもど
ちらか一方の電極縁に銃眼状の溝を切ることで、均周な
放電破壊を得ることができる。
The opposing disk-shaped electrodes are provided with edges on their peripheries so that the electric field at the periphery is larger than at other parts. This allows discharge to start between the electrodes at the peripheral edge, and by cutting crenel-like grooves in at least one of the electrode edges, it is possible to obtain uniform discharge destruction.

〔実施例〕〔Example〕

以下2本発明の実施例を第1図により説明する。 Two embodiments of the present invention will be described below with reference to FIG.

放電容器は同軸二重円筒からなっておシ、外側容器lの
底部2と内側容器3の端部4で対向する円板状電極を構
成している。内外容器間は絶縁物5により仕切られてい
る。対向電極2.4の少なくとも一方はその周縁に縁6
を持つ。さらに少なくとも一方の縁6には銃眼状の溝7
が切っである。
The discharge vessel is composed of a coaxial double cylinder, and the bottom 2 of the outer vessel 1 and the end 4 of the inner vessel 3 form opposing disc-shaped electrodes. An insulator 5 partitions the inner and outer containers. At least one of the counter electrodes 2.4 has an edge 6 on its periphery.
have. Furthermore, at least one edge 6 has crenelated grooves 7.
is cut.

放電容器内には低圧の気体が封入しである。容器はスイ
ッチ8を介して電源用コンデンサ9につながれている。
A low pressure gas is sealed inside the discharge vessel. The container is connected to a power supply capacitor 9 via a switch 8.

動作を以下に説明する。スイッチ8を投入するとコンデ
ンサ9の充電電圧が内外容器間に加わる。
The operation will be explained below. When the switch 8 is turned on, the charging voltage of the capacitor 9 is applied between the inner and outer containers.

従来の方式では絶縁物5の表面での沿面放電を利用して
いた。本発明では対向電極間の周縁部に縁6を設けてい
る。
In the conventional method, creeping discharge on the surface of the insulator 5 was used. In the present invention, an edge 6 is provided at the peripheral edge between the opposing electrodes.

第1図の放電容器構造で電圧を加えた場合の等電位線を
計算した結果を第2図に示す。対向電極2.4の周縁の
縁6間の距離を適当に狭くすればこの間の電界を他の部
分よp犬にすることができ選択的に縁6間で放電破壊を
生じさせることができる。縁上で必ず放電破壊を生じさ
せるために電極2,4の周縁は必ず角部で構成する。
FIG. 2 shows the results of calculating equipotential lines when a voltage is applied to the discharge vessel structure shown in FIG. 1. If the distance between the edges 6 of the periphery of the counter electrode 2.4 is appropriately narrowed, the electric field therebetween can be made smaller than in other parts, and discharge breakdown can be caused selectively between the edges 6. In order to ensure that discharge breakdown occurs on the edges, the edges of the electrodes 2 and 4 are always configured with corners.

ところで周縁の縁が円周に沿って平坦であると放電破壊
は必ずしも均周に生じない。すなわち完全に軸刈称に放
電管が製作されていれば均周な放電破壊は生じえるが、
実際問題としてわずかな不均一さが存在するため局所的
に放電破壊が年じてしまう。
However, if the peripheral edge is flat along the circumference, discharge breakdown will not necessarily occur uniformly around the circumference. In other words, if the discharge tube is manufactured completely in the shape of a shaft, uniform discharge destruction can occur, but
As a practical matter, the presence of slight non-uniformity causes local discharge breakdown to occur over time.

この問題を解決するためには対向電極の縁6の少なくと
も一方(通常は内側電極4側の縁上)に銃眼状の溝7を
設ければよい。第3図は溝7を設けた場合の縁6間の等
電位線を計算したものである。溝を設けることで等電位
線が溝内にももぐシこむことによp角部での電界が増す
。この結果。
In order to solve this problem, crenel-shaped grooves 7 may be provided on at least one of the edges 6 of the counter electrode (usually on the edge on the inner electrode 4 side). FIG. 3 shows the calculated equipotential lines between the edges 6 when the grooves 7 are provided. By providing the groove, the equipotential line also squeezes into the groove, thereby increasing the electric field at the p-corner. As a result.

放を管の加工製作積度で決まる不拘−妊よりも銃眼構造
による不均一さが上まわり、放電破壊は銃眼部の角部で
選択的に生ずるようになる。
The non-uniformity caused by the embrasure structure outweighs the non-constraint of discharge determined by the degree of machining and manufacturing of the pipe, and discharge breakdown occurs selectively at the corners of the embrasure.

今仮に周縁部の1カ所で放電破壊が発生し電極間電圧が
低下しだしても、銃眼部角部での電界が大きいため他の
角部でもほとんど時間遅れなく放電破壊が生じ、全周で
放電破壊が生ずる。生じた破壊放電部は銃眼数に応じた
竹ひと状になるが。
Even if discharge breakdown occurs at one location on the periphery and the interelectrode voltage begins to drop, the electric field at the corner of the crenelation is large, so discharge breakdown will occur at other corners with almost no delay, and the entire circumference will suffer. Discharge breakdown occurs. The resulting destructive discharge area becomes bamboo-shaped depending on the number of crenels.

プラズマが拡散するため、電流が進行する間に均周な放
′屯に進展する。銃眼構造の溝のピッチは電流の拡がり
を考えて約10mとすることが望ましく、溝の深さは溝
の幅の約8割以上とすればよい。
As the plasma diffuses, it develops into a uniform radiation radius while the current progresses. The pitch of the grooves in the crenelation structure is preferably approximately 10 m in consideration of the spread of the current, and the depth of the grooves may be approximately 80% or more of the width of the grooves.

〔発明の効果〕〔Effect of the invention〕

本発明によれば絶縁体表面上の放電破壊を用いないため
絶縁物の劣化を避けることができる効果がある。
According to the present invention, since discharge breakdown on the surface of the insulator is not used, deterioration of the insulator can be avoided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の放電容器の縦断面図、第2
図は内外電極間の等電位分布図、第3図は電極周縁に銃
眼構造を設けた場合の電極間の等電位分布図である。 1・・・外側放電容器、2・・・外側放電容器底部の円
板状1!極、3・・・内側放電容器、4・・・内側放電
容器端面の円板状電極、5・・・絶縁体、6・・・対向
円板状電極周縁の縁、7・・・銃眼構造の溝、8・・・
スイッチ。 9・・・電源用コンデンサ。
FIG. 1 is a longitudinal cross-sectional view of a discharge vessel according to an embodiment of the present invention, and FIG.
The figure is an equipotential distribution diagram between the inner and outer electrodes, and FIG. 3 is an equipotential distribution diagram between the electrodes when a crenelation structure is provided at the electrode periphery. 1... Outer discharge vessel, 2... Disk shape at the bottom of the outer discharge vessel 1! Pole, 3... Inner discharge vessel, 4... Disc-shaped electrode on the end face of the inner discharge vessel, 5... Insulator, 6... Edge of the periphery of the opposing disc-shaped electrode, 7... Crenellation structure Groove, 8...
switch. 9...Power supply capacitor.

Claims (1)

【特許請求の範囲】[Claims] 1、対向する円板状電極からなり、初期放電破壊を円板
電極の周縁で生じさせることを目的としたZピンチ用放
電管において、対向円板電極の少なくも一方の電極の周
縁に縁を設け、前記縁の少なくとも一方に銃眼状溝を設
けたことを特徴とするZピンチ用放電管。
1. In a Z-pinch discharge tube that consists of opposing disc-shaped electrodes and is intended to cause initial discharge breakdown at the periphery of the disc electrode, an edge is provided at the periphery of at least one of the opposing disc electrodes. A discharge tube for a Z-pinch, characterized in that a crenellated groove is provided on at least one of the edges.
JP11460687A 1987-05-13 1987-05-13 Discharge tube for z pinch Pending JPS63281335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11460687A JPS63281335A (en) 1987-05-13 1987-05-13 Discharge tube for z pinch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11460687A JPS63281335A (en) 1987-05-13 1987-05-13 Discharge tube for z pinch

Publications (1)

Publication Number Publication Date
JPS63281335A true JPS63281335A (en) 1988-11-17

Family

ID=14642065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11460687A Pending JPS63281335A (en) 1987-05-13 1987-05-13 Discharge tube for z pinch

Country Status (1)

Country Link
JP (1) JPS63281335A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028976A (en) * 1986-10-17 1991-07-02 Canon Kabushiki Kaisha Complementary MOS integrated circuit device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028976A (en) * 1986-10-17 1991-07-02 Canon Kabushiki Kaisha Complementary MOS integrated circuit device

Similar Documents

Publication Publication Date Title
US2376439A (en) Insulating structure
JPS63281335A (en) Discharge tube for z pinch
US2565161A (en) High-frequency dielectric heating
CN109831866B (en) Double-ring electrode coplanar discharge plasma generating device
JPS5927499A (en) Method of producing simple and highly efficient sheet plasma
JPS61121405A (en) Magnetizing method of permanent magnet
CN207531152U (en) A kind of double rings electrode coplanar discharge plasma producing apparatus
US3849531A (en) Method of making a cored laser tube
US3305748A (en) Grid electrode for an electron discharge device
JPH01296596A (en) Plasma x-ray generating device
JP2576590B2 (en) Ozone reactor
US2524000A (en) Vacuum condenser
JPS61151003A (en) Ozone generating tube and production thereof
CN218974607U (en) Laminated ionization chamber
US4896073A (en) Discharge tubes
JP2647866B2 (en) Electron tube sealing structure
JP2519293B2 (en) High-frequency acceleration cavity for accelerator
JPH0241584B2 (en)
JPH048885B2 (en)
GB1559755A (en) Electronic discharge devices
JPH08146141A (en) Ionization chamber type radiation detector
JPS6032321A (en) Capacity coupling device
JPS61107700A (en) High frequency multipole linear accelerator
JPS58204444A (en) Ion source device
JPH07183140A (en) Static induction electrical apparatus