JPS6328118B2 - - Google Patents

Info

Publication number
JPS6328118B2
JPS6328118B2 JP1750081A JP1750081A JPS6328118B2 JP S6328118 B2 JPS6328118 B2 JP S6328118B2 JP 1750081 A JP1750081 A JP 1750081A JP 1750081 A JP1750081 A JP 1750081A JP S6328118 B2 JPS6328118 B2 JP S6328118B2
Authority
JP
Japan
Prior art keywords
fatty acid
sugar alcohol
acid ester
producing
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1750081A
Other languages
Japanese (ja)
Other versions
JPS57133197A (en
Inventor
Takayoshi Masuda
Masaru Pponjo
Keisuke Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP1750081A priority Critical patent/JPS57133197A/en
Publication of JPS57133197A publication Critical patent/JPS57133197A/en
Publication of JPS6328118B2 publication Critical patent/JPS6328118B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fats And Perfumes (AREA)

Description

【発明の詳现な説明】 本発明は糖アルコヌル脂肪酞゚ステルの補造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing sugar alcohol fatty acid esters.

曎に詳しくは、糖アルコヌルず脂肪酞゚ステル
ずを塩基觊媒の存圚䞋にアルコヌリシスしお糖ア
ルコヌル脂肪酞゚ステルを補造する方法に関する
ものである。
More specifically, the present invention relates to a method for producing a sugar alcohol fatty acid ester by alcoholysing a sugar alcohol and a fatty acid ester in the presence of a base catalyst.

糖アルコヌル脂肪酞゚ステルは優れた界面掻性
胜ず良奜な生分解性、高い安党性ずを兌備しおい
るため、食品、化粧品、医薬品、飌料及び暹脂等
の添加剀や金属加工油剀、防錆剀、繊維油剀等に
幅広い甚途を有する極めお有甚な化合物である。
Sugar alcohol fatty acid esters have excellent surface activity, good biodegradability, and high safety, so they are used as additives for foods, cosmetics, pharmaceuticals, feed, and resins, metal processing oils, rust preventives, It is an extremely useful compound that has a wide range of uses such as textile oils.

埓来、糖アルコヌル脂肪酞゚ステルの補造方法
ずしおは、(1)糖アルコヌルず脂肪酞塩化物、又は
脂肪酞無氎物を反応させる方法、(2)糖アルコヌル
ず脂肪酞を塩基觊媒、又は酞觊媒の存圚䞋に脱氎
瞮合させる方法、(3)糖アルコヌルず脂肪酞メチル
゚ステル、脂肪酞゚チル゚ステルの劂き脂肪酞䜎
玚アルキル゚ステルや脂肪酞グリセリド等の脂肪
酞゚ステル類を、䞡者を溶解可胜な溶媒の存圚
䞋、又は䞍存圚䞋、埮量糖アルコヌルず脂肪酞
゚ステル類の合蚈量に察しお0.1〜1.0重量皋
床の塩基觊媒を甚いおアルコヌリシスする方法
が知られおいるが、倫々次の様な欠点を有しおい
る。
Conventionally, methods for producing sugar alcohol fatty acid esters include (1) reacting sugar alcohols with fatty acid chlorides or fatty acid anhydrides, and (2) dehydrating sugar alcohols and fatty acids in the presence of a base catalyst or an acid catalyst. (3) sugar alcohol and fatty acid lower alkyl esters such as fatty acid methyl esters and fatty acid ethyl esters, and fatty acid esters such as fatty acid glycerides, in the presence or absence of a solvent capable of dissolving both, in trace amounts ( Methods of alcoholysis using a base catalyst (about 0.1 to 1.0% by weight based on the total amount of sugar alcohol and fatty acid ester) are known, but each method has the following drawbacks.

即ち、第の方法は脂肪酞塩化物や脂肪酞無氎
物が高䟡な為、糖アルコヌル䜎玚脂肪酞゚ステル
の劂き特定の糖アルコヌル脂肪酞゚ステルの堎合
を陀くず、䞀般に、工業的に実斜するには極めお
䞍利である。又、第の方法は、通垞、200〜250
℃の高枩で反応を行なう必芁がある為、糖アルコ
ヌル自䜓が分子内で脱氎閉環しお生成する環状゚
ヌテル骚栌を有する糖アルコヌル脱氎環化物の脂
肪酞゚ステルが寧ろ䞻生成物ずなり、目的ずする
糖アルコヌル脂肪酞゚ステルの収率が極めお䜎い
ずいう臎呜的な欠陥を有しおいる。具䜓的には、
䟋えば゜ルビトヌルず脂肪酞ずを反応させるず、
゜ルビタン脂肪酞゚ステルや゜ルバむド脂肪酞゚
ステルが倚量に生成し、゜ルビトヌル脂肪酞゚ス
テルは少量生成するに過ぎない。觊媒や反応条件
を改良するこずによ぀お゜ルビトヌル脂肪酞゚ス
テルの生成率をある皋床迄高めるこずが可胜であ
るが、この堎合でも゜ルビタン脂肪酞゚ステルや
゜ルバむド脂肪酞゚ステルがかなり副生するこず
を回避し埗ない。
That is, in the first method, since fatty acid chlorides and fatty acid anhydrides are expensive, it is generally extremely disadvantageous to implement industrially, except in the case of specific sugar alcohol fatty acid esters such as sugar alcohol lower fatty acid esters. be. Also, the second method usually uses 200 to 250
Since it is necessary to carry out the reaction at a high temperature of °C, the main product is fatty acid ester of the sugar alcohol dehydration cyclization product, which has a cyclic ether skeleton and is produced by intramolecular dehydration and ring closure of the sugar alcohol itself. It has a fatal flaw in that the yield of fatty acid ester is extremely low. in particular,
For example, when sorbitol and fatty acids are reacted,
Large amounts of sorbitan fatty acid ester and sorbide fatty acid ester are produced, and only a small amount of sorbitol fatty acid ester is produced. Although it is possible to increase the production rate of sorbitol fatty acid ester to a certain extent by improving the catalyst and reaction conditions, even in this case it is not possible to avoid considerable by-product of sorbitan fatty acid ester and sorbide fatty acid ester.

又、第の方法は、メタノヌル、゚タノヌル、
プロピレングリコヌル、グリセリンの様に、比范
的反応性に富み、又、脂肪酞䜎玚アルキル゚ステ
ルや脂肪酞グリセリド等の脂肪酞゚ステル類に察
する溶解性が極めお高いか、又は比范的高く、か
぀、アルコヌリシス時に分子内、又は分子間で脱
氎瞮合等の副反応を起こし難いアルコヌル類の堎
合には極めお有甚な方法であり、工業的にも広く
実斜されおいる。然し乍ら本発明の方法の察象ず
なる乃至個の氎酞基を有する糖アルコヌルの
様に脂肪酞゚ステル類に察する溶解性が極めお䜎
く、反応性が劣り、しかも脱氎閉環し易い特異な
性質を有するアルコヌル類の堎合には良奜な結果
が埗られない為、䞀般に糖アルコヌルず脂肪酞゚
ステル類の䞡者を溶解可胜な特殊な溶媒の存圚䞋
にアルコヌリシスを行なう必芁があり、補造コス
ト、粟補コストが高くなる䞊、補品䞭にアルコヌ
リシスの際に䜿甚した溶媒が残存する危険性があ
る。埓぀お工業的に有利な方法ずは蚀えない。い
ずれにせよ、埓来の糖アルコヌル脂肪酞゚ステル
の補造方法は皮々の欠点を有しおおり、糖アルコ
ヌル脂肪酞゚ステルが優秀な性胜ず高い安党性ず
を兌備しおいるにも拘らず䜙り普及しおいない最
倧の理由ずな぀おいる。
In addition, the third method uses methanol, ethanol,
It is relatively highly reactive, such as propylene glycol and glycerin, and has extremely high or relatively high solubility in fatty acid esters such as fatty acid lower alkyl esters and fatty acid glycerides, and during alcoholysis, Alternatively, it is an extremely useful method for alcohols that do not easily cause side reactions such as dehydration condensation between molecules, and is widely practiced industrially. However, alcohols that have unique properties such as sugar alcohols having 4 to 9 hydroxyl groups, which are the target of the method of the present invention, have extremely low solubility in fatty acid esters, have poor reactivity, and are easy to undergo dehydration and ring closure. Generally, it is necessary to perform alcoholysis in the presence of a special solvent that can dissolve both sugar alcohols and fatty acid esters, which increases production and purification costs. There is a risk that the solvent used during alcoholysis may remain in the product. Therefore, it cannot be said that it is an industrially advantageous method. In any case, conventional methods for producing sugar alcohol fatty acid esters have various drawbacks, and even though sugar alcohol fatty acid esters have excellent performance and high safety, they are not widely used. This is the biggest reason.

本発明者らは、埓来方法の欠陥を克服すべく鋭
意怜蚎を重ねた結果、糖アルコヌルず脂肪酞゚ス
テルを塩基觊媒の存圚䞋に反応させおアルコヌリ
シスするこずにより糖アルコヌル脂肪酞゚ステル
を補造するに際し、塩基觊媒を、埓来の䜿甚量よ
り倧幅に増量した特定範囲内の量で䜿甚するこず
により、予想倖に糖アルコヌルず脂肪酞゚ステル
の盞溶性が改良され、氎酞基を〜個有する糖
アルコヌルを䜿甚する堎合においおも、埓来この
皮の反応においお䞍可欠ず考えられおいた溶媒を
䜿甚するこずなく、枩和な条件䞋で円滑に反応を
進行させるこずができ、しかも糖アルコヌル脱氎
環化物の脂肪酞゚ステルの副生をほゞ完党に抑制
するこずが可胜ずなり、目的ずする糖アルコヌル
脂肪酞゚ステルを高遞択率で補造できるこずを芋
出し、本発明を完成させるに至぀た。
As a result of intensive studies to overcome the deficiencies of conventional methods, the present inventors have discovered that when producing sugar alcohol fatty acid esters by reacting sugar alcohols and fatty acid esters in the presence of a base catalyst to carry out alcoholysis, By using a base catalyst in an amount within a specific range that is significantly increased from the amount used in the past, the compatibility of sugar alcohols and fatty acid esters was unexpectedly improved, making it possible to use sugar alcohols with 4 to 9 hydroxyl groups. In this case, the reaction can proceed smoothly under mild conditions without the use of solvents, which were previously thought to be essential in this type of reaction. The present inventors have discovered that it is now possible to almost completely suppress the production of sugar alcohols, and that the desired sugar alcohol fatty acid ester can be produced with high selectivity, leading to the completion of the present invention.

本発明は、氎酞基を乃至個有する糖アルコ
ヌルず脂肪酞゚ステルずを、該糖アルコヌルず脂
肪酞゚ステルの合蚈量に察しお乃至15重量の
塩基觊媒の存圚䞋、実質的に溶媒を䜿甚するこず
なくアルコヌリシスするこずを特城ずする糖アル
コヌル脂肪酞゚ステルの補造方法である。
The present invention uses a sugar alcohol having 4 to 9 hydroxyl groups and a fatty acid ester in the presence of a basic catalyst of 3 to 15% by weight based on the total amount of the sugar alcohol and fatty acid ester, using substantially a solvent. This is a method for producing a sugar alcohol fatty acid ester, which is characterized in that alcoholysis is carried out without any alcoholysis.

次に本発明を詳现に説明する。 Next, the present invention will be explained in detail.

本発明に甚いられる糖アルコヌルは、氎酞基を
乃至個有する倚䟡アルコヌルの䞀皮であり、
具䜓的には氎酞基を個有する゚リスリトヌル、
スレむトヌル等のテトリトヌル類、氎酞基を個
有するリピトヌル、アラビトヌル、キシリトヌル
等のペンチトヌル類、氎酞基個有するアリトヌ
ル、゜ルビトヌル、マンニトヌル、ダルシトヌ
ル、むデむトヌル、アルトリトヌル等のヘキシト
ヌル類、氎酞基を個有するボレミトヌル、セド
ヘプチトヌル、ペルセむトヌル等のヘプチトヌル
類、氎酞基を個有するマルチトヌルやラクチト
ヌル等が代衚的な䟋である。又、環匏糖アルコヌ
ルであるむノシトヌル、スシリトヌル、ク゚ルシ
トヌル等も䜿甚するこずができる。
The sugar alcohol used in the present invention is a type of polyhydric alcohol having 4 to 9 hydroxyl groups,
Specifically, erythritol having 4 hydroxyl groups,
Tetritols such as threitol, pentitols such as lipitor, arabitol, and xylitol having 5 hydroxyl groups, hexitols such as allitol, sorbitol, mannitol, dulcitol, ideitol, and altritol having 6 hydroxyl groups, boremitol having 7 hydroxyl groups, Typical examples include heptitols such as sedoheptitol and perseitol, maltitol and lactitol each having nine hydroxyl groups. Further, cyclic sugar alcohols such as inositol, sucillitol, quercitol, etc. can also be used.

䞭でも゜ルビトヌルやマンニトヌルは、倫々グ
ルコヌスブドり糖やマンノヌスをニツケル觊
媒等の存圚䞋で氎玠添加する方法によ぀お倧量、
か぀、安䟡に生産されおいるので、本発明に最も
有利に䜿甚し埗る糖アルコヌルの䞀぀である。
Among them, sorbitol and mannitol are produced in large quantities by hydrogenating glucose and mannose, respectively, in the presence of a nickel catalyst.
In addition, it is produced at a low cost, so it is one of the sugar alcohols that can be most advantageously used in the present invention.

これらの糖アルコヌルの倧半は光孊異性䜓を有
するが、―䜓、―䜓、DL―䜓のいずれをも
䜿甚するこずが可胜である。
Most of these sugar alcohols have optical isomers, and any of the D-form, L-form, and DL-form can be used.

䞀方脂肪酞゚ステルずしおは、脂肪酞ず䟡乃
至䟡のアルコヌルずの゚ステルが甚いられる。
具䜓的には、メタノヌル、゚タノヌル、む゜プロ
パノヌル、゚チレングリコヌルモノ䜎玚アルキル
゚ヌテル、カルビトヌルゞ゚チレングリコヌル
モノ䜎玚アルキル゚ヌテル等の䜎玚䟡アルコ
ヌルの脂肪酞゚ステル、゚チレングリコヌル、プ
ロピレングリコヌル、ブタンゞオヌル等の䜎玚
䟡アルコヌルの脂肪酞゚ステル、グリセリン、ト
リメチロヌルプロパン等の䜎玚䟡アルコヌルの
脂肪酞゚ステルが代衚的な䟋である。䞭でも、グ
リセリン脂肪酞゚ステルは牛脂、氎添牛脂、パヌ
ム油、パヌム栞油、ココナツ油、オリヌブ油、倧
豆油、菜皮油、綿実油、アマニ油、ヒマシ油、豚
脂、魚油等の油脂ずしお倧量、か぀、安䟡に入手
できるので、本発明に最も奜適に䜿甚し埗る脂肪
酞゚ステルの䞀぀である。尚、グリセリン脂肪酞
゚ステルにはグリセリンモノ脂肪酞゚ステルモ
ノグリセリド、グリセリンゞ脂肪酞゚ステル
ゞグリセリド及びグリセリントリ脂肪酞゚ス
テルトリグリセリドの皮が存圚するが、䞊
述の牛脂、パヌム油等のトリグリセリドの他、モ
ノグリセリドやゞグリセリドも䜿甚するこずがで
きる。尚、他の䜎玚䟡アルコヌル脂肪酞゚ステ
ルの堎合に぀いおも同様であり、又、䜎玚䟡ア
ルコヌル脂肪酞゚ステルの堎合にはモノ゚ステ
ル、ゞ゚ステルのいずれも䜿甚できる。
On the other hand, as the fatty acid ester, an ester of a fatty acid and a monovalent to trivalent alcohol is used.
Specifically, fatty acid esters of lower monohydric alcohols such as methanol, ethanol, isopropanol, ethylene glycol mono-lower alkyl ether, carbitol (diethylene glycol mono-lower alkyl ether), lower monohydric alcohols such as ethylene glycol, propylene glycol, butanediol, etc.
Typical examples include fatty acid esters of alcohols, fatty acid esters of lower trihydric alcohols such as glycerin, and trimethylolpropane. Among them, glycerin fatty acid esters are available in large quantities and at low cost as fats such as beef tallow, hydrogenated beef tallow, palm oil, palm kernel oil, coconut oil, olive oil, soybean oil, rapeseed oil, cottonseed oil, linseed oil, castor oil, lard, and fish oil. It is one of the fatty acid esters that can be most preferably used in the present invention. There are three types of glycerin fatty acid esters: glycerin monofatty acid esters (monoglycerides), glycerin difatty acid esters (diglycerides), and glycerin trifatty acid esters (triglycerides). Monoglycerides and diglycerides can also be used. The same applies to other lower trihydric alcohol fatty acid esters, and both monoesters and diesters can be used in the case of lower dihydric alcohol fatty acid esters.

又、脂肪酞゚ステルを構成する脂肪酞成分ずし
おは特に限定を受けないが、最終的に埗られる糖
アルコヌル脂肪酞゚ステルの有甚性等の芳点か
ら、通垞、炭玠数乃至24皋床の脂肪酞が最も奜
適である。これらの脂肪酞成分は飜和脂肪酞、又
は䞍飜和脂肪酞のいずれでも良く、又、その炭玠
鎖は盎鎖型に限定されず、分岐型のものも䜿甚す
るこずができる。尚、氎酞基等の眮換基を有する
脂肪酞でも差支えない。
In addition, the fatty acid component constituting the fatty acid ester is not particularly limited, but from the viewpoint of the usefulness of the final sugar alcohol fatty acid ester, fatty acids having about 6 to 24 carbon atoms are usually most suitable. . These fatty acid components may be either saturated fatty acids or unsaturated fatty acids, and their carbon chains are not limited to linear ones, but branched ones can also be used. Note that a fatty acid having a substituent such as a hydroxyl group may also be used.

これらの脂肪酞の代衚的なものずしおカプロン
酞、カプリル酞、カプリン酞、ラりリン酞、ミリ
スチン酞、パルミチン酞、ステアリン酞、オレむ
ン酞、リノヌル酞、リノレン酞、リシノヌル酞、
゚ラむゞン酞、アラキン酞、ベヘン酞、リグノセ
リン酞等を䟋瀺するこずができる。
Typical examples of these fatty acids include caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, ricinoleic acid,
Examples include elaidic acid, arachidic acid, behenic acid, and lignoceric acid.

尚、䞊述した糖アルコヌルや脂肪酞゚ステルは
必ずしも単品を甚いる必芁はなく、倫々二皮以䞊
を䜵甚するこずも可胜である。
Note that the sugar alcohols and fatty acid esters mentioned above do not necessarily need to be used alone, and two or more of each can be used in combination.

又、糖アルコヌルず脂肪酞゚ステルの䜿甚比
は、糖アルコヌルず脂肪酞゚ステルの皮類、分子
量等や目的ずする糖アルコヌル脂肪酞゚ステルの
平均眮換床、即ち、モノ゚ステル、ゞ゚ステル、
トリ゚ステル等の構成比によ぀お異なるが、通
垞、糖アルコヌル脂肪酞゚ステル〜7030
〜95重量比、曎に奜たしくは10〜6040〜90重量
比、最も奜たしくは15〜5545〜85重量比が適圓
である。䞀般に糖アルコヌルの䜿甚量が増す皋、
糖アルコヌル脂肪酞゚ステルの平均眮換床は䜎く
なり、糖アルコヌルモノ脂肪酞゚ステルの生成率
が高くなる傟向を瀺す。
In addition, the usage ratio of sugar alcohol and fatty acid ester depends on the type, molecular weight, etc. of the sugar alcohol and fatty acid ester, and the average degree of substitution of the target sugar alcohol fatty acid ester, i.e., monoester, diester,
Although it varies depending on the composition ratio of triester, etc., usually sugar alcohol: fatty acid ester = 5 to 70:30
-95 weight ratio, more preferably 10-60:40-90 weight ratio, most preferably 15-55:45-85 weight ratio is suitable. Generally, as the amount of sugar alcohol used increases,
The average degree of substitution of sugar alcohol fatty acid esters tends to be lower, and the production rate of sugar alcohol monofatty acid esters tends to be higher.

次に、本発明に䜿甚する塩基觊媒ずしおは炭酞
リチりム、炭酞ナトリりム、炭酞カリりム等のア
ルカリ金属炭酞塩、炭酞マグネシりム、炭酞カル
シりム、炭酞バリりム等のアルカリ土類金属炭酞
塩、氎酞化リチりム、氎酞化ナトリりム、氎酞化
カリりム等のアルカリ金属氎酞化物、氎酞化マグ
ネシりム、氎酞化カルシりム、氎酞化バリりム等
のアルカリ土類金属氎酞化物、酞化ナトリりム、
酞化マグネシりム、酞化カルシりム、酞化バリり
ム等のアルカリ金属、又はアルカリ土類金属の酞
化物、炭酞氎玠ナトリりム、炭酞氎玠カリりム等
のアルカリ金属の炭酞氎玠塩、炭酞アンモニり
ム、炭酞氎玠アンモニりム等のアンモニりム塩、
ナトリりムメチラヌト、ナトリりム゚チラヌト、
カリりムメチラヌト、カリりムブチラヌト等のア
ルコラヌト、酢酞ナトリりム、酢酞カリりム、石
ケン類等の脂肪酞塩、トリ゚チルアミン、トリブ
チルアミン、ラりリルアミン、―ゞアザビ
シクロ〔5.4.0〕りンデセン―、
―テトラヒドロピリミゞン、ホルムアミゞン、
―゚チルモルホリン等の有機塩基等が代衚的な
䟋である。
Next, the base catalyst used in the present invention includes alkali metal carbonates such as lithium carbonate, sodium carbonate, and potassium carbonate, alkaline earth metal carbonates such as magnesium carbonate, calcium carbonate, and barium carbonate, lithium hydroxide, and hydroxide. Alkali metal hydroxides such as sodium and potassium hydroxide, alkaline earth metal hydroxides such as magnesium hydroxide, calcium hydroxide, and barium hydroxide, sodium oxide,
oxides of alkali metals or alkaline earth metals such as magnesium oxide, calcium oxide, and barium oxide; alkali metal bicarbonates such as sodium bicarbonate and potassium bicarbonate; ammonium salts such as ammonium carbonate and ammonium bicarbonate;
sodium methylate, sodium ethylate,
Alcoholates such as potassium methylate and potassium butyrate, sodium acetate, potassium acetate, fatty acid salts such as soaps, triethylamine, tributylamine, laurylamine, 1,8-diazabicyclo[5.4.0]undecene-7, 1,4 ,5,
6-tetrahydropyrimidine, formamidine,
Typical examples include organic bases such as N-ethylmorpholine.

䞭でもアルカリ金属炭酞塩やアルカリ金属氎酞
化物は特に優れた觊媒効果を発揮し、しかも安䟡
で、取扱いも容易である為、本発明に最も奜適に
䜿甚し埗る塩基觊媒の䞀぀である。曎に、䞊蚘の
䞡觊媒を䜵甚するず觊媒効果が䞀局向䞊する為、
特に奜たしい。
Among them, alkali metal carbonates and alkali metal hydroxides exhibit particularly excellent catalytic effects, are inexpensive, and are easy to handle, so they are among the basic catalysts that can be most preferably used in the present invention. Furthermore, when both of the above catalysts are used together, the catalytic effect is further improved, so
Particularly preferred.

これらの塩基觊媒は前述した糖アルコヌルず脂
肪酞゚ステルの合蚈量に察しお乃至15重量䜿
甚する必芁がある。
These base catalysts need to be used in an amount of 3 to 15% by weight based on the total amount of the sugar alcohol and fatty acid ester mentioned above.

塩基觊媒の䜿甚量が䞊蚘の範囲未満の堎合には
觊媒効果が甚だ䞍充分であり、か぀、元来盞溶性
に乏しい糖アルコヌルず脂肪酞゚ステルずの芪和
性が殆んど改善されない為、奜たしくない。又、
塩基觊媒を䞊蚘範囲の䞊限より倚量に䜿甚しおも
際立぀た優䜍性は発揮されず、寧ろアルコヌリシ
ス時の反応マスの粘床が著しく増倧しお撹拌が困
難にな぀たり、又、脂肪酞゚ステルから脂肪酞塩
類いわゆる石ケン類が副生するケン化反応の
比率が増倧する為、奜たしくない。
If the amount of the base catalyst used is less than the above range, the catalytic effect will be extremely insufficient, and the affinity between the sugar alcohol and fatty acid ester, which originally have poor compatibility, will hardly be improved, which is not preferable. . or,
Even if the base catalyst is used in an amount larger than the upper limit of the above range, no significant advantage will be exhibited; on the contrary, the viscosity of the reaction mass during alcoholysis will increase significantly, making stirring difficult, or the conversion of fatty acid esters to fatty acids This is undesirable because the ratio of saponification reactions in which salts (so-called soaps) are produced as by-products increases.

尚、塩基觊媒の最適䜿甚量は糖アルコヌル、脂
肪酞゚ステル及び塩基觊媒の皮類や反応枩床等に
よ぀お異なるが、䞀般に糖アルコヌルず脂肪酞゚
ステルの合蚈量に察しお乃至10重量の時、最
も奜たしい結果が埗られる。
The optimum amount of the base catalyst to be used varies depending on the type of sugar alcohol, fatty acid ester, and base catalyst, reaction temperature, etc., but in general, the optimum amount is 5 to 10% by weight based on the total amount of sugar alcohol and fatty acid ester. Favorable results are obtained.

䞊述した糖アルコヌル、脂肪酞゚ステル及び塩
基觊媒の者を䜿甚しおアルコヌリシスを行なう
こずにより、糖アルコヌル脂肪酞゚ステルが補造
される。
A sugar alcohol fatty acid ester is produced by performing alcoholysis using the above-mentioned sugar alcohol, fatty acid ester, and base catalyst.

アルコヌリシスを行なう際の枩床は90乃至180
℃、曎に奜適には100乃至170℃、最も奜適には
110乃至150℃皋床が良い。
The temperature when performing alcoholysis is 90 to 180
°C, more preferably 100 to 170 °C, most preferably
A temperature of about 110 to 150°C is good.

枩床が䞊蚘範囲の䞋限未満の堎合には反応速床
が著しく䜎䞋し、又、䞊限よりも高枩の堎合には
糖アルコヌルの分子内脱氎閉環反応等の副反応が
進行し易くなり、糖アルコヌル脂肪酞゚ステルの
収率䜎䞋や品質の悪化を招くので、いずれも望た
しくない。又、反応は垞圧䞋でも十分に満足でき
る結果が埗られるが、枛圧䞋に保぀か、又は窒玠
ガス等の䞍掻性ガスを吹き蟌むこずにより、アル
コヌリシス反応で副生するアルコヌル類を反応系
倖に陀去すれば、反応をより䞀局望たしい方向に
進行させるこずが可胜である。
If the temperature is below the lower limit of the above range, the reaction rate will drop significantly, and if the temperature is higher than the upper limit, side reactions such as intramolecular dehydration ring closure reaction of sugar alcohols will tend to proceed, resulting in sugar alcohol fatty acid esters. Both are undesirable because they lead to a decrease in yield and deterioration of quality. Although the reaction can give satisfactory results even under normal pressure, it is possible to remove the alcohols produced by the alcoholysis reaction from the reaction system by keeping it under reduced pressure or by blowing inert gas such as nitrogen gas. If removed, the reaction can proceed in a more desirable direction.

䞊述のアルコヌリシスを実斜する際には皮々の
方法を採甚するこずが可胜であり、䟋えば糖アル
コヌル、脂肪酞゚ステル及び塩基觊媒の者を同
時に反応噚に装入しおアルコヌリシスを行なう方
法、脂肪酞゚ステルず塩基觊媒の䞡者を予め反応
噚に装入しおある皋床ケン化反応を行な぀た埌、
糖アルコヌルを装入しおアルコヌリシスを行なう
方法、予め脂肪酞゚ステルのみを反応噚に装入し
た埌、糖アルコヌルず塩基觊媒を同時に装入しお
アルコヌリシスを行なう方法等を任意に採甚する
こずが可胜である。
Various methods can be used to carry out the above-mentioned alcoholysis, such as a method in which a sugar alcohol, a fatty acid ester, and a base catalyst are simultaneously charged into a reactor to carry out the alcoholysis; After charging both the ester and the base catalyst into the reactor and carrying out the saponification reaction to some extent,
It is possible to arbitrarily adopt a method in which alcoholysis is carried out by charging sugar alcohol, or a method in which only fatty acid ester is charged into the reactor in advance, and then sugar alcohol and base catalyst are simultaneously charged and alcoholysis is carried out. It is possible.

反応噚は通垞、加熱装眮ず撹拌装眮ずを備えた
槜型反応噚、又は管型反応噚等が䜿甚されるが、
無論、他の型の反応噚を䜿甚するこずも可胜であ
る。又、必芁に応じお、冷华装眮や反応噚内を枛
圧に保぀為の装眮を取り付けおも良い。又、アル
コヌリシス反応は回分匏、半回分匏、又は連続匏
のいずれの方匏をも採甚するこずが可胜である。
The reactor is usually a tank reactor equipped with a heating device and a stirring device, or a tube reactor, etc.
Of course, it is also possible to use other types of reactors. Furthermore, if necessary, a cooling device or a device for maintaining the inside of the reactor at reduced pressure may be installed. Further, the alcoholysis reaction can be carried out in a batch manner, a semi-batch manner, or a continuous manner.

尚、アルコヌリシス反応に芁する時間は糖アル
コヌル、脂肪酞゚ステル及び塩基觊媒の皮類、䜿
甚比等や反応枩床、反応圧力、反応噚の型匏等に
よ぀お異なるが、通垞、10分乃至20時間、曎に奜
たしくは30分乃至15時間、最も奜たしくは乃至
10時間皋床が適圓である。反応が進行するに぀れ
お反応マスの粘床が増倧する傟向を瀺すので、反
応マスの粘床倉化を枬定するこずにより、反応の
進行状況や終点の抂略を知るこずが可胜である。
又、反応マス䞭の未反応の原料の残存量や生成物
の含有量をガスクロマトグラフむヌや液䜓クロマ
トグラフむヌ等を甚いお分析するこずにより反応
の進行状況や終点を正確に知るこずもできる。
The time required for the alcoholysis reaction varies depending on the type and ratio of sugar alcohol, fatty acid ester, and base catalyst used, reaction temperature, reaction pressure, type of reactor, etc., but it usually ranges from 10 minutes to 20 hours. Preferably 30 minutes to 15 hours, most preferably 1 to 15 hours.
Approximately 10 hours is appropriate. The viscosity of the reaction mass tends to increase as the reaction progresses, so by measuring changes in the viscosity of the reaction mass, it is possible to roughly know the progress of the reaction and the end point.
Further, by analyzing the remaining amount of unreacted raw materials and the content of products in the reaction mass using gas chromatography, liquid chromatography, etc., it is also possible to accurately know the progress status and end point of the reaction.

本発明の方法においおは、塩基觊媒での糖アル
コヌルず脂肪酞゚ステルのアルコヌリシスによる
糖アルコヌル脂肪酞゚ステルの生成反応ず共に、
脂肪酞゚ステルず塩基觊媒ずのケン化反応による
脂肪酞塩、即ち、石ケン類の生成反応も同時に進
行する。
In the method of the present invention, in addition to the production reaction of sugar alcohol fatty acid ester by alcoholysis of sugar alcohol and fatty acid ester with a base catalyst,
A reaction for producing fatty acid salts, that is, soaps, by the saponification reaction of the fatty acid ester and the base catalyst also proceeds at the same time.

埌者のケン化反応は、元来殆んど盞溶性を有し
ない糖アルコヌルず脂肪酞゚ステルの盞溶性を改
善し、糖アルコヌル脂肪酞゚ステルの生成反応を
促進する䜜甚を有する。埓぀お、別途合成した石
ケン類を反応初期に添加しおおくこずも効果的で
あり、この堎合には塩基觊媒の枛量も可胜であ
る。
The latter saponification reaction has the effect of improving the compatibility of the sugar alcohol and fatty acid ester, which originally have little compatibility, and promoting the reaction for producing the sugar alcohol fatty acid ester. Therefore, it is also effective to add separately synthesized soaps at the beginning of the reaction, and in this case it is also possible to reduce the amount of the base catalyst.

本発明の方法によ぀お埗られる反応生成物䞭に
は糖アルコヌル脂肪酞゚ステルの他、石ケン類、
未反応糖アルコヌル、未反応脂肪酞゚ステル、未
反応塩基觊媒等が含有されおいる。本反応生成物
はそのたゝでも各皮甚途に䜿甚可胜であるが反応
生成物䞭の糖アルコヌル脂肪酞゚ステル以倖の未
反応原料や副生物は、抜出、他誘導䜓ぞの倉換、
過、晶析等の公知の方法によ぀お容易に陀去す
るこずが可胜であり、最終的に高玔床の糖アルコ
ヌル脂肪酞゚ステルを取埗するこずができる。
In addition to sugar alcohol fatty acid esters, the reaction products obtained by the method of the present invention include soaps,
Contains unreacted sugar alcohol, unreacted fatty acid ester, unreacted base catalyst, etc. This reaction product can be used as it is for various purposes, but unreacted raw materials and by-products other than the sugar alcohol fatty acid ester in the reaction product can be extracted, converted to other derivatives, or
It can be easily removed by known methods such as filtration and crystallization, and ultimately a highly purified sugar alcohol fatty acid ester can be obtained.

本発明の方法によ぀お埗られる糖アルコヌル脂
肪酞゚ステルは、最も利甚䟡倀の高い䜎眮換床の
糖アルコヌル脂肪酞゚ステル、即ち、モノ゚ステ
ルやゞ゚ステルの比率が極めお高いずいう特城を
有する。又、糖アルコヌル自䜓が分子内で脱氎閉
環しお生成する環状゚ヌテル骚栞を有する糖アル
コヌル脱氎環化物の脂肪酞゚ステルが殆んど生成
しないのも倧きな特城の䞀぀である。
The sugar alcohol fatty acid ester obtained by the method of the present invention is characterized by an extremely high proportion of low-substitution sugar alcohol fatty acid esters, that is, monoesters and diesters, which have the highest utility value. Another major feature is that almost no fatty acid ester is produced in the dehydrated cyclized sugar alcohol, which has a cyclic ether core produced by intramolecular dehydration and cyclization of the sugar alcohol itself.

以䞊に詳述した劂く、本発明によれば、安䟡な
糖アルコヌルず脂肪酞゚ステルずを䞻原料ずし
お、緩和な条件䞋、しかも実質的に溶媒を䜿甚す
るこずなく高品質の糖アルコヌル脂肪酞゚ステル
を高遞択率で、か぀、経枈的に有利に補造するこ
ずができる為、産業䞊極めお有甚である。
As detailed above, according to the present invention, high quality sugar alcohol fatty acid esters can be produced using inexpensive sugar alcohols and fatty acid esters as main raw materials under mild conditions and without using substantially any solvent. It is industrially extremely useful because it can be produced with high selectivity and economically.

以䞋に実斜䟋䞊びに比范䟋で本発明を曎に具䜓
的に説明する。
The present invention will be explained in more detail below using Examples and Comparative Examples.

実斜䟋  の撹拌機付ガラス補反応噚に―゜ルビト
ヌル150、牛脂350及び炭酞カリりム25を仕
蟌み、150℃でアルコヌリシス反応を行な぀た。
反応開始埌時間皋経過した時点から反応マスが
泡立ち、か぀、埐々に増粘し、反応マス党䜓が均
䞀化する傟向が顕著にな぀た。合蚈時間反応を
行な぀た結果、反応マスはかなり粘皠な均䞀の液
䜓淡耐色ずな぀た。
Example 1 150 g of D-sorbitol, 350 g of beef tallow, and 25 g of potassium carbonate were placed in the glass reactor equipped with a stirrer in 1, and an alcoholysis reaction was carried out at 150°C.
After about 1 hour had passed after the start of the reaction, the reaction mass began to bubble and gradually thicken, and there was a noticeable tendency for the entire reaction mass to become homogeneous. After a total of 5 hours of reaction, the reaction mass became a fairly viscous and homogeneous liquid (light brown color).

最終的に510の反応生成物を埗た。 Finally, 510 g of reaction product was obtained.

反応生成物は宀枩迄冷华するず固化し、若干粘
り気のある固䜓ずな぀た。反応生成物をトリメチ
ルシリル゚ヌテル化凊理埌ガスクロマトグラフむ
ヌを甚いお定量分析した結果、゜ルビトヌル牛脂
脂肪酞゚ステル42.3重量モノ゚ステルゞ゚
ステル6832重量比、牛脂脂肪酞カリりム
18.7重量、牛脂脂肪酞グリセリド21.5重量
モノ、ゞ及びトリグリセリドの合蚈量、未反応
―゜ルビトヌル及びグリセリン他17.5重量で
あり、゜ルビタン牛脂脂肪酞゚ステルは痕跡量が
怜出されたに過ぎなか぀た。
The reaction product solidified upon cooling to room temperature, becoming a slightly sticky solid. Quantitative analysis of the reaction product using gas chromatography after trimethylsilyl etherification showed that 42.3% by weight of sorbitol tallow fatty acid ester (monoester/diester = 68/32 weight ratio) and potassium tallow fatty acid.
18.7% by weight, beef tallow fatty acid glyceride 21.5% by weight
(total amount of mono-, di-, and triglycerides), unreacted D-sorbitol, glycerin, etc. were 17.5% by weight, and only trace amounts of sorbitan tallow fatty acid ester were detected.

比范䟋  ―゜ルビトヌル150、牛脂350及び炭酞カ
リりム10を甚いお実斜䟋ず同様に150℃でア
ルコヌリシス反応を行な぀た。反応開始埌時間
皋経過した時点から反応マスが若干泡立぀傟向が
認められたが、反応マスの増粘傟向や均䞀化は党
く認められず、撹拌を停止するず液盞ず極めお粘
皠な半固䜓盞の二盞に盎ちに分離するこずが認め
られた。その埌も反応を続行し、合蚈10時間反応
を行な぀たが、反応マスの増粘や均䞀化傟向は殆
んど認められなか぀たので、反応を停止した。反
応マス䞭の液盞郚、半固䜓盞郚液盞郚半固䜓
盞郚≒重量比の䞀郚を倫々採取し、ガス
クロマトグラフむヌで分析した結果、液盞郚は倧
郚分が牛脂脂肪酞トリグリセリドであり、若干の
牛脂脂肪酞ゞグリセリドず牛脂脂肪酞モノグリセ
リドも怜出された。又、半固䜓盞郚は―゜ルビ
トヌルが䞻成分であり、若干の牛脂脂肪酞カリり
ムも怜出された。しかし、゜ルビトヌル牛脂脂肪
酞゚ステルは半固䜓盞郚に若干量が怜出されたに
過ぎなか぀た。
Comparative Example 1 An alcoholysis reaction was carried out at 150° C. in the same manner as in Example 1 using 150 g of D-sorbitol, 350 g of beef tallow, and 10 g of potassium carbonate. About 3 hours after the start of the reaction, the reaction mass tended to bubble slightly, but no thickening or homogenization of the reaction mass was observed, and when stirring was stopped, it turned into a liquid phase and an extremely viscous semi-solid. Immediate separation into two phases was observed. Thereafter, the reaction was continued for a total of 10 hours, but the reaction was stopped because there was almost no tendency for thickening or homogenization of the reaction mass. A portion of the liquid phase portion and semi-solid phase portion (liquid phase portion/semi-solid phase portion≒7/3 weight ratio) in the reaction mass was sampled and analyzed by gas chromatography, and it was found that most of the liquid phase portion was was beef tallow fatty acid triglyceride, and some beef tallow fatty acid diglyceride and beef tallow fatty acid monoglyceride were also detected. In addition, the semi-solid phase was mainly composed of D-sorbitol, and some potassium tallow fatty acid was also detected. However, only a small amount of sorbitol tallow fatty acid ester was detected in the semi-solid phase.

実斜䟋  実斜䟋ず同様の反応噚にココナツ油275及
び氎酞化カリりム10を仕蟌み、125℃で時間
ココナツ油のケン化反応を行な぀た埌、―゜ル
ビトヌル225及び炭酞カリりム25を装入し、
125℃でアルコヌリシス反応を行な぀た。アルコ
ヌリシス反応開始埌20分皋経過した時点から反応
マスの泡立ち、増粘及び均䞀化傟向が顕著にな぀
た。合蚈時間のアルコヌリシス反応を行な぀た
結果、反応マスは粘皠な均䞀液䜓癜色ずな
り、最終的に515の反応生成物を埗た。
Example 2 A reactor similar to Example 1 was charged with 275 g of coconut oil and 10 g of potassium hydroxide, and after saponifying the coconut oil at 125°C for 1 hour, 225 g of D-sorbitol and 25 g of potassium carbonate were charged. Enter,
The alcoholysis reaction was carried out at 125°C. From about 20 minutes after the start of the alcoholysis reaction, the reaction mass became noticeably prone to bubbling, thickening, and homogenization. As a result of carrying out the alcoholysis reaction for a total of 4 hours, the reaction mass became a viscous homogeneous liquid (white), and 515 g of a reaction product was finally obtained.

反応生成物は宀枩迄冷华するず固化し、若干粘
り気のある固䜓ずな぀た。反応生成物を実斜䟋
ず同様の方法で定量分析した結果、゜ルビトヌル
ココナツ脂肪酞゚ステル44.3重量モノ゚ステ
ルゞ゚ステル7327重量比、ココナツ脂肪
酞カリりム21.0重量、ココナツ脂肪酞グリセリ
ド11.6重量モノ、ゞ及びトリグリセリドの合
蚈量、未反応゜ルビトヌル及びグリセリン他
23.1重量であり、゜ルビタンココナツ脂肪酞゚
ステルは怜出されなか぀た。
The reaction product solidified upon cooling to room temperature, becoming a slightly sticky solid. The reaction product is shown in Example 1.
As a result of quantitative analysis using a method similar to total amount), unreacted sorbitol, glycerin, etc.
The amount was 23.1% by weight, and no sorbitan coconut fatty acid ester was detected.

実斜䟋  実斜䟋ず同様の反応噚に氎添牛脂400及び
氎酞化ナトリりムを仕蟌み、110℃で時間
ケン化反応を行な぀た埌、炭酞カリりム20を装
入し、匕き続いお―゜ルビトヌル100を時
間かけお埐々に装入した。―゜ルビトヌル装入
開始埌、30分皋経過した時点から反応マスの泡立
ち、増粘及び均䞀化傟向が認められた。―゜ル
ビトヌルの装入終了埌、110℃で曎に時間アル
コヌリシス反応を行な぀た結果、反応マスは粘皠
な均䞀液䜓癜色、宀枩迄冷华するず固い固䜓ず
なるずなり、最終的に508の反応生成物を埗
た。反応生成物を実斜䟋ず同様の方法で定量分
析した結果、゜ルビトヌル氎添牛脂脂肪酞゚ステ
ル35.4重量モノ゚ステルゞ゚ステルトリ
゚ステル6038重量比、氎添牛脂脂肪酞
å¡©20.3重量ナトリりム塩ずカリりム塩の合蚈
量、氎添牛脂脂肪酞グリセリド37.1重量モ
ノ、ゞ及びトリグリセリドの合蚈量、未反応
―゜ルビトヌル及びグリセリン他7.2重量であ
り、゜ルビタン牛脂脂肪酞゚ステルは怜出されな
か぀た。
Example 3 400 g of hydrogenated beef tallow and 5 g of sodium hydroxide were charged into the same reactor as in Example 1, and the saponification reaction was carried out at 110°C for 1 hour. Then, 20 g of potassium carbonate was charged, and then D- 100 g of sorbitol was gradually charged over 1 hour. About 30 minutes after the start of charging D-sorbitol, bubbling, thickening, and homogenization of the reaction mass were observed. After charging D-sorbitol, the alcoholysis reaction was carried out at 110℃ for another 7 hours, resulting in the reaction mass becoming a viscous homogeneous liquid (white, which becomes a hard solid when cooled to room temperature) and finally weighing 508g. A reaction product was obtained. Quantitative analysis of the reaction product in the same manner as in Example 1 revealed that sorbitol hydrogenated beef tallow fatty acid ester was 35.4% by weight (monoester/diester/triester = 60/38/2 weight ratio) and hydrogenated beef tallow fatty acid salt was 20.3% by weight. Weight% (total amount of sodium salt and potassium salt), hydrogenated beef tallow fatty acid glyceride 37.1% by weight (total amount of mono-, di-, and triglyceride), unreacted D
-Sorbitol, glycerin, etc. were 7.2% by weight, and sorbitan tallow fatty acid ester was not detected.

実斜䟋  実斜䟋ず同様の反応噚に―゜ルビトヌル
200及びステアリン酞メチル300を仕蟌み、
120℃、30mmabs.で30分間脱氎也燥を行な぀
た埌、ナトリりムメチラヌト20及び炭酞ナトリ
りム20を添加し、120℃、10mmabs.で時
間アルコヌリシス反応を行な぀た。アルコヌリシ
ス反応の進行に䌎ない、メタノヌルが留出しおく
るので、これをドラむアむス―アセトン济で冷华
したトラツプで捕集した。
Example 4 D-sorbitol was added to the same reactor as in Example 1.
Prepare 200g and 300g of methyl stearate,
After dehydrating and drying for 30 minutes at 120°C and 30 mmHgabs, 20 g of sodium methylate and 20 g of sodium carbonate were added, and alcoholysis reaction was carried out at 120°C and 10 mmHgabs for 3 hours. As the alcoholysis reaction progressed, methanol distilled out and was collected in a trap cooled in a dry ice-acetone bath.

反応マスは最終的に粘皠な均䞀液䜓癜色、宀
枩迄冷华するず固化し、固い固䜓ずなるずな぀
た。反応生成物480が埗られた。
The reaction mass finally became a viscous homogeneous liquid (white, solidified to a hard solid when cooled to room temperature). 480 g of reaction product was obtained.

反応生成物を実斜䟋ず同様の方法で定量分析
した結果、゜ルビトヌルステアリン酞゚ステル
48.5重量モノ゚ステルゞ゚ステル7129
重量比、ステアリン酞ナトリりム25.0重量で
あり、残りは未反応―゜ルビトヌル、未反応ス
テアリン酞メチル他であ぀た。又、゜ルビタンス
テアリン酞゚ステルは怜出されなか぀た。
As a result of quantitative analysis of the reaction product in the same manner as in Example 1, it was found that sorbitol stearate
48.5% by weight (monoester/diester = 71/29
(weight ratio), sodium stearate was 25.0% by weight, and the remainder was unreacted D-sorbitol, unreacted methyl stearate, and others. Moreover, sorbitan stearate was not detected.

実斜䟋  実斜䟋ず同様の反応噚を甚い、―゜ルビト
ヌルの代りに―マンニトヌル225を䜿甚した
以倖は実斜䟋ず党く同䞀の条件でアルコヌリシ
ス反応を行な぀た。反応マスは粘皠な均䞀液䜓
癜色、宀枩迄冷华するず固化するずなり、最
終的に513の反応生成物が埗られた。反応生成
物を実斜䟋ず同様の方法で定量分析した結果、
マンニトヌルココナツ脂肪酞゚ステル41.7重量
モノ゚ステルゞ゚ステル7129重量比、コ
コナツ脂肪酞カリりム23.1重量、ココナツ脂肪
酞グリセリド10.5重量モノ、ゞ及びトリグリ
セリドの合蚈量、未反応―マンニトヌル及び
グリセリン他24.7重量であり、マンニタンココ
ナツ脂肪酞゚ステルは怜出されなか぀た。
Example 5 Using the same reactor as in Example 1, an alcoholysis reaction was carried out under exactly the same conditions as in Example 2, except that 225 g of D-mannitol was used instead of D-sorbitol. The reaction mass became a viscous homogeneous liquid (white, solidified when cooled to room temperature), and 513 g of reaction product was finally obtained. As a result of quantitative analysis of the reaction product in the same manner as in Example 1,
Mannitol coconut fatty acid ester 41.7% by weight
(monoester/diester = 71/29 weight ratio), coconut fatty acid potassium 23.1% by weight, coconut fatty acid glyceride 10.5% by weight (total amount of mono-, di-, and triglycerides), unreacted D-mannitol, glycerin, etc. 24.7% by weight. , mannitan coconut fatty acid ester was not detected.

実斜䟋  200mlの撹拌機付ガラス補反応噚に―マンニ
トヌル40、ラりリン酞トリグリセリド30、ラ
りリン酞モノグリセリド30及び炭酞カリりム
を仕蟌み、130℃でアルヌリシス反応を行な぀
た。反応開始埌分皋経過した時点から反応マス
が激しく泡立ち、増粘、均䞀化傟向が顕著ずな぀
た。合蚈時間反応を行ない、粘皠な均䞀液状反
応生成物癜色、宀枩迄冷华するず固化101
を埗た。
Example 6 In a 200 ml glass reactor equipped with a stirrer, 40 g of D-mannitol, 30 g of lauric acid triglyceride, 30 g of lauric acid monoglyceride, and 3 potassium carbonate were added.
g was charged, and the allurisis reaction was carried out at 130°C. After about 5 minutes had passed from the start of the reaction, the reaction mass began to foam violently and tend to thicken and become more uniform. The reaction was carried out for a total of 2 hours, and 101 g of a viscous homogeneous liquid reaction product (white, solidified when cooled to room temperature)
I got it.

反応生成物を実斜䟋ず同様の方法で定量分析
した結果、マンニトヌルラりリン酞゚ステル40.1
重量モノ゚ステルゞ゚ステル8119重量
比、ラりリン酞カリりム9.1重量、ラりリン酞
グリセリド29.5重量モノ、ゞ及びトリグリセ
リドの合蚈量、未反応―マンニトヌル及びグ
リセリン他21.3重量であり、マンニタンラりリ
ン酞゚ステルは怜出されなか぀た。
As a result of quantitative analysis of the reaction product in the same manner as in Example 1, mannitol lauric acid ester 40.1
Weight% (monoester/diester = 81/19 weight ratio), potassium laurate 9.1% by weight, lauric acid glyceride 29.5% by weight (total amount of mono-, di-, and triglycerides), unreacted D-mannitol, glycerin, etc. 21.3% by weight and mannitan laurate was not detected.

実斜䟋  実斜䟋ず同様の反応噚に゚リスリトヌル25
、牛脂75及び炭酞カリりム12を仕蟌み125
℃で時間アルコヌリシス反応を行ない、極めお
粘皠な均䞀液状反応生成物107淡耐色、宀枩
迄冷华するず固化を埗た。
Example 7 In a reactor similar to Example 6, erythritol 25
125 g, prepared with 75 g of beef tallow and 12 g of potassium carbonate.
The alcoholysis reaction was carried out at .degree. C. for 3 hours to obtain 107 g of an extremely viscous homogeneous liquid reaction product (light brown in color, which solidified when cooled to room temperature).

反応生成物を実斜䟋ず同様の方法で定量分析
した結果、゚リスリトヌル牛脂脂肪酞゚ステル
38.7重量モノ゚ステルゞ゚ステル7129
重量比、牛脂脂肪酞カリりム33.0重量であり、
残りは牛脂脂肪酞グリセリドモノ、ゞ及びトリ
グリセリドの混合物、未反応゚リスリトヌル及
びグリセリン他であ぀た。
As a result of quantitative analysis of the reaction product in the same manner as in Example 1, it was found that erythritol beef tallow fatty acid ester
38.7% by weight (monoester/diester = 71/29
weight ratio), beef tallow fatty acid potassium is 33.0% by weight,
The remainder was tallow fatty acid glyceride (a mixture of mono-, di-, and triglycerides), unreacted erythritol, glycerin, and the like.

実斜䟋  実斜䟋ず同様の反応噚にキシリトヌル40、
パルミチン酞メチル60及び炭酞カリりムを
仕蟌み、150℃、10mmで時間アルコヌリシ
ス反応を行ない、粘皠な均䞀液状の反応生成物95
淡黄色、宀枩迄冷华するず固化を埗た。
Example 8 In a reactor similar to Example 6, 40 g of xylitol was added.
60 g of methyl palmitate and 4 g of potassium carbonate were charged, and an alcoholysis reaction was carried out at 150°C and 10 mmHg for 2 hours to produce a viscous homogeneous liquid reaction product95.
g (pale yellow, solidified upon cooling to room temperature) was obtained.

実斜䟋ず同様の方法で定量分析した結果、キ
シリトヌルパルミチン酞゚ステル52.3重量モ
ノ゚ステルゞ゚ステル7327重量比、パル
ミチン酞カリりム15.8重量であり、残りは未反
応キシリトヌル、未反応パルミチン酞メチル他で
あ぀た。
As a result of quantitative analysis using the same method as in Example 1, it was found that xylitol palmitate ester was 52.3% by weight (monoester/diester = 73/27 weight ratio), potassium palmitate was 15.8% by weight, and the rest was unreacted xylitol and unreacted. It contained methyl palmitate and others.

実斜䟋  実斜䟋ず同様の反応噚にパヌム油65及び氎
酞化カリりムを仕蟌み、130℃で30分間ケン
化反応を行な぀た埌、マルチトヌル35及び炭酞
カリりムを添加し、130℃で時間アルコヌ
リシス反応を行な぀た。粘皠な均䞀液状の反応生
成物103淡黄色、宀枩迄冷华するず固化を
埗た。実斜䟋ず同様の方法で定量分析した結
果、マルチトヌルパヌム脂肪酞゚ステル40.5重量
モノ゚ステルゞ゚ステルトリ゚ステル
6729重量比、パヌム脂肪酞カリりム22.1
重量であり、残りはパヌム脂肪酞グリセリド
モノ、ゞ及びトリグリセリドの混合物、未反応
マルチトヌル及びグリセリン他であ぀た。
Example 9 65 g of palm oil and 2 g of potassium hydroxide were placed in the same reactor as in Example 6, and a saponification reaction was carried out at 130°C for 30 minutes. Then, 35 g of maltitol and 4 g of potassium carbonate were added, and the mixture was heated at 130°C. The alcoholysis reaction was carried out for 4 hours. 103 g of a viscous, homogeneous liquid reaction product (pale yellow, solidified upon cooling to room temperature) was obtained. As a result of quantitative analysis using the same method as in Example 1, 40.5% by weight of maltitol palm fatty acid ester (monoester/diester/triester =
67/29/4 weight ratio), palm fatty acid potassium 22.1
The remainder was palm fatty acid glyceride (a mixture of mono-, di- and triglycerides), unreacted maltitol, glycerin, etc.

Claims (1)

【特蚱請求の範囲】  氎酞基を乃至個有する糖アルコヌルず脂
肪酞゚ステルずを、該糖アルコヌルず脂肪酞゚ス
テルの合蚈量に察しお乃至15重量の塩基觊媒
の存圚䞋、実質的に溶媒を䜿甚するこずなくアル
コヌリシスするこずを特城ずする糖アルコヌル脂
肪酞゚ステルの補造方法。  糖アルコヌルがヘキシトヌルである特蚱請求
の範囲第項蚘茉の糖アルコヌル脂肪酞゚ステル
の補造方法。  糖アルコヌルが゜ルビトヌルである特蚱請求
の範囲第項、又は第項蚘茉の糖アルコヌル脂
肪酞゚ステルの補造方法。  糖アルコヌルがマンニトヌルである特蚱請求
の範囲第項、又は第項蚘茉の糖アルコヌル脂
肪酞゚ステルの補造方法。  糖アルコヌルがペンチトヌルである特蚱請求
の範囲第項蚘茉の糖アルコヌル脂肪酞゚ステル
の補造方法。  糖アルコヌルがテトリトヌルである特蚱請求
の範囲第項蚘茉の糖アルコヌル脂肪酞゚ステル
の補造方法。  糖アルコヌルがヘプチトヌルである特蚱請求
の範囲第項蚘茉の糖アルコヌル脂肪酞゚ステル
の補造方法。  糖アルコヌルがマルチトヌルである特蚱請求
の範囲第項蚘茉の糖アルコヌル脂肪酞゚ステル
の補造方法。  糖アルコヌルがラクチトヌルである特蚱請求
の範囲第項蚘茉の糖アルコヌル脂肪酞゚ステル
の補造方法。  脂肪酞゚ステルが炭玠数乃至24の脂肪酞
ず䟡乃至䟡のアルコヌルずの゚ステルである
特蚱請求の範囲第項蚘茉の糖アルコヌル脂肪酞
゚ステルの補造方法。  脂肪酞゚ステルが脂肪酞グリセリドである
特蚱請求の範囲第項、又は第項蚘茉の糖ア
ルコヌル脂肪酞゚ステルの補造方法。  塩基觊媒がアルカリ金属系塩基觊媒である
特蚱請求の範囲第項蚘茉の糖アルコヌル脂肪酞
゚ステルの補造方法。  塩基觊媒がアルカリ金属炭酞塩である特蚱
請求の範囲第項、又は第項蚘茉の糖アルコ
ヌル脂肪酞゚ステルの補造方法。  塩基觊媒ずしおアルカリ金属炭酞塩ずアル
カリ金属氎酞化物を䜵甚する特蚱請求の範囲第
項、又は第項蚘茉の糖アルコヌル脂肪酞゚ス
テルの補造方法。  90乃至180℃の枩床でアルコヌリシスする
特蚱請求の範囲第項蚘茉の糖アルコヌル脂肪酞
゚ステルの補造方法。
[Scope of Claims] 1. A sugar alcohol having 4 to 9 hydroxyl groups and a fatty acid ester are substantially dissolved in a solvent in the presence of a base catalyst of 3 to 15% by weight based on the total amount of the sugar alcohol and fatty acid ester. A method for producing a sugar alcohol fatty acid ester, characterized by carrying out alcoholysis without using. 2. The method for producing a sugar alcohol fatty acid ester according to claim 1, wherein the sugar alcohol is hexitol. 3. The method for producing a sugar alcohol fatty acid ester according to claim 1 or 2, wherein the sugar alcohol is sorbitol. 4. The method for producing a sugar alcohol fatty acid ester according to claim 1 or 2, wherein the sugar alcohol is mannitol. 5. The method for producing a sugar alcohol fatty acid ester according to claim 1, wherein the sugar alcohol is pentitol. 6. The method for producing a sugar alcohol fatty acid ester according to claim 1, wherein the sugar alcohol is tetritol. 7. The method for producing a sugar alcohol fatty acid ester according to claim 1, wherein the sugar alcohol is heptitol. 8. The method for producing a sugar alcohol fatty acid ester according to claim 1, wherein the sugar alcohol is maltitol. 9. The method for producing a sugar alcohol fatty acid ester according to claim 1, wherein the sugar alcohol is lactitol. 10. The method for producing a sugar alcohol fatty acid ester according to claim 1, wherein the fatty acid ester is an ester of a fatty acid having 6 to 24 carbon atoms and a monovalent to trivalent alcohol. 11. The method for producing a sugar alcohol fatty acid ester according to claim 1 or 10, wherein the fatty acid ester is a fatty acid glyceride. 12. The method for producing a sugar alcohol fatty acid ester according to claim 1, wherein the base catalyst is an alkali metal base catalyst. 13. The method for producing a sugar alcohol fatty acid ester according to claim 1 or 12, wherein the base catalyst is an alkali metal carbonate. 14 Claim 1 in which an alkali metal carbonate and an alkali metal hydroxide are used together as a base catalyst
The method for producing a sugar alcohol fatty acid ester according to item 1 or 12. 15. The method for producing a sugar alcohol fatty acid ester according to claim 1, wherein alcoholysis is carried out at a temperature of 90 to 180°C.
JP1750081A 1981-02-10 1981-02-10 Manufacture of sugar alcohol fatty acid ester Granted JPS57133197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1750081A JPS57133197A (en) 1981-02-10 1981-02-10 Manufacture of sugar alcohol fatty acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1750081A JPS57133197A (en) 1981-02-10 1981-02-10 Manufacture of sugar alcohol fatty acid ester

Publications (2)

Publication Number Publication Date
JPS57133197A JPS57133197A (en) 1982-08-17
JPS6328118B2 true JPS6328118B2 (en) 1988-06-07

Family

ID=11945705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1750081A Granted JPS57133197A (en) 1981-02-10 1981-02-10 Manufacture of sugar alcohol fatty acid ester

Country Status (1)

Country Link
JP (1) JPS57133197A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011207987A (en) * 2010-03-29 2011-10-20 Sumitomo Chemical Co Ltd Processing stabilizer for resin, resin composition containing the same, and method for improving processing stability of resin
JP2011207990A (en) * 2010-03-29 2011-10-20 Sumitomo Chemical Co Ltd Processing stabilizer for resin, resin composition containing the same, and method for improving processing stability of resin

Also Published As

Publication number Publication date
JPS57133197A (en) 1982-08-17

Similar Documents

Publication Publication Date Title
US5175323A (en) Preparation of esterified propoxylated glycerin by transesterification
US9006479B2 (en) Process for preparing polyol esters
US7612228B2 (en) Synthetic method of glycol diesters from reaction of glycol monoesters and linear aliphatic carboxylic acids
KR20030004382A (en) Improved synthesis of anhydroglycitol esters of improved colour
GB2153351A (en) A process for the production of mixtures containing c6-c10-fatty acids
KR20170070314A (en) Improved method for the preparation of esters of anhydrosugar alcohol
US3458561A (en) Esterification of acrylic acid
US9580378B2 (en) Method for post-treating polyol esters
JPH0132814B2 (en)
US5597934A (en) Process for production of polyol compounds
US5371253A (en) Process for producing esterified alkoxylated monoglycerides and diglycerides
KR20170065055A (en) Improved method for preparation of ester of anhydrosugar alcohol
JPS6328118B2 (en)
US6107500A (en) Process for the preparation of mixtures of sorbitol monoesters, sorbitol diesters and partial gycerides
US3259636A (en) Process of producing esters of cis-2, 5-tetrahydrofuran dicarboxylic acid
US6617304B1 (en) Method for producing macrocyclic lactone
JP2001522823A (en) Method for producing lower alkyl esters of high purity fatty acids
CN113200851B (en) Method for synthesizing medium-long chain fatty acid fenchyl ester and borneol ester from turpentine and preparing environment-friendly plasticizer
CA1219279A (en) Process for preparing carboxylic acid esters
KR101688859B1 (en) Anhydrosugar alcohol ester with improved color and method for preparing the same
RU2696261C1 (en) Method of producing ester plasticiser
DE19652017A1 (en) Preparation of omega-hydroxy ester of alpha,beta-unsaturated carboxylic acid in high yield and purity without pollution
EP1672053A1 (en) High purity palm monoglycerides
JPH06502991A (en) Use of ester polyol-containing reaction mixtures as foam suppressing additives
JP4754051B2 (en) Production method of monoglyceride ketal