JP4754051B2 - Production method of monoglyceride ketal - Google Patents

Production method of monoglyceride ketal Download PDF

Info

Publication number
JP4754051B2
JP4754051B2 JP2000258770A JP2000258770A JP4754051B2 JP 4754051 B2 JP4754051 B2 JP 4754051B2 JP 2000258770 A JP2000258770 A JP 2000258770A JP 2000258770 A JP2000258770 A JP 2000258770A JP 4754051 B2 JP4754051 B2 JP 4754051B2
Authority
JP
Japan
Prior art keywords
monoglyceride
ketal
mol
oil
glycerin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000258770A
Other languages
Japanese (ja)
Other versions
JP2002069068A (en
Inventor
健博 今中
俊伯 田中
秀雄 田原
博 南雲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2000258770A priority Critical patent/JP4754051B2/en
Publication of JP2002069068A publication Critical patent/JP2002069068A/en
Application granted granted Critical
Publication of JP4754051B2 publication Critical patent/JP4754051B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は化粧品等の乳化剤、保湿剤、増泡剤、及び工業用乳化剤、プラスチック添加剤等として広く利用されているモノグリセリドの合成中間体である低コストなモノグリセリドケタールを高純度で、簡便に効率良く製造する方法、及びこれを用いたモノグリセリドの製造法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
モノグリセリドを得る方法として、モノグリセリドケタールを経ず、直接油脂とグリセリンをアルカリ触媒存在下、モノグリセリド、ジグリセリド、トリグリセリドの混合物を得た後、分子蒸留にてモノグリセリドのみを得る方法が知られている。しかし、この方法は、牛脂、パーム油等から誘導される長鎖アルキル系のものには有効であるが、パーム核油、ヤシ油等から誘導される中鎖〜長鎖アルキル系のものでは長鎖アルキルモノグリセリドと中鎖アルキルジグリセリドとの沸点差が小さく、分子蒸留によるモノグリセリドとジグリセリドとの分離が不十分である。
【0003】
一方、モノグリセリドケタールを脱ケタール化してモノグリセリドを得る方法も知られている。この方法に用いられるモノグリセリドケタールの合成法として、グリセリンとケトンあるいはアルデヒドを反応させた後、油脂組成脂肪酸とエステル化反応させて得る方法があるが、この場合工程数が多く、また、脂肪酸によるエステル化反応に酸又は塩基触媒を用いた場合、通常のエステル化条件では、保護基であるケタール又はアセタールがエステル化で生成した水により容易に加水分解してしまい、生成物は目的物以外にグリセリン由来の水酸基もエステル化された複雑な混合物となる。また、酸又は塩基触媒の代わりに酵素を用い、減圧下にて反応を行うことで、高収率でモノグリセリドケタールを得る方法も知られているが、長鎖脂肪酸では、酵素に適した温度での反応を行うことができないなどの欠点がある。
【0004】
本発明の課題は、油脂脂肪酸組成の高純度モノグリセリドケタールの簡便で効率の良い製造法、更にそれを用いた油脂脂肪酸組成のモノグリセリドの製造法を提供することにある。また本発明の課題は、鎖長のそろったトリグリセリドを用いて高純度モノグリセリドケタールの簡便で効率の良い製造法、及びそれを用いた高純度モノグリセリドの製造法を提供することにもある。
【0005】
【課題を解決するための手段】
本発明は、(a)一般式(1)
【0006】
【化4】

Figure 0004754051
【0007】
[式中、R1は炭素数5〜23の飽和又は不飽和脂肪族炭化水素基を示し、3つのR1は互いに同一でも異なっていても良い。]
で表される油脂と、(b)一般式(2)
2−CO−R3 (2)
[式中、R2及びR3は同一又は異なって、水素原子、直鎖又は分岐鎖の炭素数1〜22のアルキル基もしくはアルケニル基、あるいはアルキル基で置換されていても良い総炭素数6〜30のアリール基を示し、R2とR3が結合して環を形成していても良い。また、R2とR3の合計炭素数は3以上である。]
で表されるケトン又はアルデヒドと、(c)グリセリン類とを、触媒存在下で反応させる、一般式(3)
【0008】
【化5】
Figure 0004754051
【0009】
[式中、R1、R2及びR3は前記の意味を有する。]
で表されるモノグリセリドケタールの製造法、並びにこの製造法により得られるモノグリセリドケタールを脱ケタール化する、一般式(4)で表されるモノグリセリドの製造法である。
【0010】
【化6】
Figure 0004754051
【0011】
[式中、R1は前記の意味を有する。]
【0012】
【発明の実施の形態】
(a)成分の一般式(1)で表される油脂としては、牛脂、豚脂、いわし油、まぐろ油、さめ肝油等の動物由来の油脂、又はアマニ油、サフラワー油、ヒマワリ油、大豆油、コーン油、落花生油、綿実油、ゴマ油、ナタネ油、オリーブ油、パーム油、パーム核油、ヤシ油、硬化パーム油、硬化パーム核油、硬化ヤシ油等の植物由来の油脂が挙げられる。また、例えばトリカプリン、トリラウリン、トリミリスチン、トリパルミチン、トリステアリン、トリオレイン、トリベヘニン、トリリノレイン等の鎖長のそろったトリグリセリドも挙げられる。
【0013】
(b)成分の一般式(2)で表されるケトン又はアルデヒドとしては、総炭素数4〜10の化合物が好ましい。具体的には、ケトンとして、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、シクロヘキサノン等が挙げられ、アルデヒドとして、ブチルアルデヒド等が挙げられる。これらは水に不溶なため、溶媒と還流をかけると、生成水を系外に除くことができる。
【0014】
(b)成分のケトン又はアルデヒドの総炭素数は、生成水の分離のしやすさの観点から、4以上であることが必要である。総炭素数3のアセトンを用いて(a)成分と(c)成分から同様にモノグリセリドケタールを製造する方法としてUSP3,55,888号があるが、この場合アセトンが水に可溶なため完全な脱水のためにシリカゲルを充填したチャンバーを必要とし設備的に困難となる。しかし、総炭素数4以上のケトン又はアルデヒドの場合は簡単な脱水管を設けるだけで済み、簡便である。
【0015】
(c)成分のグリセリン類としては、グリセリンの他、本発明の製造法の副生成物である、一般式(5)
【0016】
【化7】
Figure 0004754051
【0017】
[式中、R2及びR3は前記の意味を有する。]
で表されるグリセリンケタールとグリセリンとの混合物も用いることができる。
【0018】
本発明におけるケタール化の代表的な方法は、グリセリン類に対し、(a)成分を0.1〜1.0倍モル、好ましくは0.1〜0.2倍モル加え、(b)成分を0.2〜3.0倍モル、好ましくは1.2〜1.5倍モル加え、また、生成する水を脱水管上にて分離し易くするため、好ましくはヘプタン、ヘキサン、オクタン等の溶媒を5.0重量倍以下、更に好ましくは1.0〜2.0重量倍加え、触媒を0.01〜5.0重量%、好ましくは0.2〜2.0重量%加え、減圧又は常圧下、40〜150℃、好ましくは80〜110℃の反応温度で、還流脱水を行う方法である。このような本発明の方法によると、ケタール化とエステル交換が同時に進行する。
【0019】
本発明で用いられる触媒は、酸触媒が好ましく、酸触媒として、塩酸、硫酸等の無機酸、パラトルエンスルホン、ベンゼンスルホン酸等の有機酸、又は酸性白土、シリカ−アルミナ、パーフロロイオン交換ポリマー(ナフィオン(デュポン社製))等の固体酸が挙げられる。
【0020】
また、本発明の反応は気液接触による還流を行い、脱水の効率を高めることが望ましい。更に(a)成分、(b)成分及び(c)成分を仕込んだ後、加熱を開始するのが望ましい。
【0021】
反応終了後、アルカリにて中和、又は固体酸を濾過、又は吸着剤にて酸を吸着後濾過を行い、その後、溶媒、未反応ケトン又はアルデヒド及びグリセリンケタールを減圧留去し、水洗により、未反応グリセリンと中和で生成した塩を取り除くことで、高純度なモノグリセリドケタールを得ることができる。
【0022】
本発明では、上記のようにして得られたモノグリセリドケタールを脱ケタール化してモノグリセリドを得る。脱ケタール化の方法は、酸触媒を用い、40〜80℃の温度、2.67〜20.0kPaの圧力で加水分解する方法が好ましく、特に水蒸気を系内に導入し、生成するケトン又はアルデヒドと水蒸気を系外に除去しながら行うのが好ましい。酸触媒として、モノグリセリドケタールの製造に用いられる上記触媒が利用できる。
【0023】
【発明の効果】
本発明においては、油脂から誘導される脂肪酸組成のアルキル鎖長をもつモノグリセリドの2つの水酸基をケタール又はアセタールで保護したモノグリセリドケタールの合成が可能であり、次に脱保護(脱ケタール化)を行うことで、一般に化粧品等の乳化剤や保湿剤及び工業用乳化剤として広く利用されているモノグリセリドを容易に合成することが可能となる。特に、蒸留工程のある製造法では得られにくい、油脂から誘導される混合アルキル組成のモノグリセリドを容易に得ることができる。
【0024】
【実施例】
例中の%は特記しない限り重量基準である。
【0025】
実施例1−1
フラスコにRBD(漂白・脱臭による精製品)パーム核油158.10g(0.23モル)とグリセリン137.69g(1.495モル)とメチルエチルケトン186.58g(2.5875モル)とヘプタン125.01gとパラトルエンスルホン酸1水和物6.56g(0.0345モル)を仕込み、82〜108℃にて、反応で生成する水を除去しながら20時間反応を行った。次に48.5%水酸化カリウムにより中和を行った後、6.66kPa、室温〜100℃にてヘプタンと過剰なメチルエチルケトンを減圧留去した後、下記式(6)で表されるグリセリンケタールを0.67kPaで100〜140℃にて減圧留去した。その後、残液に対し50〜60℃にて水洗を3回行い、次に50℃、0.67kPaにて脱水を行った後、下記式(7)で表されるパーム核油脂肪酸組成のモノグリセリドケタール220.0g(0.638モル)を得た。収率92.5%、ガスクロ純度91.5%。
【0026】
【化8】
Figure 0004754051
【0027】
(式中、RpCOはパーム核油脂肪酸から水酸基を除いた残基を示す。)
実施例1−2
実施例1−1で得られたパーム核油脂肪酸組成のモノグリセリドケタール199.98g(0.58モル)に酸性白土(ガレオンアースNV、水澤化学(株)製)6.00gを仕込み、70℃、19.95kPaにおいて、1時間あたりモノグリセリドケタールに対して2〜4%の水蒸気を反応系内に導入し、生成するメチルエチルケトンと過剰な水蒸気を系外に除去しながら脱ケタール化反応を5時間行った後、触媒をキョワード600S(協和化学(株)製)6.00gで中和し、6.65kPa、70℃で0.5時間脱水を行った。触媒中和物を濾過し、下記一般式(8)で表されるパーム核油脂肪酸組成のモノグリセリド146.6g(0.504モル)を得た。この脱ケタール化反応の収率は86.9%であった。酸価0.53(計算値0)、ケン化価195.2(計算値193.0)、水酸基価369.5(計算値386.0)。生成物をガスクロマトグラフィーにより分析した結果、パーム核油脂肪酸組成のモノグリセリドの面積百分率は89.8%であり、モノグリセリドの脂肪酸組成を表1に示す。
【0028】
【化9】
Figure 0004754051
【0029】
(式中、Rpは前記の意味を有する。)
【0030】
【表1】
Figure 0004754051
【0031】
実施例2−1
フラスコにRBDヤシ油151.64g(0.23モル)とグリセリン137.69g(1.495モル)とメチルエチルケトン186.58g(2.5875モル)とヘプタン125.01gとパラトルエンスルホン酸1水和物6.56g(0.0345モル)を仕込み、82〜104℃にて、反応で生成する水を除去しながら19時間反応を行った。次に実施例1−1と同様に処理して、ヤシ油脂肪酸組成のモノグリセリドケタール216.5g(0.6457モル)を得た。収率93.6%、ガスクロ純度94.15%。
【0032】
実施例2−2
実施例2−1で得られたヤシ油脂肪酸組成のモノグリセリドケタール201.18g(0.6モル)に酸性白土(ガレオンアースNV、水澤化学(株)製)6.04gを仕込み、実施例1−2と同様に脱ケタール化反応を行い、ヤシ油脂肪酸組成のモノグリセリド153.0g(0.544モル)を得た。この脱ケタール化反応の収率は90.7%であった。酸価2.7(計算値0)、ケン化価201.0(計算値199.5)、水酸基価384.7(計算値399.1)、生成物をガスクロマトグラフィーにより分析した結果、ヤシ油脂肪酸組成のモノグリセリドの面積百分率は89.7%であった。モノグリセリドの脂肪酸組成を表2に示す。
【0033】
【表2】
Figure 0004754051
【0034】
実施例3−1
フラスコに大豆油185.16g(0.21モル)とグリセリン125.72g(1.365モル)とメチルエチルケトン170.36g(2.3625モル)とヘプタン114.14gとパラトルエンスルホン酸1水和物5.99g(0.0315モル)を仕込み、84〜109℃にて、反応で生成する水を除去しながら20時間反応を行った。その後実施例1−1と同様に処理して、大豆油脂肪酸組成のモノグリセリドケタール238.4g(0.58モル)を得た。収率92.4%、ガスクロ純度92.3%。
【0035】
実施例3−2
実施例3−1で得られた大豆油脂肪酸組成のモノグリセリドケタール200.61g(0.49モル)に酸性白土(ガレオンアースNV、水澤化学(株)製)6.02gを仕込み、実施例1−2と同様に脱ケタール化反応を行い、大豆油脂肪酸組成のモノグリセリド155.1g(0.437モル)を得た。この脱ケタール化反応の収率は89.1%であった。酸価0.24(計算値0)、ケン化価152.4(計算値157.9)、水酸基価337.1(計算値315.9)、生成物をガスクロマトグラフィーにより分析した結果、大豆油脂肪酸組成のモノグリセリドの面積百分率は89.5%であった。モノグリセリドの脂肪酸組成を表3に示す。
【0036】
【表3】
Figure 0004754051
【0037】
実施例4−1
フラスコに硬化パーム油365.83g(0.434モル)とグリセリン257.42g(2.795モル)とメチルエチルケトン353.61g(4.904モル)とヘプタン233.72gとパラトルエンスルホン酸1水和物12.27g(0.0645モル)を仕込み、83〜105℃にて、反応で生成する水を除去しながら20時間反応を行った。その後実施例1−1と同様に処理して、硬化パーム油脂肪酸組成のモノグリセリドケタール500.8g(1.262モル)を得た。収率97.9%、ガスクロ純度92.4%。
【0038】
実施例4−2
実施例4−1で得られた硬化パーム油脂肪酸組成のモノグリセリドケタール299.91g(0.756モル)に酸性白土(ガレオンアースNV、水澤化学(株)製)9.00gを仕込み、実施例1−2と同様に脱ケタール化反応を行い、硬化パーム油脂肪酸組成のモノグリセリド212.3g(0.62モル)を得た。この脱ケタール化反応の収率は89.1%であった。酸価3.3(計算値0)、ケン化価165.7(計算値164)、水酸基価275.1(計算値328)、生成物をガスクロマトグラフィーにより分析した結果、硬化パーム油脂肪酸組成のモノグリセリドの面積百分率は89.7%であった。モノグリセリドの脂肪酸組成を表4に示す。
【0039】
【表4】
Figure 0004754051
【0040】
比較例1
RBDパーム核油158.01g(0.23モル)とグリセリン137.69g(1.495モル)とアセトン150.28(2.5875モル)とヘプタン125.01gとパラトルエンスルホン酸1水和物6.56g(0.0345モル)をフラスコに仕込み、71〜102℃で17時間反応を行った。しかし、ケタール化の割合が35.05%と低く、ガスクロマトグラフィーの面積百分率はモノグリセリドとモノグリセリドケタールが38.2%しかなく、ジグリセリドが11.4%も副生した。なお残りはグリセリン、グリセリンケタール及びトリグリセリドであった。生成水を分析したところ、水分は30.5%、アセトンが23.2%と総炭素数3のアセトンケタール系では、脱水の効率が悪いことがうかがわれる。[0001]
BACKGROUND OF THE INVENTION
The present invention is a low-cost monoglyceride ketal that is a synthetic intermediate of monoglycerides widely used as emulsifiers for cosmetics, moisturizers, foaming agents, industrial emulsifiers, plastic additives, etc. with high purity and efficiency. The present invention relates to a method for producing well and a method for producing monoglyceride using the method.
[0002]
[Prior art and problems to be solved by the invention]
As a method for obtaining a monoglyceride, there is known a method of obtaining only a monoglyceride by molecular distillation after obtaining a mixture of monoglyceride, diglyceride and triglyceride directly in the presence of an alkali catalyst of oil and fat and glycerin without passing through a monoglyceride ketal. However, this method is effective for long chain alkyls derived from beef tallow, palm oil, etc., but long for medium chain to long chain alkyls derived from palm kernel oil, palm oil, etc. The difference in boiling point between chain alkyl monoglycerides and medium chain alkyl diglycerides is small, and separation of monoglycerides and diglycerides by molecular distillation is insufficient.
[0003]
On the other hand, a method for obtaining a monoglyceride by deketalizing a monoglyceride ketal is also known. As a method for synthesizing monoglyceride ketal used in this method, there is a method obtained by reacting glycerin with a ketone or an aldehyde, followed by esterification with an oil and fat composition fatty acid. In this case, the number of steps is large. In the case of using an acid or base catalyst for the esterification reaction, under normal esterification conditions, the ketal or acetal which is a protecting group is easily hydrolyzed by water produced by esterification, and the product is glycerin in addition to the target product. The derived hydroxyl group is also a complex mixture esterified. In addition, a method of obtaining a monoglyceride ketal in a high yield by using an enzyme instead of an acid or base catalyst and performing a reaction under reduced pressure is known. However, with a long-chain fatty acid, a temperature suitable for the enzyme is used. There are disadvantages such as inability to perform the reaction.
[0004]
An object of the present invention is to provide a simple and efficient production method of a high-purity monoglyceride ketal having an oil and fat fatty acid composition, and a method for producing a monoglyceride having an oil and fat fatty acid composition using the same. Another object of the present invention is to provide a simple and efficient method for producing a high-purity monoglyceride ketal using triglycerides having a uniform chain length, and a method for producing a high-purity monoglyceride using the same.
[0005]
[Means for Solving the Problems]
The present invention relates to (a) the general formula (1)
[0006]
[Formula 4]
Figure 0004754051
[0007]
[Wherein, R 1 represents a saturated or unsaturated aliphatic hydrocarbon group having 5 to 23 carbon atoms, and three R 1 s may be the same as or different from each other. ]
(B) General formula (2)
R 2 —CO—R 3 (2)
[Wherein, R 2 and R 3 are the same or different and each is a hydrogen atom, a linear or branched alkyl group or alkenyl group having 1 to 22 carbon atoms, or a total of 6 carbon atoms optionally substituted by an alkyl group] Represents an aryl group of ˜30, and R 2 and R 3 may combine to form a ring. The total carbon number of R 2 and R 3 is 3 or more. ]
A ketone or an aldehyde represented by general formula (3), and (c) glycerol are reacted in the presence of a catalyst.
[0008]
[Chemical formula 5]
Figure 0004754051
[0009]
[Wherein R 1 , R 2 and R 3 have the above-mentioned meanings. ]
And a method for producing a monoglyceride represented by the general formula (4), wherein the monoglyceride ketal obtained by this production method is deketalized.
[0010]
[Chemical 6]
Figure 0004754051
[0011]
[Wherein R 1 has the above-mentioned meaning. ]
[0012]
DETAILED DESCRIPTION OF THE INVENTION
(A) As fats and oils represented by the general formula (1), fats and oils derived from animals such as beef tallow, lard, sardine oil, tuna oil, shark liver oil, or linseed oil, safflower oil, sunflower oil, large oil Examples include plant-derived oils such as bean oil, corn oil, peanut oil, cottonseed oil, sesame oil, rapeseed oil, olive oil, palm oil, palm kernel oil, palm oil, hardened palm oil, hardened palm kernel oil, and hardened palm oil. Further, for example, triglycerides having a uniform chain length such as tricaprin, trilaurin, trimyristin, tripalmitin, tristearin, triolein, tribehenine, and trilinolein are also included.
[0013]
As the ketone or aldehyde represented by the general formula (2) of the component (b), a compound having a total carbon number of 4 to 10 is preferable. Specific examples of the ketone include methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), cyclohexanone, and the like, and examples of the aldehyde include butyraldehyde. Since these are insoluble in water, the product water can be removed out of the system by refluxing with a solvent.
[0014]
The total number of carbon atoms of the component (b) ketone or aldehyde needs to be 4 or more from the viewpoint of ease of separation of the produced water. There are USP3,5 9 No. 5,888 as a method for producing a monoglyceride ketal similarly from the total with the number 3 in acetone carbon component (a) and component (c), since acetone in this case it is soluble in water A chamber filled with silica gel is required for complete dehydration, which is difficult in terms of equipment. However, in the case of a ketone or aldehyde having a total carbon number of 4 or more, it is only necessary to provide a simple dehydrating tube, which is convenient.
[0015]
(C) As glycerol of a component, general formula (5) which is a by-product of the manufacturing method of this invention other than glycerol.
[0016]
[Chemical 7]
Figure 0004754051
[0017]
[Wherein R 2 and R 3 have the above-mentioned meanings. ]
It is also possible to use a mixture of glycerin ketal and glycerin represented by:
[0018]
A typical method for ketalization in the present invention is that 0.1 to 1.0-fold mol, preferably 0.1 to 0.2-fold mol of component (a) is added to glycerol, and component (b) is added. 0.2-3.0 times mol, preferably 1.2-1.5 times mol, and preferably a solvent such as heptane, hexane, octane, etc. in order to facilitate separation of the water produced on the dehydration tube Is added in an amount of not more than 5.0 times by weight, more preferably 1.0 to 2.0 times by weight, and the catalyst is added in an amount of 0.01 to 5.0% by weight, preferably 0.2 to 2.0% by weight. In this method, reflux dehydration is performed at a reaction temperature of 40 to 150 ° C., preferably 80 to 110 ° C. under pressure. According to such a method of the present invention, ketalization and transesterification proceed simultaneously.
[0019]
The catalyst used in the present invention is preferably an acid catalyst, and as an acid catalyst, an inorganic acid such as hydrochloric acid or sulfuric acid, an organic acid such as paratoluenesulfonic acid or benzenesulfonic acid, or an acid clay, silica-alumina, perfluoro ion exchange Examples thereof include solid acids such as polymers (Nafion (manufactured by DuPont)).
[0020]
In the reaction of the present invention, it is desirable to perform reflux by gas-liquid contact to increase the efficiency of dehydration. Furthermore, it is desirable to start heating after the components (a), (b) and (c) are charged.
[0021]
After completion of the reaction, neutralization with alkali, or filtration of solid acid, or adsorption after adsorption of acid with adsorbent, followed by filtration, solvent, unreacted ketone or aldehyde and glycerin ketal are distilled off under reduced pressure, and washing with water, A high-purity monoglyceride ketal can be obtained by removing the unreacted glycerin and the salt produced by neutralization.
[0022]
In the present invention, the monoglyceride ketal obtained as described above is deketalized to obtain a monoglyceride. The method of deketalization is preferably a method of hydrolysis using an acid catalyst at a temperature of 40 to 80 ° C. and a pressure of 2.67 to 20.0 kPa, particularly a ketone or aldehyde produced by introducing water vapor into the system. It is preferable to carry out while removing water vapor from the system. As the acid catalyst, the above catalyst used for the production of monoglyceride ketal can be used.
[0023]
【The invention's effect】
In the present invention, it is possible to synthesize a monoglyceride ketal in which two hydroxyl groups of a monoglyceride having a fatty acid composition derived from oil and fat having an alkyl chain length are protected with a ketal or acetal, and then deprotecting (deketalization) is performed. Thus, it is possible to easily synthesize monoglycerides that are generally widely used as emulsifiers for cosmetics, moisturizers, and industrial emulsifiers. In particular, monoglycerides having a mixed alkyl composition derived from fats and oils, which are difficult to obtain by a production method having a distillation step, can be easily obtained.
[0024]
【Example】
Unless otherwise specified,% in the examples is based on weight.
[0025]
Example 1-1
In the flask, RBD (purified product by bleaching and deodorization) 158.10 g (0.23 mol) of palm kernel oil, 137.69 g (1.495 mol) of glycerin, 186.58 g (2.5875 mol) of methyl ethyl ketone and 125.01 g of heptane And 6.56 g (0.0345 mol) of paratoluenesulfonic acid monohydrate were added, and the reaction was carried out at 82 to 108 ° C. for 20 hours while removing water produced by the reaction. Next, after neutralizing with 48.5% potassium hydroxide, heptane and excess methyl ethyl ketone were distilled off under reduced pressure at 6.66 kPa, room temperature to 100 ° C., and then glycerin ketal represented by the following formula (6). Was distilled off under reduced pressure at 100-140 ° C. at 0.67 kPa. Thereafter, the residual liquid was washed with water at 50 to 60 ° C. three times, then dehydrated at 50 ° C. and 0.67 kPa, and then monoglyceride having a palm kernel oil fatty acid composition represented by the following formula (7): 220.0 g (0.638 mol) of ketal was obtained. Yield 92.5%, gas chromatographic purity 91.5%.
[0026]
[Chemical 8]
Figure 0004754051
[0027]
(In the formula, R p CO represents a residue obtained by removing a hydroxyl group from palm kernel oil fatty acid.)
Example 1-2
To the monoglyceride ketal 199.98 g (0.58 mol) of the palm kernel oil fatty acid composition obtained in Example 1-1, 6.00 g of acid clay (Galeon Earth NV, manufactured by Mizusawa Chemical Co., Ltd.) was charged, At 19.95 kPa, 2 to 4% of water vapor was introduced into the reaction system per hour with respect to the monoglyceride ketal, and the deketalization reaction was performed for 5 hours while removing the produced methyl ethyl ketone and excess water vapor from the system. Thereafter, the catalyst was neutralized with 6.00 g of Kyoward 600S (manufactured by Kyowa Chemical Co., Ltd.) and dehydrated at 6.65 kPa and 70 ° C. for 0.5 hour. The catalyst neutralized product was filtered to obtain 146.6 g (0.504 mol) of monoglyceride having a palm kernel oil fatty acid composition represented by the following general formula (8). The yield of this deketalization reaction was 86.9%. Acid value 0.53 (calculated value 0), saponification value 195.2 (calculated value 193.0), hydroxyl value 369.5 (calculated value 386.0). As a result of analyzing the product by gas chromatography, the area percentage of monoglyceride of the palm kernel oil fatty acid composition was 89.8%, and the fatty acid composition of the monoglyceride is shown in Table 1.
[0028]
[Chemical 9]
Figure 0004754051
[0029]
(Wherein R p has the above-mentioned meaning.)
[0030]
[Table 1]
Figure 0004754051
[0031]
Example 2-1
In a flask, 151.64 g (0.23 mol) of RBD palm oil, 137.69 g (1.495 mol) of glycerin, 186.58 g (2.5875 mol) of methyl ethyl ketone, 125.01 g of heptane, and paratoluenesulfonic acid monohydrate 6.56 g (0.0345 mol) was charged, and the reaction was carried out at 82 to 104 ° C. for 19 hours while removing water produced by the reaction. Next, it processed like Example 1-1 and obtained 216.5 g (0.6457 mol) of monoglyceride ketals of a coconut oil fatty acid composition. Yield 93.6%, gas chromatographic purity 94.15%.
[0032]
Example 2-2
6.01 g of acid clay (Galeon Earth NV, manufactured by Mizusawa Chemical Co., Ltd.) was charged into 201.18 g (0.6 mol) of the monoglyceride ketal having the coconut oil fatty acid composition obtained in Example 2-1, and Example 1- The deketalization reaction was performed in the same manner as in Example 2 to obtain 153.0 g (0.544 mol) of monoglyceride having a coconut oil fatty acid composition. The yield of this deketalization reaction was 90.7%. Acid value 2.7 (calculated value 0), saponification number 201.0 (calculated value 199.5), hydroxyl value 384.7 (calculated value 399.1), and the product was analyzed by gas chromatography. The area percentage of monoglycerides with an oil fatty acid composition was 89.7%. Table 2 shows the fatty acid composition of monoglycerides.
[0033]
[Table 2]
Figure 0004754051
[0034]
Example 3-1
In a flask, 185.16 g (0.21 mol) of soybean oil, 125.72 g (1.365 mol) of glycerin, 170.36 g (2.3625 mol) of methyl ethyl ketone, 114.14 g of heptane, and paratoluenesulfonic acid monohydrate 5 .99 g (0.0315 mol) was charged, and the reaction was carried out at 84 to 109 ° C. for 20 hours while removing water produced by the reaction. Thereafter, the same treatment as in Example 1-1 was performed to obtain 238.4 g (0.58 mol) of a monoglyceride ketal having a soybean oil fatty acid composition. Yield 92.4%, gas chromatography purity 92.3%.
[0035]
Example 3-2
6.02 g of acid clay (Galeon Earth NV, manufactured by Mizusawa Chemical Co., Ltd.) was charged into 200.61 g (0.49 mol) of the monoglyceride ketal having the soybean oil fatty acid composition obtained in Example 3-1, and Example 1 The deketalization reaction was performed in the same manner as in No. 2 to obtain 155.1 g (0.437 mol) of monoglyceride having a soybean oil fatty acid composition. The yield of this deketalization reaction was 89.1%. The acid value was 0.24 (calculated value 0), saponification value 152.4 (calculated value 157.9), hydroxyl value 337.1 (calculated value 315.9), and the product was analyzed by gas chromatography. The area percentage of monoglyceride having a soybean oil fatty acid composition was 89.5%. Table 3 shows the fatty acid composition of the monoglyceride.
[0036]
[Table 3]
Figure 0004754051
[0037]
Example 4-1
In a flask, 365.83 g (0.434 mol) of hardened palm oil, 257.42 g (2.795 mol) of glycerin, 353.61 g (4.904 mol) of methyl ethyl ketone, 233.72 g of heptane, and paratoluenesulfonic acid monohydrate 12.27 g (0.0645 mol) was charged, and the reaction was carried out at 83 to 105 ° C. for 20 hours while removing water produced by the reaction. Thereafter, the same treatment as in Example 1-1 was performed to obtain 500.8 g (1.262 mol) of a monoglyceride ketal having a hardened palm oil fatty acid composition. Yield 97.9%, gas chromatography purity 92.4%.
[0038]
Example 4-2
Example 1 was charged with 9.00 g of acid clay (Galeon Earth NV, manufactured by Mizusawa Chemical Co., Ltd.) in 299.91 g (0.756 mol) of the monoglyceride ketal having a hardened palm oil fatty acid composition obtained in Example 4-1. -Deketalization reaction was carried out in the same manner as -2, and 212.3 g (0.62 mol) of monoglyceride having a hardened palm oil fatty acid composition was obtained. The yield of this deketalization reaction was 89.1%. Acid value 3.3 (calculated value 0), saponification number 165.7 (calculated value 164), hydroxyl value 275.1 (calculated value 328), and product were analyzed by gas chromatography. The area percentage of the monoglyceride was 89.7%. Table 4 shows the fatty acid composition of monoglycerides.
[0039]
[Table 4]
Figure 0004754051
[0040]
Comparative Example 1
158.01 g (0.23 mol) of RBD palm kernel oil, 137.69 g (1.495 mol) of glycerin, 150.28 (2.5875 mol) of acetone, 125.01 g of heptane, and paratoluenesulfonic acid monohydrate 6 .56 g (0.0345 mol) was charged into the flask and reacted at 71-102 ° C. for 17 hours. However, the ratio of ketalization was as low as 35.05%, and the area percentage of gas chromatography was only 38.2% for monoglyceride and monoglyceride ketal and 11.4% for diglyceride as a by-product. The remainder was glycerin, glycerin ketal and triglyceride. Analysis of the produced water shows that the dehydration efficiency is poor in the acetone ketal system having a water content of 30.5% and acetone of 23.2% and a total carbon number of 3.

Claims (4)

(a)一般式(1)
Figure 0004754051
[式中、R1は炭素数5〜23の飽和又は不飽和脂肪族炭化水素基を示し、3つのR1は互いに同一でも異なっていても良い。]
で表される油脂と、(b)メチルエチルケトンと、(c)グリセリンとを、触媒存在下で反応させる、一般式(3)
Figure 0004754051
[式中、R1 は前記の意味を有する。2及びR3一方がメチル基であり、他方がエチル基である。]
で表されるモノグリセリドケタールの製造法。
(A) General formula (1)
Figure 0004754051
[Wherein, R 1 represents a saturated or unsaturated aliphatic hydrocarbon group having 5 to 23 carbon atoms, and three R 1 s may be the same as or different from each other. ]
Wherein (b) methyl ethyl ketone and (c) glycerin are reacted in the presence of a catalyst.
Figure 0004754051
[ Wherein R 1 has the above-mentioned meaning. One of R 2 and R 3 is a methyl group, and the other is an ethyl group . ]
The manufacturing method of the monoglyceride ketal represented by these.
(c)成分のグリセリンに対し(a)成分の油脂を0.1〜0.2倍モル使用し、(c)成分のグリセリンに対し(b)成分のメチルエチルケトンを1.2〜3.0倍モル使用する請求項1記載のモノグリセリドケタールの製造法。  (C) The component (a) is used in an amount of 0.1 to 0.2 moles of the component glycerin, and the component (b) methyl ethyl ketone is 1.2 to 3.0 times the component glycerin. The method for producing a monoglyceride ketal according to claim 1, which is used in a molar amount. 反応終了後、副生するグリセリンケタールを減圧留去する請求項1又は2記載のモノグリセリドケタールの製造法。  The method for producing a monoglyceride ketal according to claim 1 or 2, wherein after the reaction, by-product glycerin ketal is distilled off under reduced pressure. 請求項1〜3のいずれか1項に記載の製造法により得られるモノグリセリドケタールを脱ケタール化する、一般式(4)で表されるモノグリセリドの製造法。
Figure 0004754051
[式中、R1は前記の意味を有する。]
The manufacturing method of the monoglyceride represented by General formula (4) which deketalizes the monoglyceride ketal obtained by the manufacturing method of any one of Claims 1-3.
Figure 0004754051
[Wherein R 1 has the above-mentioned meaning. ]
JP2000258770A 2000-08-29 2000-08-29 Production method of monoglyceride ketal Expired - Fee Related JP4754051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000258770A JP4754051B2 (en) 2000-08-29 2000-08-29 Production method of monoglyceride ketal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000258770A JP4754051B2 (en) 2000-08-29 2000-08-29 Production method of monoglyceride ketal

Publications (2)

Publication Number Publication Date
JP2002069068A JP2002069068A (en) 2002-03-08
JP4754051B2 true JP4754051B2 (en) 2011-08-24

Family

ID=18747025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000258770A Expired - Fee Related JP4754051B2 (en) 2000-08-29 2000-08-29 Production method of monoglyceride ketal

Country Status (1)

Country Link
JP (1) JP4754051B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4689106B2 (en) * 2000-10-13 2011-05-25 花王株式会社 Citral acetal
DK2049623T3 (en) * 2006-07-12 2011-09-05 Inst Univ Ciencia I Tecnologia Use of a product containing glycerol formal monoesters of fatty acids as a biofuel
SG139587A1 (en) * 2006-07-28 2008-02-29 Givaudan Sa Method of using organic compounds
EP2730567A1 (en) * 2012-11-09 2014-05-14 Institut Univ. de Ciència i Tecnologia, S.A. Process for manufacturing biofuels

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3595888A (en) * 1968-05-13 1971-07-27 Research Corp Production of glyceryl monoalkanoates
JPH1095748A (en) * 1996-09-24 1998-04-14 Kao Corp Production of glycerol-alpha-polyoxyalkylene glycol monofaty acid ester
JPH11187891A (en) * 1997-12-25 1999-07-13 Kao Corp Production of fatty acid ester
JP3485524B2 (en) * 1999-08-23 2004-01-13 花王株式会社 Method for producing polyhydroxyl compound
JP2001097942A (en) * 1999-09-28 2001-04-10 Kao Corp Method for preparing monoglyceride sulfate
JP2001181271A (en) * 1999-12-27 2001-07-03 Kao Corp Method for producing alpha-monoglyceride ketal

Also Published As

Publication number Publication date
JP2002069068A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
JP6524171B2 (en) Biopolyols for biolubricants and biopolymers, and methods for their production
KR102061374B1 (en) Method for the Production of Esters and Uses thereof
US20090119979A1 (en) Catalysts for production of biodiesel fuel and glycerol
JPH0662502B2 (en) Production method of fatty acid methyl ester
US4976892A (en) Process for the continuous transesterification of fatty acid lower alkyl esters
JP2008031257A (en) Method for producing diesel engine fuel
JP4754051B2 (en) Production method of monoglyceride ketal
JP4963011B2 (en) Method for producing fatty acid lower alkyl ester
JP5324772B2 (en) Method for producing high-quality fatty acid alkyl ester and / or glycerin
CN103097372A (en) Process for producing dioxolane
JP4578739B2 (en) Monoglyceride production method
US20110065943A1 (en) Method for selective esterification of free fatty acids in triglycerides
WO2008053825A1 (en) Method for producing fatty acid alkyl ester
WO2010016441A1 (en) Process for producing fatty acid alkyl ester composition, and method for treating oil-and-fat
JP2001181271A (en) Method for producing alpha-monoglyceride ketal
US6022982A (en) Method for the development of δ-lactones and hydroxy acids from unsaturated fatty acids and their glycerides
JP2938586B2 (en) Method for producing α-sulfofatty acid ester
JP4610801B2 (en) Monoglyceride production method
JP4601861B2 (en) Monoglyceride production method
JP2001097942A (en) Method for preparing monoglyceride sulfate
JP2004359885A (en) Manufacturing method of monoglyceride-containing composition
JPH06504527A (en) Method for producing branched fatty substances
JP4197148B2 (en) Method for producing monoglyceride-containing composition
KR101402473B1 (en) Purification process for high purity methylester
CA2678439A1 (en) Method for selective esterification of free fatty acids in triglycerides

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees