WO2010016441A1 - Process for producing fatty acid alkyl ester composition, and method for treating oil-and-fat - Google Patents

Process for producing fatty acid alkyl ester composition, and method for treating oil-and-fat Download PDF

Info

Publication number
WO2010016441A1
WO2010016441A1 PCT/JP2009/063670 JP2009063670W WO2010016441A1 WO 2010016441 A1 WO2010016441 A1 WO 2010016441A1 JP 2009063670 W JP2009063670 W JP 2009063670W WO 2010016441 A1 WO2010016441 A1 WO 2010016441A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatty acid
alkyl ester
acid alkyl
oils
mpa
Prior art date
Application number
PCT/JP2009/063670
Other languages
French (fr)
Japanese (ja)
Inventor
志朗 坂
ズルキフリー ルベス ズル イルハム ビン
Original Assignee
豊田通商株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 豊田通商株式会社 filed Critical 豊田通商株式会社
Publication of WO2010016441A1 publication Critical patent/WO2010016441A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/10Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with ester groups or with a carbon-halogen bond
    • C07C67/11Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with ester groups or with a carbon-halogen bond being mineral ester groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/02Preparation of carboxylic acid esters by interreacting ester groups, i.e. transesterification
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method for producing a fatty acid alkyl ester composition from fats and oils containing at least fatty acid glycerides and / or fatty acids.
  • fatty acid alkyl esters were obtained by transesterification of monoglycerides, diglycerides and triglycerides (hereinafter collectively referred to as fatty acid glycerides), which are the main components of vegetable oils, animal oils and their used fats and oils, with alkyl alcohols. (For example, “Organic Chemistry Handbook”, Gihodo Publishing 1988, p. 1407 to p. 1409). In addition, various studies have so far been made on production techniques for obtaining alkyl esters that can be used as diesel fuel oils from fats and oils using this reaction.
  • a method for industrially producing a fatty acid ester from a fatty acid glyceride As a method for industrially producing a fatty acid ester from a fatty acid glyceride, a method in which a fatty acid triglyceride is transesterified at normal pressure in the presence of an alkali metal catalyst near the boiling point of a lower alcohol or at room temperature under an anhydrous condition is generally used. It is used. However, since this reaction is used in a state where the alkali metal catalyst is dissolved in the reaction solution, the alkali metal catalyst is dissolved in the product solution, and it is difficult to separate and recover the product. There is.
  • Non-Patent Documents 1 and 2 From the viewpoint of avoiding such problems, the present inventors have developed a non-catalyzed biodiesel fuel production technology using a supercritical methanol (one-stage method (Saka method) and two-stage method (Saka-Dadan method)). (See Non-Patent Documents 1 and 2).
  • the main object of the present invention is to provide a method for producing a fatty acid alkyl ester composition from fats and oils with high efficiency without requiring a raw material pretreatment step or a complicated purification step.
  • the present invention is a method for producing a fatty acid alkyl ester from fats and oils containing at least fatty acid glycerides and / or fatty acids, Provided is a method for producing a fatty acid alkyl ester, characterized by allowing the oil and fat and a dialkyl carbonate to coexist and react under conditions of a temperature of 240 ° C. to 400 ° C.
  • Fatty acid alkyl esters can be obtained in high yield by allowing the oils and fats and dialkyl carbonate to coexist and react under conditions of a dialkyl carbonate temperature of 240 ° C. to 400 ° C. and a pressure of 2.0 MPa to 100 MPa.
  • the type of dialkyl carbonate used is not particularly limited, but dimethyl carbonate is preferred.
  • the amount of dialkyl carbonate with respect to the oil or fat is not particularly limited, but it is preferable that the dialkyl carbonate is 3.0 to 126 mol with respect to 1 mol of fatty acid glyceride contained in the oil or fat. is there.
  • the dialkyl carbonate is preferably used in an amount of 1.0 mol to 42 mol with respect to 1 mol of the fatty acid contained in the fats and oils.
  • the use of the said fatty-acid alkylester obtained by this invention is not specifically limited, For example, it can use suitably as a diesel fuel oil.
  • this invention is a method of processing fats and oils containing at least fatty acid glycerides and / or fatty acids, Provided is a method for treating fats and oils, characterized by allowing the fats and oils and a dialkyl carbonate to coexist and react under conditions of a temperature of 240 ° C. to 400 ° C. and a pressure of 2.0 MPa to 100 MPa.
  • oils and fats include fatty acid glycerides and / or fatty acids as described above, and generally include fatty acid monoglycerides, fatty acid diglycerides, fatty acid triglycerides, fatty acids, and mixtures thereof. Say. That is, “oils and fats” broadly includes those containing only fatty acids without containing fatty acid glycerides.
  • a fatty acid alkyl ester composition can be produced from oils and fats with high efficiency without requiring a raw material pretreatment step or a complicated purification step.
  • the method for producing a fatty acid alkyl ester composition according to the present invention is characterized in that oils and fats and a dialkyl carbonate are allowed to coexist and are reacted under the conditions of a dialkyl carbonate at a temperature of 240 ° C. to 400 ° C. and a pressure of 2.0 MPa to 100 MPa.
  • oils and fats and a dialkyl carbonate are allowed to coexist and are reacted under the conditions of a dialkyl carbonate at a temperature of 240 ° C. to 400 ° C. and a pressure of 2.0 MPa to 100 MPa.
  • the dialkyl carbonate used in the present invention is a compound represented by the following general formula (1).
  • Table 1 shows the physical and thermodynamic properties of dimethyl carbonate, which is an example of a dialkyl carbonate.
  • reaction temperature of 240 ° C. to 400 ° C. and the reaction pressure of 2.0 MPa to 100 MPa in the present invention correspond to the critical condition or subcritical condition of dialkyl carbonate.
  • the raw material for dialkyl carbonate is derived from synthesis gas obtained by thermodynamic treatment of biomass, and it can be said that dialkyl carbonate itself is an environmentally friendly material. Therefore, biodiesel obtained from fats and oils and dialkyl carbonate can be said to be a biofuel that is environmentally friendly in a true sense.
  • dialkyl carbonate used in the present invention is not particularly limited, but dimethyl carbonate is preferably used. Use of dimethyl carbonate is preferred because fatty acid methyl esters suitable as biodiesel can be obtained.
  • Oils and fats used in the present invention are not particularly limited as long as they contain at least fatty acid glycerides and / or fatty acids.
  • vegetable oils, animal oils, waste oils, and the like can be used.
  • vegetable oils include, for example, rapeseed oil, sunflower oil, palm oil, palm kernel oil, soybean oil, rapeseed oil, sunflower oil, olive oil, curcas oil from nanyo aragi.
  • animal oils include sardine oil, mackerel oil, herring oil, lard oil, butter oil, beef tallow, horse fat, pork fat, shark oil, whale oil and the like.
  • a fatty acid glyceride is obtained by allowing a dialkyl carbonate to coexist in a fatty acid glyceride and reacting under conditions of a temperature of 240 ° C. to 400 ° C. and a pressure of 2.0 MPa to 100 MPa (see formula (2)).
  • Fatty acid triglyceride (TG) reacts with equimolar dimethyl carbonate to produce fatty acid methyl ester (FAME) and fatty acid monomethyl carbonate diglyceride (MMCDG) (see FIG. 1 (a)).
  • Fatty acid monomethyl carbonate diglyceride (MMCDG) further reacts with equimolar dimethyl carbonate to produce fatty acid methyl ester (FAME) and fatty acid dimethyl carbonate monoglyceride (DMCMG) (see FIG. 1 (b)).
  • DMCMG Fatty acid dimethyl carbonate monoglyceride
  • FAME fatty acid methyl ester
  • GC glycerol carbonate
  • CA citramalic acid
  • the fatty acid triglyceride reacts with triple mole of dialkyl carbonate under the conditions of a temperature of 240 ° C. to 400 ° C. and a pressure of 2.0 MPa to 100 MPa to produce a triple mole of fatty acid alkyl ester.
  • glycerol carbonate obtained as a by-product is a colorless liquid and an industrially useful compound.
  • Glycerol carbonate and its derivatives are attracting attention as solvents for paints, dyes, adhesives and other polymer materials.
  • citramalic acid obtained at the same time as glycerol carbonate is expected to be used as a raw material for pharmaceuticals by purifying it with high purity. Moreover, about citramalic acid, it is estimated that it functions as an acid catalyst in reaction of the said fats and oils and dimethyl carbonate.
  • a fatty acid alkyl ester is obtained by allowing a dialkyl carbonate to coexist with a fatty acid and reacting at a temperature of 240 ° C. to 400 ° C. and a pressure of 2.0 MPa to 100 MPa (see formula (3)).
  • the reaction between fatty acid and dimethyl carbonate is shown in Formula (4).
  • Fatty acids react with equimolar dimethyl carbonate to produce equimolar fatty acid methyl esters.
  • equimolar glyoxal and water are produced as by-products.
  • Glyoxal which is a by-product in the reaction between fatty acid and dimethyl carbonate, is converted to glycolic acid under the high temperature and high pressure reaction conditions of the present invention.
  • This glycolic acid is presumed to function as an acid catalyst in the reaction between the oils and fats and dimethyl carbonate.
  • the specific method for producing the fatty acid alkyl ester according to the present invention is as follows (see FIG. 2). First, fats and oils containing at least fatty acid glyceride and / or fatty acid and dialkyl carbonate are added to the reactor. Then, the reaction temperature is set to 240 ° C. to 400 ° C., the reaction pressure is set to 2.0 MPa to 100 MPa, and the reaction proceeds.
  • a reaction solution in which the fatty acid alkyl ester is separated into the upper layer and the by-product is separated into the lower layer is obtained.
  • the fatty acid alkyl ester can be obtained by separating the upper layer and the lower layer.
  • the reactor to be used is not particularly limited, and for example, a batch reactor, a continuous tank reactor, a piston flow reactor or a tower reactor can be used.
  • the specific reaction conditions are not particularly limited as long as the temperature is within the range of 240 ° C. to 400 ° C. and the pressure is 2.0 MPa to 100 MPa, but preferably 270 ° C. to 350 ° C., 4.6 MPa to 45 MPa. Is desirable. Such reaction conditions are desirable because the fatty acid alkyl ester composition can be obtained in a high yield without decomposition of the fatty acid alkyl ester composition.
  • the amount of the dialkyl carbonate with respect to the fats and oils is not particularly limited, but the dialkyl carbonate is preferably 3.0 to 126 mol, more preferably 1 mol of the fatty acid glyceride contained in the fats and oils. Is preferably in the range of 21 mol to 51 mol.
  • dialkyl carbonate is preferably 1.0 to 42 mol, more preferably 7 to 17 mol, per 1 mol of the fatty acid contained in the fats and oils.
  • the reaction time is a time sufficient for the fats and oils to react with the dialkyl carbonate to produce a fatty acid alkyl ester.
  • the reaction time is 2 minutes to 60 minutes, more preferably 3 minutes to 20 minutes, depending on the reaction conditions.
  • a specific method for removing dialkyl carbonate is not particularly limited, and examples thereof include a method in which a reaction mixture is introduced into a distillation column and dialkyl carbonate is removed from the top of the column by distillation.
  • the use of the fatty acid alkyl ester produced by the method for producing a fatty acid alkyl ester according to the present invention is not particularly limited, but can be suitably used as a diesel fuel oil.
  • fatty acid glycerides and / or fatty acids containing at least fatty acids are allowed to coexist with a dialkyl carbonate, and reacted under conditions of a temperature of 240 ° C. to 400 ° C. and a pressure of 2.0 MPa to 100 MPa. Is obtained.
  • glycerol carbonate and citramalic acid which are industrially useful compounds, can be obtained in the reaction of the fatty acid glyceride and dimethyl carbonate. That is, the method for treating fats and oils according to the present invention can be used as a method for producing glycerol carbonate and citramalic acid.
  • fatty acid alkyl esters can be obtained from fats and oils by a simple production process and purification process without using a catalyst. Furthermore, the fatty acid alkyl ester can be obtained in a yield equivalent to that of the supercritical methanol method which is a conventional technique.
  • the dialkyl carbonate itself can be obtained from natural products, and can be said to be an environmentally friendly production method.
  • the obtained liquid was in a state of being separated into two upper and lower layers.
  • the obtained lower layer was also analyzed using the gel infiltration chromatography (GPC).
  • FIGS. 3 and 4 show the HPLC chromatogram and GPC chromatogram of the upper layer of Example 1, respectively.
  • the lower layer GPC chromatogram is shown in FIG.
  • the reaction vessel was immersed in a molten tin bath, and the reaction temperature was 350 ° C. and 43 MPa. After holding the reaction time as 3, 6, 9, 12, and 15 minutes, the reaction vessel was immersed in a water bath to stop the reaction. The reaction solution was evaporated at 90 ° C. for 20 minutes, and methanol was distilled off.
  • the obtained liquid was in a state of being separated into two upper and lower layers.
  • the obtained fatty acid methyl ester of the upper layer was analyzed using high performance liquid chromatography (Shimadzu, LC-10AT) consisting of a column (Codenza CD-C18) and a refractive index measuring device (Shimadzu, RID-10A). .
  • the chromatogram was analyzed by comparing retention times with various standard substances.
  • reaction vessel made of Inconel (registered trademark) -625, 1.06 mL of oleic acid (manufactured by Nacalai Tesque) and 3.94 mL of liquid dimethyl carbonate (manufactured by Nacalai Tesque) were introduced. The molar ratio of both is 1:14.
  • the reaction vessel was immersed in a molten tin bath, the reaction temperature was 300 ° C., and the reaction pressure was 9 MPa. After maintaining the reaction time for 4 minutes, 6 minutes, and 8 minutes, the reaction vessel was immersed in a water bath to stop the reaction. The reaction solution was evaporated at 90 ° C. for 20 minutes, and dimethyl carbonate was distilled off.
  • the obtained liquid was analyzed using high performance liquid chromatography (Shimadzu, LC-10AT) comprising a column (Codenza CD-C18) and a refractive index measuring device (Shimadzu, RID-10A).
  • the HPLC chromatogram of the product of Example 2 is shown in FIG. It was confirmed that fatty acid methyl ester can be obtained by allowing oleic acid and dimethyl carbonate to coexist and react under conditions of a temperature of 240 ° C. to 400 ° C. and a pressure of 2.0 MPa to 100 MPa.
  • FIG. 7 shows the change over time in the yield of the fatty acid methyl ester composition in Examples 1 and 2 and Comparative Example 1.
  • Example 1 It was confirmed that the yield of the fatty acid methyl ester in Example 1 was almost the same as that obtained when the methanol method of Comparative Example 1 was used. In addition, in Example 2 using oleic acid, the yield was 90% in a reaction time of 8 minutes, and the fatty acid was high in yield, despite the low temperature and low pressure conditions as compared with Example 1 and Comparative Example 1. It was confirmed that a methyl ester was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Fats And Perfumes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Disclosed is a process for producing a fatty acid alkyl ester composition from an oil-and-fat with high efficiency without the need of employing any raw material pretreatment step, any complicated purification step or the like. Specifically disclosed is a process for producing a fatty acid alkyl ester from an oil-and-fat component comprising at least a fatty acid glyceride and/or a fatty acid, which is characterized in that the fat component and a dialkyl carbonate are allowed to coexist and these components are reacted with each other at a temperature of 240 to 400˚C and at a pressure of 2.0 to 100 MPa.

Description

脂肪酸アルキルエステル組成物の製造方法及び油脂類の処理方法Method for producing fatty acid alkyl ester composition and method for treating fats and oils
 本発明は、脂肪酸グリセリド及び/又は脂肪酸を少なくとも含む油脂類から脂肪酸アルキルエステル組成物を製造する方法に関する。 The present invention relates to a method for producing a fatty acid alkyl ester composition from fats and oils containing at least fatty acid glycerides and / or fatty acids.
 植物油、動物油及びそれらの使用済油脂の主成分であるモノグリセリド、ジグリセリド及びトリグリセリド(以下、総称して脂肪酸グリセリドと称する)をアルキルアルコールとエステル交換反応させることによって、脂肪酸アルキルエステルが得られることは以前から知られている(例えば、「有機化学ハンドブック」技報堂出版1988,p.1407~p.1409)。また、この反応を利用して、油脂類からディーゼル燃料油として使えるアルキルエステルを得る製造技術についても、これまでに様々な検討がなされてきた。 Previously, fatty acid alkyl esters were obtained by transesterification of monoglycerides, diglycerides and triglycerides (hereinafter collectively referred to as fatty acid glycerides), which are the main components of vegetable oils, animal oils and their used fats and oils, with alkyl alcohols. (For example, “Organic Chemistry Handbook”, Gihodo Publishing 1988, p. 1407 to p. 1409). In addition, various studies have so far been made on production techniques for obtaining alkyl esters that can be used as diesel fuel oils from fats and oils using this reaction.
 脂肪酸グリセリドから脂肪酸エステルを工業的に製造する方法としては、無水条件下、脂肪酸トリグリセリドをアルカリ金属触媒の存在下に常圧で低級アルコールの沸点近傍又は常温にてエステル交換反応させる方法が一般的に用いられている。しかしながら、この反応では反応溶液中にアルカリ金属触媒を溶解した状態で使用されるものであるため、アルカリ金属触媒は生成物の溶液中に溶解することとなり、その分離、回収が困難であるという問題がある。 As a method for industrially producing a fatty acid ester from a fatty acid glyceride, a method in which a fatty acid triglyceride is transesterified at normal pressure in the presence of an alkali metal catalyst near the boiling point of a lower alcohol or at room temperature under an anhydrous condition is generally used. It is used. However, since this reaction is used in a state where the alkali metal catalyst is dissolved in the reaction solution, the alkali metal catalyst is dissolved in the product solution, and it is difficult to separate and recover the product. There is.
 さらに、廃油などには水が含まれている場合が多く、前記アルカリ金属触媒法の使用にあたっては、原料中の水分除去が前処理として不可欠である。また、天然の油脂には遊離脂肪酸が含有されているのが一般的であり、遊離脂肪酸が多量に含まれた状態でアルカリ金属触媒を用いると、アルカリセッケンが副生し、アルカリ金属触媒が過剰に必要となると共に、副生したアルカリセッケンのために脂肪酸エステル層とグリセリン層との分離が困難になる等の問題が生じる。こうしたことから、脂肪酸グリセリドのエステル交換反応をアルカリ金属触媒の存在下で行う場合には、遊離脂肪酸を除去するための前処理工程が必要となる。 Furthermore, water is often contained in waste oil or the like, and in using the alkali metal catalyst method, removal of water in the raw material is indispensable as a pretreatment. In addition, natural fats and oils generally contain free fatty acids. If an alkali metal catalyst is used in a state where a large amount of free fatty acid is contained, an alkali soap is produced as a by-product, resulting in excessive alkali metal catalyst. In addition, there is a problem that separation of the fatty acid ester layer and the glycerin layer becomes difficult due to the alkali soap produced as a by-product. For these reasons, when the transesterification of fatty acid glycerides is carried out in the presence of an alkali metal catalyst, a pretreatment step for removing free fatty acids is required.
 このような問題を回避するという観点から、本発明者らは、超臨界メタノールを用いた無触媒でのバイオディーゼル燃料製造技術(一段階法(Saka法)及び二段階法(Saka-Dadan法))を開発している(非特許文献1、2参照)。 From the viewpoint of avoiding such problems, the present inventors have developed a non-catalyzed biodiesel fuel production technology using a supercritical methanol (one-stage method (Saka method) and two-stage method (Saka-Dadan method)). (See Non-Patent Documents 1 and 2).
 本発明は、原料の前処理工程や煩雑な精製工程等を必要とせず、高効率に油脂類から脂肪酸アルキルエステル組成物を製造する方法を提供することを主目的とする。 The main object of the present invention is to provide a method for producing a fatty acid alkyl ester composition from fats and oils with high efficiency without requiring a raw material pretreatment step or a complicated purification step.
 本願発明者らは、鋭意検討の結果、ジアルキルカーボネートを用い、所定の条件下で反応させることにより、原料の前処理工程や煩雑な精製工程を必要とせず、高効率に脂肪酸アルキルエステルが得られることを見いだし、本発明に至った。
 即ち、本発明は、脂肪酸グリセリド及び/又は脂肪酸を少なくとも含む油脂類から脂肪酸アルキルエステルを製造する方法であって、
 前記油脂類とジアルキルカーボネートとを共存させ、温度240℃~400℃、圧力2.0MPa~100MPaの条件下で反応させることを特徴とする、脂肪酸アルキルエステルの製造方法を提供する。前記油脂類とジアルキルカーボネートとを共存させ、ジアルキルカーボネート温度240℃~400℃、圧力2.0MPa~100MPaの条件下で反応させることにより、高収率で脂肪酸アルキルエステルを得ることができる。
 本発明において、用いられるジアルキルカーボネートの種類は特に限定されないが、ジメチルカーボネートとするのが好適である。
 また、本発明において、前記油脂類に対するジアルキルカーボネートの量は特に限定されないが、前記油脂類に含まれる脂肪酸グリセリド1モルに対して前記ジアルキルカーボネートが3.0モル~126モルとするのが好適である。また、前記油脂類に含まれる脂肪酸1モルに対して前記ジアルキルカーボネートが1.0モル~42モルとするのが好適である。
 本発明で得られる前記脂肪酸アルキルエステルの用途は特に限定されないが、例えばディーゼル燃料油として好適に使用することができる。
 そして、本発明は、脂肪酸グリセリド及び/又は脂肪酸を少なくとも含む油脂類を処理する方法であって、
 前記油脂類とジアルキルカーボネートとを共存させ、温度240℃~400℃、圧力2.0MPa~100MPaの条件下で反応させることを特徴とする、油脂類の処理方法を提供する。
As a result of intensive studies, the inventors of the present invention can obtain a fatty acid alkyl ester with high efficiency by using dialkyl carbonate and reacting under predetermined conditions without requiring a raw material pretreatment step and a complicated purification step. As a result, the present invention has been achieved.
That is, the present invention is a method for producing a fatty acid alkyl ester from fats and oils containing at least fatty acid glycerides and / or fatty acids,
Provided is a method for producing a fatty acid alkyl ester, characterized by allowing the oil and fat and a dialkyl carbonate to coexist and react under conditions of a temperature of 240 ° C. to 400 ° C. and a pressure of 2.0 MPa to 100 MPa. Fatty acid alkyl esters can be obtained in high yield by allowing the oils and fats and dialkyl carbonate to coexist and react under conditions of a dialkyl carbonate temperature of 240 ° C. to 400 ° C. and a pressure of 2.0 MPa to 100 MPa.
In the present invention, the type of dialkyl carbonate used is not particularly limited, but dimethyl carbonate is preferred.
In the present invention, the amount of dialkyl carbonate with respect to the oil or fat is not particularly limited, but it is preferable that the dialkyl carbonate is 3.0 to 126 mol with respect to 1 mol of fatty acid glyceride contained in the oil or fat. is there. Further, the dialkyl carbonate is preferably used in an amount of 1.0 mol to 42 mol with respect to 1 mol of the fatty acid contained in the fats and oils.
Although the use of the said fatty-acid alkylester obtained by this invention is not specifically limited, For example, it can use suitably as a diesel fuel oil.
And this invention is a method of processing fats and oils containing at least fatty acid glycerides and / or fatty acids,
Provided is a method for treating fats and oils, characterized by allowing the fats and oils and a dialkyl carbonate to coexist and react under conditions of a temperature of 240 ° C. to 400 ° C. and a pressure of 2.0 MPa to 100 MPa.
 本発明において用いられる用語について、以下に説明する。 The terms used in the present invention will be described below.
 本発明において、「油脂類」とは、上述の通り脂肪酸グリセリド及び/又は脂肪酸を含むものであって、一般にいう脂肪酸モノグリセリド、脂肪酸ジグリセリド、脂肪酸トリグリセリドを主として含むものの他、脂肪酸、及びこれらの混合物をいう。即ち、「油脂類」とは、脂肪酸グリセリドを含まず脂肪酸のみを含むものをも広く包含するものとする。 In the present invention, “oils and fats” include fatty acid glycerides and / or fatty acids as described above, and generally include fatty acid monoglycerides, fatty acid diglycerides, fatty acid triglycerides, fatty acids, and mixtures thereof. Say. That is, “oils and fats” broadly includes those containing only fatty acids without containing fatty acid glycerides.
 本発明によれば、原料の前処理工程や煩雑な精製工程等を必要とせず、高効率に油脂類から脂肪酸アルキルエステル組成物を製造することができる。 According to the present invention, a fatty acid alkyl ester composition can be produced from oils and fats with high efficiency without requiring a raw material pretreatment step or a complicated purification step.
 以下、本発明を実施するための好適な形態について説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。 Hereinafter, preferred embodiments for carrying out the present invention will be described. In addition, embodiment described below shows an example of typical embodiment of this invention, and, thereby, the range of this invention is not interpreted narrowly.
 本発明に係る脂肪酸アルキルエステル組成物の製造方法は、油脂類とジアルキルカーボネートとを共存させ、ジアルキルカーボネートの温度240℃~400℃、圧力2.0MPa~100MPaの条件下で反応させることを特徴の一とする。 The method for producing a fatty acid alkyl ester composition according to the present invention is characterized in that oils and fats and a dialkyl carbonate are allowed to coexist and are reacted under the conditions of a dialkyl carbonate at a temperature of 240 ° C. to 400 ° C. and a pressure of 2.0 MPa to 100 MPa. One.
 本発明で用いられるジアルキルカーボネートは、下記一般式(1)で示される化合物である。ジアルキルカーボネートの一例であるジメチルカーボネートの物理的及び熱力学的物性を表1に示す。 The dialkyl carbonate used in the present invention is a compound represented by the following general formula (1). Table 1 shows the physical and thermodynamic properties of dimethyl carbonate, which is an example of a dialkyl carbonate.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記表1からわかるように、本発明における反応温度240℃~400℃、反応圧力2.0MPa~100MPaは、ジアルキルカーボネートの臨界条件又は亜臨界条件に相当する。 As can be seen from Table 1 above, the reaction temperature of 240 ° C. to 400 ° C. and the reaction pressure of 2.0 MPa to 100 MPa in the present invention correspond to the critical condition or subcritical condition of dialkyl carbonate.
 ジアルキルカーボネートの原料は、バイオマスの熱力学的処理により得られる合成ガスに由来するものであり、ジアルキルカーボネート自体が環境に優しい材料であるといえる。従って、油脂類とジアルキルカーボネートから得られるバイオディーゼルは、真の意味で環境に優しいバイオ燃料ということができる。 The raw material for dialkyl carbonate is derived from synthesis gas obtained by thermodynamic treatment of biomass, and it can be said that dialkyl carbonate itself is an environmentally friendly material. Therefore, biodiesel obtained from fats and oils and dialkyl carbonate can be said to be a biofuel that is environmentally friendly in a true sense.
 本発明に用いられるジアルキルカーボネートの種類は特に限定されないが、ジメチルカーボネートを用いるのが好適である。ジメチルカーボネートを用いることにより、バイオディーゼルとして好適な脂肪酸メチルエステルが得られるため好適である。 The type of dialkyl carbonate used in the present invention is not particularly limited, but dimethyl carbonate is preferably used. Use of dimethyl carbonate is preferred because fatty acid methyl esters suitable as biodiesel can be obtained.
 本発明において用いられる油脂類は、脂肪酸グリセリド及び/又は脂肪酸を少なくとも含むものであれば特に限定されず、例えば、植物油、動物油、廃油等を用いることができる。 Oils and fats used in the present invention are not particularly limited as long as they contain at least fatty acid glycerides and / or fatty acids. For example, vegetable oils, animal oils, waste oils, and the like can be used.
 植物油の具体例としては、例えば、ナタネ油、ヒマワリ油、パーム油、パーム核油、ダイズ油、菜種油、ヒマシ油、オリーブ油、ナンヨウアブラギリからのクルカス油等が挙げられる。 Specific examples of vegetable oils include, for example, rapeseed oil, sunflower oil, palm oil, palm kernel oil, soybean oil, rapeseed oil, sunflower oil, olive oil, curcas oil from nanyo aragi.
 動物油の具体例として、例えば、イワシ油、サバ油、ニシン油、ラード油、バター油、牛脂、馬脂、豚脂、サメ油、鯨油等が挙げられる。 Specific examples of animal oils include sardine oil, mackerel oil, herring oil, lard oil, butter oil, beef tallow, horse fat, pork fat, shark oil, whale oil and the like.
 はじめに、本発明において脂肪酸グリセリドから脂肪酸アルキルエステルを得る方法について以下に説明する。 First, a method for obtaining a fatty acid alkyl ester from a fatty acid glyceride in the present invention will be described below.
 脂肪酸グリセリドにジアルキルカーボネートを共存させ、温度240℃~400℃、圧力2.0MPa~100MPaの条件下で反応させることにより、脂肪酸アルキルエステルが得られる(式(2)参照)。 A fatty acid glyceride is obtained by allowing a dialkyl carbonate to coexist in a fatty acid glyceride and reacting under conditions of a temperature of 240 ° C. to 400 ° C. and a pressure of 2.0 MPa to 100 MPa (see formula (2)).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 なお、式(2)において、ジアルキルカーボネートの二つのアルキル基は同一のものとして記載しているが、それぞれのアルキル基を異なるものとしてもよい。 In the formula (2), the two alkyl groups of the dialkyl carbonate are described as being the same, but each alkyl group may be different.
 一例として、脂肪酸トリグリセリドとジメチルカーボネートとの反応式を図1に示す。脂肪酸トリグリセリド(TG)は、等モルのジメチルカーボネートと反応し、脂肪酸メチルエステル(FAME)と脂肪酸モノメチルカーボネートジグリセリド(MMCDG)を生成する(図1(a)参照)。脂肪酸モノメチルカーボネートジグリセリド(MMCDG)は、さらに等モルのジメチルカーボネートと反応し、脂肪酸メチルエステル(FAME)と脂肪酸ジメチルカーボネートモノグリセリド(DMCMG)を生成する(図1(b)参照)。脂肪酸ジメチルカーボネートモノグリセリド(DMCMG)は、等モルのジメチルカーボネートと反応し、脂肪酸メチルエステル(FAME)とグリセロールカーボネート(GC)及びシトラマル酸(CA)を生成する(図1(c)参照)。 As an example, the reaction formula of fatty acid triglyceride and dimethyl carbonate is shown in FIG. Fatty acid triglyceride (TG) reacts with equimolar dimethyl carbonate to produce fatty acid methyl ester (FAME) and fatty acid monomethyl carbonate diglyceride (MMCDG) (see FIG. 1 (a)). Fatty acid monomethyl carbonate diglyceride (MMCDG) further reacts with equimolar dimethyl carbonate to produce fatty acid methyl ester (FAME) and fatty acid dimethyl carbonate monoglyceride (DMCMG) (see FIG. 1 (b)). Fatty acid dimethyl carbonate monoglyceride (DMCMG) reacts with equimolar dimethyl carbonate to produce fatty acid methyl ester (FAME), glycerol carbonate (GC) and citramalic acid (CA) (see FIG. 1 (c)).
 即ち、脂肪酸トリグリセリドは、温度240℃~400℃、圧力2.0MPa~100MPaの条件下において、三倍モルのジアルキルカーボネートと反応し、三倍モルの脂肪酸アルキルエステルを生成する。 That is, the fatty acid triglyceride reacts with triple mole of dialkyl carbonate under the conditions of a temperature of 240 ° C. to 400 ° C. and a pressure of 2.0 MPa to 100 MPa to produce a triple mole of fatty acid alkyl ester.
 脂肪酸グリセリドとジメチルカーボネートとの反応において、副生成物として得られるグリセロールカーボネートは、無色の液体であり、工業的に有用な化合物である。グリセロールカーボネート及びその誘導体は、塗料、染料、接着剤その他高分子材料等の溶剤として注目されている。 In the reaction of fatty acid glyceride and dimethyl carbonate, glycerol carbonate obtained as a by-product is a colorless liquid and an industrially useful compound. Glycerol carbonate and its derivatives are attracting attention as solvents for paints, dyes, adhesives and other polymer materials.
 さらに、グリセロールカーボネートと同時に得られるシトラマル酸についても、高純度に精製することにより、医薬品の原料等としての利用が期待されるものである。また、シトラマル酸については、前記油脂類とジメチルカーボネートとの反応において、酸触媒として機能していると推測される。 Furthermore, citramalic acid obtained at the same time as glycerol carbonate is expected to be used as a raw material for pharmaceuticals by purifying it with high purity. Moreover, about citramalic acid, it is estimated that it functions as an acid catalyst in reaction of the said fats and oils and dimethyl carbonate.
 次に、本発明において脂肪酸から脂肪酸アルキルエステルを得る方法について以下に説明する。 Next, a method for obtaining a fatty acid alkyl ester from a fatty acid in the present invention will be described below.
 脂肪酸にジアルキルカーボネートを共存させ、温度240℃~400℃、圧力2.0MPa~100MPaで反応させることにより、脂肪酸アルキルエステルが得られる(式(3)参照)。 A fatty acid alkyl ester is obtained by allowing a dialkyl carbonate to coexist with a fatty acid and reacting at a temperature of 240 ° C. to 400 ° C. and a pressure of 2.0 MPa to 100 MPa (see formula (3)).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 なお、式(3)において、ジアルキルカーボネートの二つのアルキル基が同一のものとして記載しているが、それぞれのアルキル基を異なるものとしてもよい。 In the formula (3), the two alkyl groups of the dialkyl carbonate are described as being the same, but each alkyl group may be different.
 一例として、脂肪酸とジメチルカーボネートの反応を式(4)に示す。脂肪酸は、等モルのジメチルカーボネートと反応し、等モルの脂肪酸メチルエステルを生成する。さらに、副生成物として等モルのグリオキザールと水を生成する。 As an example, the reaction between fatty acid and dimethyl carbonate is shown in Formula (4). Fatty acids react with equimolar dimethyl carbonate to produce equimolar fatty acid methyl esters. In addition, equimolar glyoxal and water are produced as by-products.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 脂肪酸とジメチルカーボネートとの反応における副生成物であるグリオキザールは、本発明の高温高圧の反応条件下においては、グリコール酸に変化する。このグリコール酸については、前記油脂類とジメチルカーボネートとの反応において、酸触媒として機能していると推測される。 Glyoxal, which is a by-product in the reaction between fatty acid and dimethyl carbonate, is converted to glycolic acid under the high temperature and high pressure reaction conditions of the present invention. This glycolic acid is presumed to function as an acid catalyst in the reaction between the oils and fats and dimethyl carbonate.
 本発明に係る脂肪酸アルキルエステルの具体的製造方法は以下の通りである(図2参照)。まず、脂肪酸グリセリド及び/又は脂肪酸を少なくとも含む油脂類とジアルキルカーボネートとを反応器に添加する。そして、反応温度を240℃~400℃、反応圧力を2.0MPa~100MPaに設定し、反応を進行させる。 The specific method for producing the fatty acid alkyl ester according to the present invention is as follows (see FIG. 2). First, fats and oils containing at least fatty acid glyceride and / or fatty acid and dialkyl carbonate are added to the reactor. Then, the reaction temperature is set to 240 ° C. to 400 ° C., the reaction pressure is set to 2.0 MPa to 100 MPa, and the reaction proceeds.
 反応終了後、未反応のジアルキルカーボネートを除去すると、脂肪酸アルキルエステルが上層に、副生成物が下層に、それぞれ分離した状態の反応液が得られる。この上層と下層を分離することにより、脂肪酸アルキルエステルを得ることができる。 After completion of the reaction, when the unreacted dialkyl carbonate is removed, a reaction solution in which the fatty acid alkyl ester is separated into the upper layer and the by-product is separated into the lower layer is obtained. The fatty acid alkyl ester can be obtained by separating the upper layer and the lower layer.
 本発明において、用いられる反応器については特に限定されず、例えばバッチ式反応器や連続式槽型反応器、ピストンフロー型流通式反応器、塔型流通式反応器塔を用いることができる。 In the present invention, the reactor to be used is not particularly limited, and for example, a batch reactor, a continuous tank reactor, a piston flow reactor or a tower reactor can be used.
 かかる反応において、具体的反応条件は、温度240℃~400℃、圧力2.0MPa~100MPaの範囲内であれば特に限定されないが、好適には270℃~350℃、4.6MPa~45MPaとするのが望ましい。かかる反応条件とすることにより、脂肪酸アルキルエステル組成物の分解が生じることなく、高収率で脂肪酸アルキルエステル組成物が得られるため望ましい。 In this reaction, the specific reaction conditions are not particularly limited as long as the temperature is within the range of 240 ° C. to 400 ° C. and the pressure is 2.0 MPa to 100 MPa, but preferably 270 ° C. to 350 ° C., 4.6 MPa to 45 MPa. Is desirable. Such reaction conditions are desirable because the fatty acid alkyl ester composition can be obtained in a high yield without decomposition of the fatty acid alkyl ester composition.
 また、前記油脂類に対するジアルキルカーボネートの量は特に限定されないが、前記油脂類に含まれる脂肪酸グリセリド1モルに対して前記ジアルキルカーボネートを3.0モル~126モルとするのが好適であり、より好適には21モル~51モルの範囲とするのが望ましい。 Further, the amount of the dialkyl carbonate with respect to the fats and oils is not particularly limited, but the dialkyl carbonate is preferably 3.0 to 126 mol, more preferably 1 mol of the fatty acid glyceride contained in the fats and oils. Is preferably in the range of 21 mol to 51 mol.
 また、前記油脂類に含まれる脂肪酸1モルに対して前記ジアルキルカーボネートを1.0モル~42モルとするのが好適であり、より好適には7モル~17モルとするのが望ましい。 Further, the dialkyl carbonate is preferably 1.0 to 42 mol, more preferably 7 to 17 mol, per 1 mol of the fatty acid contained in the fats and oils.
 反応時間は、前記油脂類がジアルキルカーボネートと反応し、脂肪酸アルキルエステルを生成するのに足る時間である。一般的には、反応時間は反応条件に応じて2分~60分、より好ましくは3分~20分である。 The reaction time is a time sufficient for the fats and oils to react with the dialkyl carbonate to produce a fatty acid alkyl ester. In general, the reaction time is 2 minutes to 60 minutes, more preferably 3 minutes to 20 minutes, depending on the reaction conditions.
 本発明に係る製造方法において、ジアルキルカーボネートを除去する具体的方法は特に限定されず、例えば、反応混合物を蒸留塔に導入し、蒸留によってジアルキルカーボネートを塔頂から除去する方法等が挙げられる。 In the production method according to the present invention, a specific method for removing dialkyl carbonate is not particularly limited, and examples thereof include a method in which a reaction mixture is introduced into a distillation column and dialkyl carbonate is removed from the top of the column by distillation.
 本発明に係る脂肪酸アルキルエステルの製造方法によって製造された脂肪酸アルキルエステルは、その用途は特に限定されないが、ディーゼル燃料油として好適に使用することができる。 The use of the fatty acid alkyl ester produced by the method for producing a fatty acid alkyl ester according to the present invention is not particularly limited, but can be suitably used as a diesel fuel oil.
 また、脂肪酸グリセリド及び/又は脂肪酸を少なくとも含む油脂類にジアルキルカーボネートを共存させ、温度240℃~400℃、圧力2.0MPa~100MPaの条件下で反応させることにより、極めて簡便な方法で脂肪酸アルキルエステルが得られる。 In addition, fatty acid glycerides and / or fatty acids containing at least fatty acids are allowed to coexist with a dialkyl carbonate, and reacted under conditions of a temperature of 240 ° C. to 400 ° C. and a pressure of 2.0 MPa to 100 MPa. Is obtained.
 また、前記脂肪酸グリセリドとジメチルカーボネートとの反応において、工業的に有用な化合物であるグリセロールカーボネート及びシトラマル酸を得ることができる。すなわち、本発明に係る油脂類の処理方法は、グリセロールカーボネート及びシトラマル酸の製造方法として用いられ得るものである。 Also, glycerol carbonate and citramalic acid, which are industrially useful compounds, can be obtained in the reaction of the fatty acid glyceride and dimethyl carbonate. That is, the method for treating fats and oils according to the present invention can be used as a method for producing glycerol carbonate and citramalic acid.
 本発明によれば、触媒を使用することなく、簡便な製造工程及び精製工程で、油脂類から脂肪酸アルキルエステルを得ることができる。さらに、従来技術である超臨界メタノール法と同等の収率で脂肪酸アルキルエステルを得ることができる。加えて、ジアルキルカーボネート自体が天然物から得られうるものであり、環境に優しい製造方法であるといえる。 According to the present invention, fatty acid alkyl esters can be obtained from fats and oils by a simple production process and purification process without using a catalyst. Furthermore, the fatty acid alkyl ester can be obtained in a yield equivalent to that of the supercritical methanol method which is a conventional technique. In addition, the dialkyl carbonate itself can be obtained from natural products, and can be said to be an environmentally friendly production method.
 以下、実施例をあげて本発明を詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to the following examples.
<実施例1>
 本発明に係る製造方法によって、油脂類から脂肪酸メチルエステル組成物が得られることを検証した。
<Example 1>
It verified that the fatty-acid methyl ester composition was obtained from fats and oils by the manufacturing method which concerns on this invention.
 Inconel(登録商標)-625で作製された5mLの反応容器に、菜種油(ナカライテスク社製)1.08mLと液体ジメチルカーボネート(ナカライテスク社製)3.92mLを導入した。両者のモル比は1:42である。
 反応容器を溶融状態の錫浴に浸し、反応温度を350℃とした。反応時間として3分間、6分間、9分間、12分間、15分間保持した後、反応を停止するために反応容器を水浴に浸した。
 反応液を90℃、20分間エバポレートし、ジメチルカーボネートを留去した。得られた液体は上下2層に分離した状態であった。
 得られた上層について、カラム(Codenza CD-C18)と屈折率測定器(Shimadzu,RID-10A)からなる高速液体クロマトグラフィー(Shimadzu,LC-10AT)及び紫外線検出器(Shimadzu,SPD-10Avp,λ=205nm)と屈折率測定器及びAsahipak GF310-HQカラムを備えたゲル浸潤クロマトグラフィー(GPC)を使用して分析を行った。クロマトグラムの解析は、各種標準物質と保持時間を比較することにより行った。
 得られた下層についても、上記ゲル浸潤クロマトグラフィー(GPC)を用いて分析を行った。
1.08 mL of rapeseed oil (manufactured by Nacalai Tesque) and 3.92 mL of liquid dimethyl carbonate (manufactured by Nacalai Tesque) were introduced into a 5 mL reaction vessel made of Inconel (registered trademark) -625. The molar ratio of both is 1:42.
The reaction vessel was immersed in a molten tin bath, and the reaction temperature was 350 ° C. The reaction time was held for 3, 6, 9, 12, and 15 minutes, and then the reaction vessel was immersed in a water bath to stop the reaction.
The reaction solution was evaporated at 90 ° C. for 20 minutes, and dimethyl carbonate was distilled off. The obtained liquid was in a state of being separated into two upper and lower layers.
The obtained upper layer was subjected to high performance liquid chromatography (Shimadzu, LC-10AT) consisting of a column (Codenza CD-C18) and a refractometer (Shimadzu, RID-10A) and an ultraviolet detector (Shimadzu, SPD-10Avp, λ). = 205 nm) and a gel infiltration chromatography (GPC) equipped with a refractometer and Asahipak GF310-HQ column. The chromatogram was analyzed by comparing retention times with various standard substances.
The obtained lower layer was also analyzed using the gel infiltration chromatography (GPC).
 実施例1の上層のHPLCクロマトグラム及びGPCクロマトグラムをそれぞれ図3、図4に示す。また、下層のGPCクロマトグラムを図5に示す。 FIGS. 3 and 4 show the HPLC chromatogram and GPC chromatogram of the upper layer of Example 1, respectively. The lower layer GPC chromatogram is shown in FIG.
 上層のHPLCクロマトグラム(図3)より、菜種油とジメチルカーボネートを共存させ、温度240℃~400℃、圧力2.0MPa~100MPaの条件下で反応させることにより、パルミチン酸メチル(C16-0)、ステアリン酸メチル(C18-0)、オレイン酸メチル(C18-1)、リノール酸メチル(C18-2)、リノレン酸メチル等から構成される脂肪酸メチルエステルが得られることを確認した。また、上層のGPCクロマトグラム(図4)より、菜種油とジメチルカーボネートとの反応において、中間体としてメチルカーボネートジクリセリド(MCDG)及びジメチルカーボネートモノグリセリド(DMCMG)が生じることを確認した。 From the HPLC chromatogram of the upper layer (FIG. 3), rapeseed oil and dimethyl carbonate were allowed to coexist and reacted under conditions of a temperature of 240 ° C. to 400 ° C. and a pressure of 2.0 MPa to 100 MPa, whereby methyl palmitate (C16-0), It was confirmed that a fatty acid methyl ester composed of methyl stearate (C18-0), methyl oleate (C18-1), methyl linoleate (C18-2), methyl linolenate and the like was obtained. Further, from the GPC chromatogram of the upper layer (FIG. 4), it was confirmed that methyl carbonate diglyceride (MCDG) and dimethyl carbonate monoglyceride (DMCMG) were generated as intermediates in the reaction of rapeseed oil and dimethyl carbonate.
 さらに、下層のHPLCクロマトグラム(図5)より、副生成物として、グリセロールカーボネート及びシトラマル酸が生成することを確認した。 Furthermore, from the lower layer HPLC chromatogram (FIG. 5), it was confirmed that glycerol carbonate and citramalic acid were produced as by-products.
<比較例1>
 Inconel(登録商標)-625で作製された5mLの反応容器に、菜種油(ナカライテスク社製)1.1mLとメタノール(ナカライテスク社製)3.9mLを導入した。両者のモル比は1:42である。
 反応容器を溶融状態の錫浴に浸し、反応温度を350℃、43MPaとした。反応時間として3分間、6分間、9分間、12分間、15分間保持した後、反応を停止するために反応容器を水浴に浸した。
 反応液を90℃、20分間エバポレートし、メタノールを留去した。得られた液体は上下2層に分離した状態であった。
 得られた上層の脂肪酸メチルエステルについて、カラム(Codenza CD-C18)と屈折率測定器(Shimadzu,RID-10A)からなる高速液体クロマトグラフィー(Shimadzu,LC-10AT)を使用して分析を行った。クロマトグラムの解析は、各種標準物質と保持時間を比較することにより行った。
<Comparative Example 1>
1.1 mL of rapeseed oil (manufactured by Nacalai Tesque) and 3.9 mL of methanol (manufactured by Nacalai Tesque) were introduced into a 5 mL reaction vessel made of Inconel (registered trademark) -625. The molar ratio of both is 1:42.
The reaction vessel was immersed in a molten tin bath, and the reaction temperature was 350 ° C. and 43 MPa. After holding the reaction time as 3, 6, 9, 12, and 15 minutes, the reaction vessel was immersed in a water bath to stop the reaction.
The reaction solution was evaporated at 90 ° C. for 20 minutes, and methanol was distilled off. The obtained liquid was in a state of being separated into two upper and lower layers.
The obtained fatty acid methyl ester of the upper layer was analyzed using high performance liquid chromatography (Shimadzu, LC-10AT) consisting of a column (Codenza CD-C18) and a refractive index measuring device (Shimadzu, RID-10A). . The chromatogram was analyzed by comparing retention times with various standard substances.
<実施例2>
 本発明に係る製造方法によって、脂肪酸から脂肪酸メチルエステルが得られることを検証した。
<Example 2>
It verified that the fatty acid methyl ester was obtained from a fatty acid by the manufacturing method which concerns on this invention.
 Inconel(登録商標)-625で作製された5mLの反応容器に、オレイン酸(ナカライテスク社製)1.06mLと液体ジメチルカーボネート(ナカライテスク社製)3.94mLを導入した。両者のモル比は1:14である。
 反応容器を溶融状態の錫浴に浸し、反応温度を300℃、反応圧力を9MPaとした。反応時間として4分間、6分間、8分間保持した後、反応を停止するために反応容器を水浴に浸した。
 反応液を90℃、20分間エバポレートし、ジメチルカーボネートを留去した。
 得られた液体について、カラム(Codenza CD-C18)と屈折率測定器(Shimadzu,RID-10A)からなる高速液体クロマトグラフィー(Shimadzu,LC-10AT)を使用して分析を行った。
Into a 5 mL reaction vessel made of Inconel (registered trademark) -625, 1.06 mL of oleic acid (manufactured by Nacalai Tesque) and 3.94 mL of liquid dimethyl carbonate (manufactured by Nacalai Tesque) were introduced. The molar ratio of both is 1:14.
The reaction vessel was immersed in a molten tin bath, the reaction temperature was 300 ° C., and the reaction pressure was 9 MPa. After maintaining the reaction time for 4 minutes, 6 minutes, and 8 minutes, the reaction vessel was immersed in a water bath to stop the reaction.
The reaction solution was evaporated at 90 ° C. for 20 minutes, and dimethyl carbonate was distilled off.
The obtained liquid was analyzed using high performance liquid chromatography (Shimadzu, LC-10AT) comprising a column (Codenza CD-C18) and a refractive index measuring device (Shimadzu, RID-10A).
 実施例2の生成物のHPLCクロマトグラムを図6に示す。オレイン酸とジメチルカーボネートを共存させ、温度240℃~400℃、圧力2.0MPa~100MPaの条件下で反応させることにより、脂肪酸メチルエステルが得られることが確認された。 The HPLC chromatogram of the product of Example 2 is shown in FIG. It was confirmed that fatty acid methyl ester can be obtained by allowing oleic acid and dimethyl carbonate to coexist and react under conditions of a temperature of 240 ° C. to 400 ° C. and a pressure of 2.0 MPa to 100 MPa.
 実施例1、2及び比較例1における脂肪酸メチルエステル組成物の収率の経時的推移を図7に示す。 FIG. 7 shows the change over time in the yield of the fatty acid methyl ester composition in Examples 1 and 2 and Comparative Example 1.
 実施例1における脂肪酸メチルエステルの収率は、比較例1のメタノール法を使用した場合と比較してほぼ同等の収率であることを確認した。
 また、オレイン酸を用いた実施例2についても、実施例1及び比較例1と比較して低温、低圧条件にもかかわらず、8分間の反応時間で収率90%と、高い収率で脂肪酸メチルエステルが得られることを確認した。
It was confirmed that the yield of the fatty acid methyl ester in Example 1 was almost the same as that obtained when the methanol method of Comparative Example 1 was used.
In addition, in Example 2 using oleic acid, the yield was 90% in a reaction time of 8 minutes, and the fatty acid was high in yield, despite the low temperature and low pressure conditions as compared with Example 1 and Comparative Example 1. It was confirmed that a methyl ester was obtained.
脂肪酸トリグリセリドとジメチルカーボネートとの反応式を表す図である。It is a figure showing the reaction formula of a fatty acid triglyceride and dimethyl carbonate. 本発明に係る脂肪酸メチルエステル組成物の製造方法のフロー図である。It is a flowchart of the manufacturing method of the fatty-acid methyl ester composition which concerns on this invention. 実施例1で得られた上層のHPLCクロマトグラムである。2 is an HPLC chromatogram of the upper layer obtained in Example 1. 実施例1で得られた上層のGPCクロマトグラムである。3 is an upper layer GPC chromatogram obtained in Example 1. FIG. 実施例1で得られた下層のGPCクロマトグラムである。2 is a lower layer GPC chromatogram obtained in Example 1. FIG. 実施例2で得られた生成物のHPLCクロマトグラムである。2 is an HPLC chromatogram of the product obtained in Example 2. 実施例1、2及び比較例1における脂肪酸メチルエステル組成物の収率の経時的推移を表す図である。It is a figure showing the time-dependent transition of the yield of the fatty acid methyl ester composition in Examples 1 and 2 and Comparative Example 1.

Claims (6)

  1.  脂肪酸グリセリド及び/又は脂肪酸を少なくとも含む油脂類から脂肪酸アルキルエステルを製造する方法であって、
     前記油脂類とジアルキルカーボネートとを共存させ、温度240℃~400℃、圧力2.0MPa~100MPaの条件下で反応させることを特徴とする脂肪酸アルキルエステルの製造方法。
    A method for producing a fatty acid alkyl ester from fatty acids containing at least fatty acid glycerides and / or fatty acids,
    A method for producing a fatty acid alkyl ester, wherein the fats and oils and a dialkyl carbonate are allowed to coexist and react under conditions of a temperature of 240 ° C. to 400 ° C. and a pressure of 2.0 MPa to 100 MPa.
  2.  前記ジアルキルカーボネートは、ジメチルカーボネートであることを特徴とする請求項1記載の脂肪酸アルキルエステルの製造方法。 The method for producing a fatty acid alkyl ester according to claim 1, wherein the dialkyl carbonate is dimethyl carbonate.
  3.  前記油脂類に含まれる脂肪酸グリセリド1モルに対して前記ジアルキルカーボネートが3.0モル~126モルであることを特徴とする請求項1又は2記載の脂肪酸アルキルエステルの製造方法。 3. The method for producing a fatty acid alkyl ester according to claim 1, wherein the dialkyl carbonate is from 3.0 mol to 126 mol based on 1 mol of the fatty acid glyceride contained in the fats and oils.
  4.  前記油脂類に含まれる脂肪酸1モルに対して前記ジアルキルカーボネートが1.0モル~42モルであることを特徴とする請求項1~3のいずれか1項記載の脂肪酸アルキルエステルの製造方法。 The method for producing a fatty acid alkyl ester according to any one of claims 1 to 3, wherein the dialkyl carbonate is 1.0 mol to 42 mol with respect to 1 mol of the fatty acid contained in the oil or fat.
  5.  前記脂肪酸アルキルエステルがディーゼル燃料油として使用される、請求項1~4のいずれか1項記載の脂肪酸アルキルエステルの製造方法。 The method for producing a fatty acid alkyl ester according to any one of claims 1 to 4, wherein the fatty acid alkyl ester is used as a diesel fuel oil.
  6.  脂肪酸グリセリド及び/又は脂肪酸を少なくとも含む油脂類を処理する方法であって、
     前記油脂類とジアルキルカーボネートとを共存させ、温度240℃~400℃、圧力2.0MPa~100MPaの条件下で反応させることを特徴とする、油脂類の処理方法。
    A method of treating a fatty acid containing at least fatty acid glycerides and / or fatty acids,
    A method for treating fats and oils, characterized by causing the fats and oils and dialkyl carbonate to coexist and react under conditions of a temperature of 240 ° C to 400 ° C and a pressure of 2.0 MPa to 100 MPa.
PCT/JP2009/063670 2008-08-02 2009-07-31 Process for producing fatty acid alkyl ester composition, and method for treating oil-and-fat WO2010016441A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008200282A JP5454996B2 (en) 2008-08-02 2008-08-02 Method for producing fatty acid alkyl ester composition and method for treating fats and oils
JP2008-200282 2008-08-02

Publications (1)

Publication Number Publication Date
WO2010016441A1 true WO2010016441A1 (en) 2010-02-11

Family

ID=41663661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063670 WO2010016441A1 (en) 2008-08-02 2009-07-31 Process for producing fatty acid alkyl ester composition, and method for treating oil-and-fat

Country Status (2)

Country Link
JP (1) JP5454996B2 (en)
WO (1) WO2010016441A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8673028B2 (en) 2010-09-02 2014-03-18 The Regents Of The University Of Michigan Method of producing biodiesel from a wet biomass
JP2015536331A (en) * 2012-10-29 2015-12-21 アーチャー−ダニエルズ−ミッドランド カンパニー Alcohol-mediated esterification of carboxylic acids with carbonates

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993009111A2 (en) * 1991-11-01 1993-05-13 Henkel Corporation Novel methods for the preparation of glycerol carbonate esters
JPH0925257A (en) * 1995-07-11 1997-01-28 Nippon Steel Chem Co Ltd Production of polycyclic aromatic dicarboxlic acid dialkylester
WO2007039522A2 (en) * 2005-09-29 2007-04-12 Dsm Ip Assets B.V. Process for esterification of an organic acid
WO2008053825A1 (en) * 2006-10-31 2008-05-08 Yamaguchi University Method for producing fatty acid alkyl ester

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993009111A2 (en) * 1991-11-01 1993-05-13 Henkel Corporation Novel methods for the preparation of glycerol carbonate esters
JPH0925257A (en) * 1995-07-11 1997-01-28 Nippon Steel Chem Co Ltd Production of polycyclic aromatic dicarboxlic acid dialkylester
WO2007039522A2 (en) * 2005-09-29 2007-04-12 Dsm Ip Assets B.V. Process for esterification of an organic acid
WO2008053825A1 (en) * 2006-10-31 2008-05-08 Yamaguchi University Method for producing fatty acid alkyl ester

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8673028B2 (en) 2010-09-02 2014-03-18 The Regents Of The University Of Michigan Method of producing biodiesel from a wet biomass
JP2015536331A (en) * 2012-10-29 2015-12-21 アーチャー−ダニエルズ−ミッドランド カンパニー Alcohol-mediated esterification of carboxylic acids with carbonates

Also Published As

Publication number Publication date
JP5454996B2 (en) 2014-03-26
JP2010037239A (en) 2010-02-18

Similar Documents

Publication Publication Date Title
Guan et al. Transesterification of vegetable oil to biodiesel fuel using acid catalysts in the presence of dimethyl ether
JP5419713B2 (en) Use of fuels or fuel additives based on modified structure triglycerides and processes for their preparation
Mendow et al. Biodiesel production by two-stage transesterification with ethanol
Kucek et al. Ethanolysis of refined soybean oil assisted by sodium and potassium hydroxides
Mendow et al. Ethyl ester production by homogeneous alkaline transesterification: influence of the catalyst
DK2820112T3 (en) PROCEDURE FOR PREPARING POLYOLS AND APPLICATIONS THEREOF
Earle et al. Green synthesis of biodiesel using ionic liquids
EP1512738B1 (en) Process for producing fatty acid alkyl ester composition
US9505701B2 (en) Method for the production of esters and uses thereof
MX2008003068A (en) Method for making fatty acid ethyl esters from triglycerides and alcohols.
WO2009061355A1 (en) Catalysts for production of biodiesel fuel and glycerol
CA2774343A1 (en) A process for conversion of low cost and high ffa oils to biodiesel
Isayama et al. Biodiesel production by supercritical process with crude bio-methanol prepared by wood gasification
WO2006081644A2 (en) Catalytic process for the esterification of fatty acids
Mueanmas et al. Feasibility study of reactive distillation column for transesterification of palm oils
US8692008B2 (en) Use of methanesulfonic acid for preparing fatty acid esters
Manurung et al. Biodiesel production from ethanolysis of palm oil using deep eutectic solvent (DES) as co-solvent
JP5454996B2 (en) Method for producing fatty acid alkyl ester composition and method for treating fats and oils
JP5649174B2 (en) Method for producing fatty acid alkyl ester and method for treating fats and oils
KR20220164502A (en) Production of energy-efficient biodiesel from natural or industrial waste oil
JP2007332250A (en) Method for producing diesel engine fuel
KR101351675B1 (en) Method for the transesterification of hydroxylated oils
Buasri et al. Production of Biodiesel from Waste Cooking Oil Using Mixed Alcohol System
WO2024017722A1 (en) Mixed alkoxide catalyst for biodiesel production
KR101297204B1 (en) Method of dropping pour point of biodiesel, and biodiel having dropped pour point thereby

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09804925

Country of ref document: EP

Kind code of ref document: A1