JPS63280805A - Energy recovery system for airlift device - Google Patents

Energy recovery system for airlift device

Info

Publication number
JPS63280805A
JPS63280805A JP11356687A JP11356687A JPS63280805A JP S63280805 A JPS63280805 A JP S63280805A JP 11356687 A JP11356687 A JP 11356687A JP 11356687 A JP11356687 A JP 11356687A JP S63280805 A JPS63280805 A JP S63280805A
Authority
JP
Japan
Prior art keywords
air
turbine
heat
compressor
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11356687A
Other languages
Japanese (ja)
Inventor
Tatsuro Konishi
龍郎 小西
Terubumi Matsuda
光史 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP11356687A priority Critical patent/JPS63280805A/en
Publication of JPS63280805A publication Critical patent/JPS63280805A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To utilize thermal energy effectively by constructing an energy recovery system such that a turbine is driven through a heat cycle employing the heat of air compressed through an air compressor in an air lift device for lifting solid state material from the bottom of sea as a high heat source and power is generated. CONSTITUTION:An airlift device 1 supplies high pressure air from a compressor 6 through an air supply pipe 10 to the way of a lifting pipe 3 which sucks solid state material such as ore together with sea water when air ascends therethrough, then the solid state material is led into a gas/solid/liquid separation layer 5 and separated. Here, evaporators 16, 17 which exchange heat with high temperature air taken from an intermediate stage and final stage of the compressor 6 are coupled in series in a circulation pipe 14 for circulating working fluid such as Freon. The working fluid evaporated in the evaporators 16, 17 is employed for operating a turbine 13 and driving a generator 12, then heat exchanged in a condenser 18 with low temperature sea water separated through the separation tank 5 and condensed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、エアリフト装置で発生するエネルギーの有効
利用を図るエネルギー回収装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an energy recovery device for effectively utilizing energy generated in an airlift device.

従来の技術 従来から、海底、湖底、河川底等に存在する固形物を引
揚げ、採取する装置としてエアリフト装置がある。この
装置は、海面上の浮遊構造物(例えば台船ンから海底に
降下されるとともに下端に固形物のコレクタ(掻寄せ具
)が取付けられた採一′、水・、固形物をそれぞれに分
離する分離槽とから構−,4w 成されて訃り、さらに上記空気供給装置は、複数段に設
けられたニアコンプレッサと、このニアコンプレッサを
回転駆動させるモータと、上記ニアコンプレッサにより
圧縮された空気を冷却する空気冷却器とから構成されて
い2このエアリフト装置において、空気供給装置により
採取管内に空気が供給されると、採取管内で空気が上昇
し、同時に海水も上昇するため、コレクタより固形物が
海水と一緒に採取管内に吸込まれて海面上に引揚げられ
る。引揚げられた混合物は分離槽内に入シ、ここで空気
、海水、固形物にそれぞれ分離される。
2. Description of the Related Art Airlift devices have been known as devices for lifting and collecting solid matter existing on the seabed, lakebed, riverbed, etc. This device separates water and solids from floating structures on the sea surface (for example, a floating structure lowered from a barge to the seabed with a solids collector attached to the bottom end). Furthermore, the air supply device is composed of a near compressor provided in multiple stages, a motor that rotationally drives the near compressor, and an air compressed by the near compressor. 2 In this airlift device, when air is supplied into the collection tube by the air supply device, the air rises in the collection tube and at the same time the seawater also rises, so solids are removed from the collector. The mixture is sucked into the collection pipe together with seawater and lifted to the sea surface.The pulled-up mixture enters a separation tank, where it is separated into air, seawater, and solids.

発明が解決しようとする問題点 上記従来の構成によると、空気冷却器で圧縮空気を冷却
するが、ここで奪われた熱は利用されずそのまま放出さ
れており、ま念引揚げられた混合物のうち、回収される
のは固形物だけで、例えば海底からの低温の海水はその
まま海に放出されており、エネルギーが無駄に消費され
ていたという問題があり九。
Problems to be Solved by the Invention According to the above-mentioned conventional configuration, the compressed air is cooled by an air cooler, but the heat removed here is not utilized and is released as is. Of this, only solid matter is recovered; for example, low-temperature seawater from the ocean floor is discharged directly into the ocean, leading to the problem of wasted energy.

そこで、本発明は上記問題を解消し得るエアリ、7( 7ト装置におけるエネルギー回収装置を提供するトとを
目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an energy recovery device for an air system that can solve the above problems.

J: 口\問題を解決するための手段 上記問題を解決するため、本発明のエアリフト装置にお
けるエネルギー回収装置は、下端が水底に開口されると
ともに上端が水面上に開口された採取管と、この採取管
途中に空気を供給する空気圧縮機と、上記採取管を介し
て引揚げられる気固液の混合物をそれぞれに分離する気
固液分離装置とから構成されたエアリフト装置のエネル
ギー回収装置であって、発電機に連結されたタービンと
、このタービンの出口と入口との間でタービン作動流体
を循環させる循環路と、この循環路途中のタービン入口
室シに介装されて上記空気圧縮機で圧縮された空気の持
つ熱により作動流体を加熱して蒸発させる蒸発器と、上
記循環路途中のタービン出口寄シに介装されてタービン
を通過した作動流体蒸気を、上記分離装置で分離された
低温水により#!縮させる凝縮器とから構成したもので
ある。
J: Means for Solving the Problem In order to solve the above problem, the energy recovery device in the air lift device of the present invention includes a collection tube whose lower end is opened to the water bottom and whose upper end is opened above the water surface. This is an energy recovery device for an air lift device, which is composed of an air compressor that supplies air midway through the collection tube, and a gas-solid-liquid separation device that separates the gas-solid-liquid mixture lifted up through the collection tube. A turbine connected to the generator, a circulation path for circulating the turbine working fluid between the outlet and inlet of the turbine, and a circulation path interposed in the turbine inlet chamber in the middle of the circulation path to operate the air compressor. An evaporator that heats and evaporates the working fluid using the heat of the compressed air; and an evaporator that is installed at the turbine outlet port in the circulation path, and the working fluid vapor that has passed through the turbine is separated by the separation device. # by low temperature water! It consists of a condenser that condenses water.

作用 上記構成においては、エアリフト装置側の空気圧縮機で
圧縮された空気の持つ熱により、タービニ豐れた低温水
により凝縮再生するようにしたので、エアリフト装置側
で発生するエネルギーの回収をすることができる。
Effect In the above configuration, the heat of the air compressed by the air compressor on the air lift device side is used to condense and regenerate the low temperature water pumped into the turbine, so the energy generated on the air lift device side can be recovered. Can be done.

実施例 以下、本発明の一実施例を図面に基づき説明する。Example Hereinafter, one embodiment of the present invention will be described based on the drawings.

1はエアリフト装置で、例えば海底から鉱物を引揚げる
ためのものである。このエアリフト装置1は、下端がコ
レクタ(掻寄せ具)2に接続されて海底に開口されると
ともに上端が海面上の浮遊構造物(図示せず)上に開口
された採取管3と、この採取管3の下部途中に空気を供
給する空気供給装置4と、上記採取管3t−介して引揚
げられる気固液の混合物をそれぞれ分離する気固液の分
離槽(気固液分離装置の一例)5とから構成されている
。また、上記空気供給装置4はコンプレッサ(空気圧縮
機)6と、このコンプレッサ6を駆動するモータ7と、
上記コンプレッサ6にフィルター8t−介して空気を導
く空気導入管9と、上記コンプレッサ8から出九空気を
採取管3に供給する空気供給管10とから構成されてい
る。11は上記工口との間でタービン作動流体例えばフ
ロンを循環させる循環管(循環路)14と、この循環管
14途中のタービン入口寄りに介装されて上記コンプレ
ッサ6の中間段から引出された空気引出管15内を流れ
る空気の熱によシフロン液を加熱して蒸発させる第1x
発器16と、同じく循環管14途中のさらにタービン入
口寄りに介装されて上記コンプレッサ6の終段すなわち
空気供給管10内を流れる空気の熱によりフロン液を加
熱して蒸発させる第2蒸発器17と、上記循環管14途
中のタービン出口寄りに介装されてタービン13を通過
したフロンX9Cを、エアリフト装置1の分離N5で分
離された低温の海水によシ凝縮させる凝縮器18と、こ
の凝縮器18と第1蒸発器16との間の循環管14途中
に介装されたフロン用ボンデ19とから構成されている
。また分離槽5と凝縮器18との間には、海水移゛送管
2oが設けられている。
1 is an air lift device, for example, for lifting minerals from the seabed. This air lift device 1 includes a collection tube 3 whose lower end is connected to a collector (raking device) 2 and opened to the seabed, and whose upper end is opened onto a floating structure (not shown) on the sea surface. An air supply device 4 that supplies air to the middle of the lower part of the pipe 3, and a gas-solid-liquid separation tank that separates the gas-solid-liquid mixture pulled up through the collection pipe 3t (an example of a gas-solid-liquid separation device). It consists of 5. The air supply device 4 also includes a compressor (air compressor) 6, a motor 7 that drives the compressor 6,
It consists of an air introduction pipe 9 that introduces air to the compressor 6 through a filter 8t, and an air supply pipe 10 that supplies air from the compressor 8 to the collection pipe 3. Reference numeral 11 denotes a circulation pipe (circulation path) 14 for circulating a turbine working fluid, such as fluorocarbon, between the above-mentioned processing port, and a circulation pipe 14 that is interposed midway near the turbine inlet and drawn out from the intermediate stage of the compressor 6. 1st x which heats and evaporates the syflon liquid by the heat of the air flowing in the air extraction pipe 15;
The generator 16 and a second evaporator, which is also installed in the middle of the circulation pipe 14 and closer to the turbine inlet, heats and evaporates the fluorocarbon liquid using the heat of the air flowing in the final stage of the compressor 6, that is, the air supply pipe 10. 17, a condenser 18 which is installed near the turbine outlet in the middle of the circulation pipe 14 and condenses the Freon X9C that has passed through the turbine 13 into the low temperature seawater separated by the separation N5 of the air lift device 1; It consists of a fluorocarbon bond 19 interposed in the middle of the circulation pipe 14 between the condenser 18 and the first evaporator 16. Further, a seawater transfer pipe 2o is provided between the separation tank 5 and the condenser 18.

次にV作用について説明する。Next, the V effect will be explained.

まず、エアリフト装置1側について説明する。First, the air lift device 1 side will be explained.

管内を上昇すると同時に海水も上昇させ、下端のコレク
タ2から海水とともに固形物例えば鉱物を吸込む。採取
管3内に吸込まれた鉱物および海水は圧縮空気と一緒に
海面上に上昇されて気固液の分離槽5内に入ジ、ここで
それぞれ圧縮空気、海水および鉱物に分離される。
At the same time as it rises in the pipe, the seawater also rises, and solids such as minerals are sucked in from the collector 2 at the lower end along with the seawater. The minerals and seawater sucked into the collection tube 3 are raised above the sea surface together with compressed air and enter the gas-solid-liquid separation tank 5, where they are separated into compressed air, seawater, and minerals, respectively.

次に、エネルギー回収装置11側について説明すると、
フロン用ボンデ19により移送されるフロン液は、まず
第1蒸発器16でコンプレッサ6中間段から引出された
中圧空気の持つ熱により加熱蒸発され、次に第2蒸発器
17でコンプレッサ6終段での高圧空気の持つ熱により
加熱蒸発が促進される。
Next, the energy recovery device 11 side will be explained.
The fluorocarbon liquid transferred by the fluorocarbon bonder 19 is first heated and evaporated in the first evaporator 16 by the heat of medium pressure air drawn from the intermediate stage of the compressor 6, and then in the second evaporator 17 to the final stage of the compressor 6. The heat of the high-pressure air accelerates heating evaporation.

このフロン蒸気はタービン13に入り、発電機12ヲ回
転させた後、凝縮器18で分離槽5から海水移送管20
t−介して送られる低温の海水により凝縮再生される。
This fluorocarbon vapor enters the turbine 13, rotates the generator 12, and then passes through the condenser 18 from the separation tank 5 to the seawater transfer pipe 20.
It is condensed and regenerated by low-temperature seawater sent through the T-T.

そして、この凝縮されたフロン液は、ポンプ19によシ
再び蒸発器16.17に送られて上記発電作用が繰返し
て行なわれる。このように、コンプレッサ6の中間段お
よび終段での空気の持つ熱フト装置1側が発生するエネ
ルギーを回収することができる。
Then, this condensed fluorocarbon liquid is sent again to the evaporators 16 and 17 by the pump 19, and the above-mentioned power generation operation is repeated. In this way, the energy generated by the air in the intermediate and final stages of the compressor 6 on the thermal lift device 1 side can be recovered.

ところで、上記実施例においては、低温の海水を使用し
てフロン蒸気を凝縮するようにし九が、さらにこの凝縮
されたフロン液を海面近くの温度の高い海水によシ加熱
して、フロン液の温度を高めてから蒸発器に送るように
してもよい。また、上記実施例においては、コンプレッ
サからの圧縮空気を、直接、各蒸発器に導いたが、圧縮
空気の持つ熱を一旦別の熱媒体に与え、そしてこの熱媒
体金各蒸発器に導いてフロン液を加熱蒸発させるように
してもよい。さらに、上記実施例に)いては、コンプレ
ッサを1台しか設けなかったが、複数台例えば低圧コン
プレッサ、中圧コンデレツサオヨヒ高圧コンプレッサを
直列に接続して多段に圧縮を行なうようにしてもよい。
By the way, in the above embodiment, low-temperature seawater is used to condense the fluorocarbon vapor, and the condensed fluorocarbon liquid is further heated by high-temperature seawater near the sea surface to make the fluorocarbon liquid. Alternatively, the temperature may be raised before sending to the evaporator. In addition, in the above embodiment, the compressed air from the compressor was directly guided to each evaporator, but the heat of the compressed air was first given to another heat medium, and then the heat medium was guided to each evaporator. The fluorocarbon liquid may be heated and evaporated. Furthermore, although only one compressor was provided in the above embodiment, a plurality of low-pressure compressors, medium-pressure compressors, and high-pressure compressors may be connected in series to perform compression in multiple stages. .

勿論、この場合、各コンプレッサの中間段から空気が引
出されて、その空気の持つ熱がフロン液の加熱蒸発に利
用される。なお、タービン作動流体の一例としてフロ角
トの効果 −」°上記本発明の構成によると、空気圧縮機で圧縮さ
れた空気の持つ熱を高熱源とするとともに気固液分離装
置からの妓温水を低熱源として、作動流体の熱サイクl
v′j1r:構成し、この熱サイクルによりタービンを
回転させて発電を行なうようにしたので、従来、放出さ
れていた空気冷却器で生じる熱エネルギーおよび低温水
の持つ熱エネルギーの回収を図ることができる。
Of course, in this case, air is drawn out from the intermediate stage of each compressor, and the heat of the air is used to heat and evaporate the fluorocarbon liquid. In addition, as an example of the turbine working fluid, the effect of the flow angle is as follows. According to the configuration of the present invention described above, the heat of the air compressed by the air compressor is used as a high heat source, and the hot water from the gas-solid-liquid separation device is used as a high heat source. As a low heat source, the thermal cycle l of the working fluid is
v′j1r: Since this thermal cycle rotates the turbine and generates electricity, it is possible to recover the thermal energy generated by the air cooler and the thermal energy of low-temperature water that was previously released. can.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示す全体概略構成図である。 1・−・エアリフト装置、3・・・採取管、4・・・空
気供給装置、5・・・分離槽(気固液分離装置)、6・
・・コンプレッサ(空気圧縮器)、11・・・エネルギ
ー回収装置、12・・・発電機、13・・・タービン、
14・・・循環管(循環路)、16・・・第1蒸発器、
17・・・第2蒸発器、18・・・凝縮器。
The drawing is an overall schematic diagram showing an embodiment of the present invention. 1... Air lift device, 3... Collection tube, 4... Air supply device, 5... Separation tank (gas solid-liquid separation device), 6...
... Compressor (air compressor), 11 ... Energy recovery device, 12 ... Generator, 13 ... Turbine,
14... Circulation pipe (circulation path), 16... First evaporator,
17...Second evaporator, 18...Condenser.

Claims (1)

【特許請求の範囲】[Claims] 1、下端が水底に開口されるとともに上端が水面上に開
口された採取管と、この採取管途中に空気を供給する空
気圧縮機と、上記採取管を介して引揚げられる気固液の
混合物をそれぞれに分離する気固液分離装置とから構成
されたエアリフト装置のエネルギー回収装置であって、
発電機に連結されたタービンと、このタービンの出口と
入口との間でタービン作動流体を循環させる循環路と、
この循環路途中のタービン入口寄りに介装されて上記空
気圧縮機で圧縮された空気の持つ熱により作動流体を加
熱して蒸発させる蒸発器と、上記循環路途中のタービン
出口寄りに介装されてタービンを通過した作動流体蒸気
を、上記分離装置で分離された低温水により凝縮させる
凝縮器とから構成したことを特徴とするエアリフト装置
におけるエネルギー回収装置。
1. A collection pipe whose lower end is opened to the bottom of the water and whose upper end is opened above the water surface, an air compressor that supplies air to the middle of this collection pipe, and a mixture of gas-solid-liquid pulled up through the collection pipe. An energy recovery device for an airlift device comprising a gas-solid-liquid separator that separates the
a turbine connected to a generator; a circulation path for circulating a turbine working fluid between an outlet and an inlet of the turbine;
An evaporator is installed near the turbine inlet in the middle of this circulation path to heat and evaporate the working fluid using the heat of the air compressed by the air compressor, and an evaporator is installed in the middle of the circulation path near the turbine outlet. and a condenser for condensing the working fluid vapor that has passed through the turbine with the low-temperature water separated by the separation device.
JP11356687A 1987-05-12 1987-05-12 Energy recovery system for airlift device Pending JPS63280805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11356687A JPS63280805A (en) 1987-05-12 1987-05-12 Energy recovery system for airlift device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11356687A JPS63280805A (en) 1987-05-12 1987-05-12 Energy recovery system for airlift device

Publications (1)

Publication Number Publication Date
JPS63280805A true JPS63280805A (en) 1988-11-17

Family

ID=14615506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11356687A Pending JPS63280805A (en) 1987-05-12 1987-05-12 Energy recovery system for airlift device

Country Status (1)

Country Link
JP (1) JPS63280805A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012659A (en) * 2009-07-06 2011-01-20 Hitachi Industrial Equipment Systems Co Ltd Compressor
JP2011522977A (en) * 2008-03-21 2011-08-04 テクニップ フランス Separator for receiving pressurized fluid containing at least solids and liquid, and associated apparatus and method
JP2013057256A (en) * 2011-09-07 2013-03-28 Ihi Corp Energy recovery system for compressor
JP2013253775A (en) * 2013-08-22 2013-12-19 Hitachi Industrial Equipment Systems Co Ltd Compressor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119307A (en) * 1983-11-30 1985-06-26 Hokuetsu Kogyo Co Ltd Prime mover driven working machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119307A (en) * 1983-11-30 1985-06-26 Hokuetsu Kogyo Co Ltd Prime mover driven working machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011522977A (en) * 2008-03-21 2011-08-04 テクニップ フランス Separator for receiving pressurized fluid containing at least solids and liquid, and associated apparatus and method
JP2011012659A (en) * 2009-07-06 2011-01-20 Hitachi Industrial Equipment Systems Co Ltd Compressor
US8955323B2 (en) 2009-07-06 2015-02-17 Hitachi Industrial Equipment Systems Co., Ltd. Compressor
US9897103B2 (en) 2009-07-06 2018-02-20 Hitachi Industrial Equipment Systems Co., Ltd. Compressor
JP2013057256A (en) * 2011-09-07 2013-03-28 Ihi Corp Energy recovery system for compressor
JP2013253775A (en) * 2013-08-22 2013-12-19 Hitachi Industrial Equipment Systems Co Ltd Compressor

Similar Documents

Publication Publication Date Title
CN106068149B (en) A kind of economic benefits and social benefits cross-flow MVR evaporation concentration systems
WO2022037001A1 (en) Wastewater treatment system
CN106492491A (en) A kind of driving heat source latent heat indirect cyclic process utilizes type multistage evaporation enrichment facility
US3953972A (en) Geothermal energy recovery process
JPS63280805A (en) Energy recovery system for airlift device
CN204841160U (en) Feed liquid enrichment facility
WO2016098949A1 (en) High-efficiency ocean thermal energy conversion power system using liquid-vapor ejector and motive pump
CN206381655U (en) Minimize energy-saving evaporation regenerating unit
CN208049716U (en) A kind of multiple-effect distillation device and system
JPH0338437B2 (en)
US2793502A (en) Method and apparatus for utilizing exhaust steam
JP3640410B2 (en) Power generation and desalination equipment using seawater temperature difference
CN111747465B (en) Natural force driven efficient waste heat seawater desalination device and method
CN108211801A (en) A kind of multiple-effect distillation device, system and method
WO2023284061A1 (en) Steam source system based on steam-liquid ejector pressurization and flashing technology
CN210384879U (en) Heat pump-combined energy-saving efficient evaporative crystallization and air dehumidification system
CN106568236A (en) Driving heat source total-heat direct-recycling type multistage evaporation concentration device
CN207856340U (en) A kind of small reduction ratio thermo-compression evaporation enrichment facility of action of forced stirring
CN114100174B (en) Heat pump rectification system of embedded wave rotor equipment
CN107238072B (en) Regenerative vacuum deaerator
CN206221013U (en) Expansion power generator system
JPS63131901A (en) Method of recovering heat of reaction
CN110237553A (en) A kind of solution condensing device and its implementation
CN109292875A (en) A kind of solution condensing device and its implementation based on steam cascade utilization
CN215598142U (en) System for improving vacuum pumping efficiency of thermal power plant